183

神経回路網と幾何学の接点

福水 健次 情報・システム研究機構 統計数理研究所 総合研究大学院大学

RIMS共同研究:離散力学系の分子細胞生物学への応用数理 「神経システムと代数幾何」パネルディスカッション 2009.1.5 – 1.9 京都大学 Algebraic geometric approach to probabilistic network
 (algebraic geometry, but not necessarily neural

• Singularity in neural network model (geometry in neural

networks, but not necessarily algebraic geometry)
・神経回路モデルの特異点…数理モデルに抽象化ニ

network)

ューラルネットワーク

・ 確率推論に現れるネットワークにおける代数幾何

自己紹介

大学: 京都大学理学部数学教室 (ここ)

1989.- (株)リコー 中央研究所

1998.- 理化学研究所 脳科学総合研究センター

2000.- 統計数理研究所. 現職 統計的学習、機械学習の研究

2

- ・ 自己紹介:京大理数→1989 (株) リコー→1998 理 研 BSI→2000 統数研で統計的学習・機械学習の研究
- ・ 脳も代数幾何もやっていない!

Outline

Singularities in neural network models

Geometry in neural networks, but not necessarily algebraic geometry.

Algebraic geometric approach to probabilistic networks

Algebraic geometry, but not necessarily neural networks.

Multilayer Perceptron

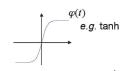
Mathematical model of neural computation

Brain as an information processing system

Network of processing units

Single neuron model

 $x_1 \xrightarrow{W_1} x_2 \xrightarrow{W_2} \varphi$ $x_m \xrightarrow{W_m} y = \varphi \left(\sum_{i=1}^m w_i x_i + b \right)$



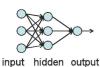
· Mathematical model of neural computation

- ・ 脳の単純化とは、network of processing units
- ・脳のシナプスの複雑な連結→抽象化→ニューラルネットワーク(各 unit で、入力の線形和を引数とした非線形関数の値を出力)
- ・ single neuron model では、出力 $y = \varphi$ (e.g. tanh) (Σw_i (重み付け、興奮性ならば正、抑制性ならば負) x_i (入力) +b)

184

Multilayer Perceptron

Multilayer perceptron: feedforward network



 $f(x;\theta) = \sum_{j=1}^{H} b_j \, \sigma(a_j^T x + c_j) + d$

 a_j , b_j , c_j , d: parameters to learn (synaptic learning)

- It is not a precise model of biological neural networks, but it may capture some properties of neural computation:
 - · Network structure
 - · Local, parallel computation
 - · Simple computation by units of the same function
 - · Existence of hidden units
- ・ 多層パーセプトロン (feedforward network: 前向き の信号の流のみを考える)は、入力 → hidden → 出力
- ・ $f(x;\theta) = \sum b_i \sigma$ (e.g. tanh) $(a_i^T x + c_i)$ (しきい値)) + d
- · a_i, b_i, c_i, d が学ぶべきパラメータ

- ') = ∑_{j=1} o_j o(a_jx + c_j) + a · parameter space における識別不能性→function space
 - target: $f_0(x) = b_0 d(a_0 x)$

における特異点

• Symmetry and singularity

• model: $f(x;\theta) = b_1 d(a_1 x) + b_2 d(a_2 x)$

・中間素子が2個あるネットワークを考えてみる

・ 生物では実現すべき関数より冗長な素子があるこ

・ 冗長なモデルを使うと、パラメータの識別不能性

- ・ パラメータの識別不能性が現れる
- こんな感じのネットワーク
- $\bigcirc \to \blacksquare \to \bigcirc \to$

とが多い

- $\bigcirc \rightarrow \bullet \uparrow$
- ・ 多項式では識別不能性は起こらない
- ・ノイズがあるときは冗長性により機能が向上するのではないか?

Symmetry and Singularity

Model: Target: $f(x,\theta) = b_1 \varphi(a_1 x) + b_2 \varphi(a_2 x)$

 $f_0(x) = b^0 \varphi(a^0 x)$

Redundant representation

 $b_1 + b_2 = b^0$ a^0 a^0

The parameter set $\{a_1=a_2=a^0,\ b_1+b_2=b^0\}$ U $\{a_1=a^0,\ b_1=b^0,\ b_2=0,\ a_2: \text{arbitrary}\}$ realizes $f_0(x)$.

