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1 Introduction

This note is based on a talk the author gave at the RIMS conference.
Every complex quadratic polynomial map $z\mapsto az^{2}+bz+d(a, b, d\in \mathbb{C}, a\neq 0)$ can

be put into a normal form $q_{c}$ : $z\mapsto z^{2}+c$ , with $z,$ $c\in \mathbb{C}$ . Another well-known normal
form is the logistic map $f_{\mu}$ : $z\mapsto\mu z(1-z)$ , with $z,$ $\mu\in \mathbb{C}$ , which is conjugate to $q_{c}$ via
the conjugacy

$h:z\mapsto-\mu z+\mu/2$ (1)

with $c=\mu(2-\mu)/4$ and $\mu\neq 0$ . Hence, we can freely employ either form $q_{c}$ or $f_{\mu}$ for
investigation of quadratic holomorphic maps.

By $K(q_{c})$ we denote the filled Julia set of the map $q_{c}$ ,

$K(q_{c}):=$ { $z|q_{c}^{n}(z),$ $n\geq 0$ , is bounded},

then the Julia set $J(q_{c})$ of $q_{c}$ is the boundary of the filled Julia set,

$J(q_{c}):=\partial K(q_{c})$ .
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The famous Mandelbrot set for $q_{c}$ is defined to be

$M_{c}:=$ { $c|q_{c}^{n}(0),$ $n\geq 0$ , is bounded}.

Similarly, we use $K(f_{\mu}),$ $J(f_{\mu})$ , and

$M_{\mu}$ $:=$ { $\mu|f_{\mu}^{n}(1\prime 2),$ $n\geq 0$ , is bounded}

to denote the filled Julia set, the Julia set, and the Mandelbrot set of $f_{\mu}$ , respectively.
The Julia set for $\mu$ not belonging to the Mandelbrot set is hyperbolic, thus varies

continuously when parameter $\mu$ changes (e.g. [12, 14]). It follows that a continuous
curve in the exterior of the Mandelbrot set induces a continuous family of Julia sets. In
this note, we are concerned with the fact that this family is governed by an infinitely
coupled differential equations (see (3) below) that the author obtained recently in [6].
This approach may bring new insights into the study of dynamical systems.

The continuous family of Julia sets $J(f_{\mu})$ when parameter $\mu$ varies from infinity along
an external ray of the Mandelbrot set $M_{\mu}$ to a Misiurewicz point hence can be realized as
an orbit of the infinitely coupled differential equations (3) integrated along the external
ray. We use the OTIS algorithm [11] to obtain numerical data of the external rays.

2 Conjugacy via the anti-integrability

Let $l_{\infty}$ $:=\{z|z=\{z_{i}\}, i\in \mathbb{N}\}$ endowed with the $\sup$ norm be the Banach space of
bounded sequences in $\mathbb{C}$ . Rewrite the logistic map $z_{i}\mapsto z_{i+1}=\epsilon^{-1}z_{i}(1-z_{i}),$ $i\geq 0$ , as

$F:l_{\infty}\cross \mathbb{C}$ $arrow$ $l_{\infty}$ ,

$(z, \epsilon)$ $\mapsto$ $F(z, \epsilon)=\{F_{0}(z, \epsilon), F_{1}(z, \epsilon), F_{2}(z, \epsilon), \ldots\}$

with $F_{i}(z, \epsilon)=-\epsilon z_{i+1}+z_{i}(1-z_{i})$ , then the anti-integrability for the logistic map can be
formulated by five steps [1, 3, 4, 13] which in the current context are described by the
following five propositions [4, 5]:

Proposition 1. (i) When $\epsilon\neq 0,$ $z$ is a bounded orbit of $f_{1/\epsilon}$ if and only if $F(z, \epsilon)=0$ .
(ii) $F(z^{\uparrow}, 0)=0$ if and only if $z_{i}^{\dagger}=0$ or 1 for every $i\geq 0$ .