- c.f. Linearly parameterized model

The parameter is unique even if the model is surplus.

ex.) Polynomial $a_0 + a_1x + \cdots + a_Hx^H$

Symmetry and Singularity

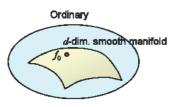
Singularity caused by unidentifiability

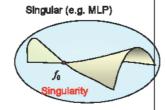


- · Singularity caused by unidentifiability
- ・ パラメータ空間→関数空間
- ・ 特異点に対応

Smooth Manifold v.s. Singular Model

Parametric model in function space





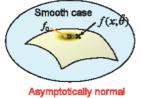
Interesting behaviors around singularity

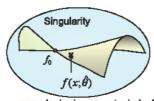
- · Statistical behavior of the estimator
- · Trajectory of the parameter in learning process
- · The singularity may be locally infinite dimensional
- More geometric approach? Algebraic geometry helps?
- · Smooth manifold vs. singular model
- ・ 普通の Smooth manifold: d 次元、スムーズな manifold
- Singular (e.g. MLP): 特異点が生じると幾何的構造 が複雑になる
- ・学習の誤差、学習の trajectory が singularity を通らないと学習できない場合がある
- · Singularity が局所的に無限次元かもしれない

Statistical Estimation

 $\hat{\theta}$: optimal parameter by learning. $\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (Y_i - f(X_i; \theta))^2$

 $\hat{ heta}$ is a random variable.





??? algebraic geometry helps?

Reference: 「特異モデルの統計学」 福水,栗木,竹内,赤平(岩波書店)

Bayes estimation of integral. Approach by algebraic geometry (Watanabe)

- 統計的推定
- ・ 多層パーセプトロンは Hebb 則的学習
- 普通は Optimal parameter by learning の 2 乗誤差を少なくする
- ・ベイズ推定では integral. approach by algebraic

geometry

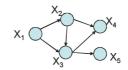
185

・プラトー現象とは、学習の誤差の減り方に停滞期が 存在する→singularity がある程度かかわっているか もしれない

Bayesian Network

Simpler and more abstract network

Probabilistic network with finite states



$$\begin{split} p(X_1, X_2, X_3, X_4, X_5) \\ &= p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1, X_2) \\ &\quad p(X_4 \mid X_2, X_3) p(X_5 \mid X_3) \end{split}$$

Bayesian network / graphical model Used for

- modeling of data
 - expressing causal relations

10

Bayesian network=Simpler and more abstract network。
 より簡単で、それぞれの素子が有限状態だけ取る。
 条件付き確率を表す (p(X1, X2, X3) = p(X1)p(X2 | X1)p(X3 | X1, X2))

Algebraic Statistics

Network with two nodes of binary states

General Y

Independent

(Y)

 $p_{ij} = p(X = i, Y = j) \quad i, j \in \{0, 1\}$ $\Delta = \{ \mathbf{p} = (p_{00}, p_{01}, p_{10}, p_{11}) \in \mathbb{R}^4 \mid p_{ij} > 0 \ (\forall i, j), \quad \sum_{i, j \in (0, 1)} p_{ij} = 1 \}$

 $\Gamma = \{\mathbf{p} \in \Delta | p_{ij} = P(X = i)P(Y = j)\}$

 $\Gamma = \underbrace{\{(\alpha_0\beta_0, \alpha_0\beta_1, \alpha_1\beta_0, \alpha_1\beta_1) \in \mathbb{R}^4 \mid \alpha_i \in \mathbb{R}, \beta_j \in \mathbb{R}\} \cap \Delta}_{\begin{array}{c} \underline{\alpha_i} \\ \alpha_0 + \alpha_1 \end{array}} = P(X = i), \quad \underbrace{\frac{\beta_j}{\beta_0 + \beta_1}} = P(Y = j)$

Toric variety with toric ideal $\langle p_{00}p_{11}-p_{01}p_{10}\rangle$

- ・ Algebraic statistics、2値の値を取る(p00, p01, p10, p11)
- · Toric variety with toric ideal
- ・一般に有限状態のグラフィカルモデルが toric variety に対応

Algebraic Statistics

- In general, a graphical model with finite states corresponds to a toric variety.
- Algebraic geometric methods are applied to statistical problems.
 Algebraic statistics.
- Any link with neuro science?