Proposition 2. Let $\Sigma\subset \mathbb{C}^{N}$ be the set constituting all such $zs\dagger$ , then $\Sigma$ with the product
topology is a Cantor set.
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The map $F$ is $C^{1}$ , and $D_{z}F(z, \epsilon)$ is invertible if and only if

$-\epsilon\xi_{i+1}+(1-2z_{i})\xi_{i}=\eta_{i}$ (2)

possesses a unique bounded solution for any given $\eta=\{\eta_{i}\}_{i\geq 0}\in l_{\infty}$ . The solution

$\xi_{i}=\sum_{N\geq 0}\epsilon^{N}(\prod_{k=0}^{N}(1-2z_{i+k})^{-1})\eta_{i+N}$

is bounded for every $i\geq 0$ because it can be bounded by a geometric series due to the
expanding property of the Julia set when $\epsilon\not\in M_{\mu}^{-1}$ . (The “inside-out” Mandelbrot set
$M_{\mu}^{-1}$ is defined by

$M_{\mu}^{-1}:=\{1’\mu|\mu\in M_{\mu}\}.)$

The homogeneous solution of (2),

$\xi_{i+N}=\xi_{i}\epsilon^{-N}\prod_{k=0}^{N-1}(1-2z_{i+k})$ $\forall i\geq 0,$ $N\geq 1$ ,

by the same expanding property, is unbounded unless $\xi$ is identical to $0$ . This means the
solution above is the only bounded solution.

Proposition 3. The orbit $z^{*}$ is a solution of the following functional differential equation

$Dz(\epsilon)=-D_{z}F(z(\epsilon), \epsilon)^{-1}D_{\epsilon}F(z(\epsilon), \epsilon)$ ,

and hence satisfies a system of infinitely coupled differential equations

$\frac{d}{d\epsilon}z_{n}=\sum_{N\geq 0}\epsilon^{N}(\prod_{k=0}^{N}(1-2z_{n+k})^{-1})z_{n+1+N}$ . (3)

The crucial issue is how to solve (3). We shall treat it as the initial value problem,
with initial values specified at $\epsilon=0$ . As $\epsilon$ approaches zero, the set of bounded orbits
$\{z_{n}^{*}(\epsilon)\}_{n\geq 0}$ of the map $f_{1’\epsilon}$ converges to the set $\Sigma$ . This indicates that for every $n\geq 0$

there are exactly two possibilities for the initial conditions of (3): $z_{n}^{*}(0)=0$ or $z_{n}^{*}(0)=1$ .

Proposition 4.

$J(f_{1\prime\epsilon})= \bigcup_{\dagger z\in\Sigma}\pi\circ g_{\epsilon}(z^{\dagger})$
,

in which
$z^{\dagger}\mapsto^{g_{\epsilon}}z^{*}(\epsilon;z^{\dagger})\mapsto^{\pi}z_{0}^{*}(\epsilon;z^{\dagger})$ ,

where $\pi$ is the projection $z=(z_{0}, z_{1}, \cdots)\mapsto z_{0}\in \mathbb{C}$ .
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Remark 5. With the product topology, the mapping $g_{\epsilon}$ : $z\dagger\mapsto z^{*}(\epsilon;z^{\uparrow})$ is continuous
[3, 4, 5].

Proposition 6. Providing $\epsilon\not\in M_{\mu}^{-1}$ , the following diagram commutes:

$\pi og_{e}\downarrow J(f_{1\epsilon})\Sigma$

,
$arrow^{arrow f_{1/e}\sigma}$

$J(f_{1\prime\epsilon})\Sigma\downarrow\pi og_{e}$

Remark 7. The advantage of our approach is that the conjugacy comes automatically
and can be realized explicitly as $\pi\circ g_{\epsilon}$ . In fact, $g_{\epsilon}$ is realized as the solutions of the initial
value problems for the infinitely coupled differential equations (3).

3 Continuation from the anti-integrable limit

We can assign each point in the Julia set a symbolic code by virtue of the one-to-one
correspondence between $J(q_{c})$ and $\Sigma$ . But, there is no unique way to assign the code.
One example of such a coding is the itinemry sequence. Below we recall the canonical
potential function associated with the filled Julia set in order to see how an itinerary
sequence can be assigned and, at the same time, to introduce some notations. (See, for
example, [2, 9, 10, 15, 16]. $)$

Let $\beta=1c$ . The dynamical behavior of $q_{c}$ near infinity can be understood by making
the substitution $\zeta=1\prime z$ and considering the rational function

$Q_{\beta}( \zeta):=\frac{1}{q_{1\prime\beta}(1/\zeta)}$ .

The associated B\"ottcher map $\phi_{\beta}$ defined by

$\phi_{\beta}(\zeta):=\lim_{narrow\infty}2\sqrt[n]{Q_{\beta}^{n}(\zeta)}$

carries an open subset of the immediate basin of the fixed point $0$ biholomorphically onto
an open disc $D_{r}$ of radius $r,$ $0<r\leq 1$ , centred at the origin. If $\beta\not\in M_{c}^{-1}$ , where

$M_{c}^{-1}:=\{1/c|c\in M_{c}\}$ ,

then $r= \lim_{\zetaarrow\infty}|\phi_{\beta}(\zeta)|<1$ and $\phi_{\beta}^{-1}(\mathbb{D}_{r})=\{\zeta||\phi_{\beta}(\zeta)|<r\}$ . The map $\hat{\phi}_{c}$ defined by the
reciprocal

$\hat{\phi}_{c}(z):=\frac{1}{\phi_{1’ c}(1/z)}=\lim_{narrow\infty}2\sqrt[n]{q_{C}^{n}(z)}$
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maps biholomorphically from the open set $\{z|G_{c}(z)>G_{c}(0)\}\subseteq \mathbb{C}\backslash K(q_{c})$ to the region
$\mathbb{C}\backslash \overline{\mathbb{D}}_{\hat{r}}=\{w|\ln|w|>G_{c}(0)\}$ , where $\hat{r}=|\hat{\phi}_{c}(0)|>1$ and $G_{c}:\mathbb{C}arrow[0, \infty)$ , defined by

$G_{c}(z)$ $:= \ln^{+}|\hat{\phi}_{c}(z)|=\lim_{narrow\infty}\frac{1}{2^{n}}\ln^{+}|q_{c}^{n}(z)|$ , $( \ln^{+}|w|=\max\{\ln|w|, 0\})$

is the canonical potential function associated with the filled Julia set $K(q_{c})$ . The map $\hat{\phi}_{c}$

is a conjugacy between $q_{c}$ on $\{z|G_{c}(z)>G_{c}(0)\}$ and $w\mapsto w^{2}$ on $\{w|\ln|w|>G_{c}(0)\}$ .

For $\theta\in \mathbb{R}/\mathbb{Z}$ , define the extemal ray $\mathcal{R}(\theta;K(q_{c}))$ of angle $\theta$ of the filled Julia set $K(q_{c})$

by
$\mathcal{R}(\theta;K(q_{c})):=\{\hat{\phi}_{c}^{-1}(re^{i2\pi\theta})||\hat{\phi}_{c}(0)|<r\leq\infty\}$ . (4)

The critical value $c\in \mathbb{C}\backslash K(q_{c})$ has a well defined external angle when $c\not\in M_{c}$ . Let it

be denoted by $l(c)\in \mathbb{R}/\mathbb{Z}$ , given by $c=\hat{\phi}_{c}^{-1}(|\hat{\phi}_{c}(c)|e^{i2\pi l(c)})$ . The ray $\mathcal{R}(l(c);K(q_{c}))$ has
two preimages, $\mathcal{R}(l(c)/2;K(q_{c}))$ and $\mathcal{R}((l(c)+1)2;K(q_{c}))$ . These two together with the

origin separate $\overline{\mathbb{C}}$ into two disjoint open sets, say $V_{0}$ and $V_{1}$ . These constitute a Markov

partition. That is to say, for any infinite sequence $(b_{0}, b_{1}, \ldots)\in\Sigma$ , there exists one and

only one point $z\in K(q_{C})$ with $q_{c}^{i}(z)\in V_{b_{1}}$ for every $i\geq 0$ . However, there is ambiguity in

determining which open set should be labeled by $V_{0}$ and which by $V_{1}$ . In Definition 8, we

shall define the itinerary sequences used in this note for points in the Julia set $J(f_{\mu})$ . Our
definition arises very naturally from the viewpoint of the system’s anti-integrable limit.