References:

- Pistone, Riccomango and Wynn. Algebraic Statistics. 2001.
- Pachter and Sturmfels. Algebraic Statistics and Computational Biology. 2005.
- Geiger, Meek and Sturmfels. On the toric algebra of graphical models. Annals of Statistics 34 (2006)

12

ディスカッション

- 多層パーセプトロンをつなげていけば愛が生まれるか?→精度は良くなる
- ・同じ層内で関係を持たせる、または時間遅れの関係 性を入れればどうなるか?本質的に性能が変わる か?
- ・ 出力を入力にすることの数学的な意味は?
- ・ ニューラルネットを複雑にして文字認識に使う
- ・ 簡単にフィードバックがある場合、任意のネットワークでは難しい
- · Back propagation
- ・問題の複雑さとニューラルネットワークの複雑さの関係→ある関数のクラスを考えて、関数を近似する場合→ユニットの数と、近似誤差のワースト値の関係は分かっている
- ・中間素子の数、worst case の近似性能の関係、素子 を増やす近似精度が上がる
- ・特異点があった方が良いのか?ベイズ推論では特 異点の方が得=冗長な方が良い。ニューラルネット では特異点が必ず出る。事前確率を置くと特異点で

得をする

- ・加藤:入来先生の「わかるとは何か」 学習=状態 の集合をカテゴライズ、部分集合をどれだけ認識す るか 分け方をどれだけよくするか
- ・ 全ての現象を理解することはできない
- ・ 多義化 = 集合が無限に広がっている
- ・ 概念の構成 = 集合との対応化
- ・入来:わかるとは 階層 論文では「上の階層の原 因になっている あるいは下の階層が上に影響し ている」として解釈する
- ・階層が無限に続く
- ・ニューラルネット = パラメータ最適化学習
- ・わかり方の問題、わかる対象の問題
- ・ 可塑性のないシナプスの方が多い
- ・ 愛とか正義の連合野はほとんど活動しない
- ・多層パーセプトロンは問いに対して常に正しい答 えを出すのか?
- ・中間素子のパターンに対する発火状況のエントロピーを用いて学習状態を判断する試みもあった。ただし、それで良いのか?せいぜい数十個のニューロン。検証すべき
- ・中間素子の状態が情報の representation ではない か?
- 特異点をはさまれたものの状態?サイエンスとして検証しうるか
- 中間レイヤーをモニタリングすることは可能
- ・ 脳内にはあるか
- パーセプトロンは小脳に似ている、だから有名になった。
- ・ 全てのニューロンは可塑性がない。時期によって異なる
- ・ 中間層が何かと結合していない方が難しい
- ・ 近似の他のメジャー 確率的な予測がどれだけ当 たるか
- ・ 連続関数の近似
- ・ 多層になったときはもっと違うメジャーが必要
- ・制限にして学習をしても結果は良くない 決まっ た定式化はない
- ランダムにつながったネットワークで自発的に階層ができるか?
- ・ 作れるか?作り込むことは可能。自然に発生する

か?

- ・ 振動子として素子を考える。 階層性やクラスターが できる
- ・ 大脳のように乖離した構造があると機能ができる
- ・本能はどこにあるのか?本能=原始的な脳。鳥では わかっている
- ・ 自己抑制ができる人は大脳が発達している
- ・どれだけ複雑なことができるのか?やっている研究 は?
- ・文字列認識(手書きの郵便番号の認識)…ニューラルネットワークのパラメータをヒューリスティックに調節したものの一番性能がよかった
- ・音声認識(時間構造が入る→構造が増えると難しくなる→あまりニューラルネットワークを使われることがなくなってきた)
- ・ループがある時のパラメータ調整は?

簡単な FB があるような系では、研究がされている 任意のネットワークについてはよくわからない

- ・自発的に階層を作るようなネットワークはあるのだろうか?
- ⇒作りこむことは可能だとおもわれる

同期に応じて結合が強化されるようなネットワーク は存在している

ある種のクラスターである

constraint が無い状態で、自発的に階層を作るとした ら、大脳の構造も納得できる