By using (1), define

$\mathcal{R}(\theta;K(f_{\mu})):=h^{-1}(\mathcal{R}(\theta;K(q_{c})))$ .

The two external rays $\mathcal{R}(l(c)/2;K(f_{1’\epsilon}))$ and $\mathcal{R}((l(c)+1)/2;K(f_{1\epsilon}))$ , which land at the

point $z=1/2$ , divide the complex plane into two partitions, one containing the fixed

point $0$ , the other containing the other fixed point $1-\epsilon$ .

Definition 8. Assume $z_{n+1}=f_{1/\epsilon}(z_{n})$ for all $n\geq 0$ . Suppose $\{z_{n}\}_{n\geq 0}$ is bounded and is

bounded away from the two dynamic rays that land at 1/2. Define its itinerary sequence
$\{\alpha_{n}\}_{n\geq 0}$ as follows: $\alpha_{n}=0$ if $z_{n}$ is located in the same open set as the fixed point $0$ is;

$\alpha_{n}=1$ if $z_{n}$ is located in the same open set as the fixed point $1-\epsilon$ is.

Theorem 9. Suppose $0\neq\hat{\epsilon}\not\in M_{A}^{-1}$ and suppose $\{z_{n}\}_{n\geq 0}$ , with $z_{n}=f_{1’\hat{\epsilon}}^{n}(z_{0})\forall n\geq 0$ , is

a bounded orbit of the logistic map $f_{1’\hat{\epsilon}}$ with itinerary sequence $\{\alpha_{n}\}_{n\geq 0}$ . Assume $z_{n}^{*}(\epsilon)$

is the solution of (3) integrated along an integral curve in $\overline{\mathbb{C}}\backslash M_{\mu}^{-1}$ connecting $\epsilon=0$ to
$\epsilon=\hat{\epsilon}$ subject to initial condition $z_{n}^{*}(0)=\alpha_{n}$ for every $n\geq 0$ . Then the value of $z_{n}^{*}(\hat{\epsilon})$ is

independent of integral curves, and $z_{n}^{*}(\hat{\epsilon})=z_{n}$ for all $n$ .
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If $\{z_{n}\},$ $n\geq 0$ , is a $period-(p+1)$ orbit of $f_{1’\epsilon}$ with itinerary $\{\overline{\alpha_{0}\alpha_{1}\ldots\alpha_{p}}\}$ , then $z_{n}^{*}(\epsilon)$

can be obtained by integrating a $(p+1)$-coupled ODEs of the form

$\frac{d}{d\epsilon}z_{n}=(1-\epsilon^{p+1}\prod_{k=0}^{p}(1-2z_{n+k})^{-1})^{-1}\sum_{N=0}^{p}\epsilon^{N}(\prod_{k=0}^{N}(1-2z_{n+k})^{-1})z_{n+1+N}$ (5)

with the periodicity $z_{n+1+p}=z_{n}$ and initial condition $z_{n}^{*}(0)=\alpha_{n}$ for every $0\leq n\leq p$ (see

[6] $)$ . This provides a way for finding all roots of a class of polynomials. Suppose we are
interested in finding all periodic orbits of the map $z\mapsto\epsilon^{-1}z(1-z)$ . What we usually do

is to solve a polynomial of $2^{p+1}$ -degree for $z_{0}$ arising from the following algebraic relation:
$z_{1}=\epsilon^{-1}z_{0}(1-z_{0}),$ $z_{2}=\epsilon^{-1}z_{1}(1-z_{1}),$

$\ldots,$
$z_{p}=\epsilon^{-1}z_{p-1}(1-z_{p-1}),$ $z_{0}=\epsilon^{-1}z_{p}(1-z_{p})$ . If

$0\neq\epsilon\not\in M_{\mu}^{-1}$ , we know that the polynomial for $z_{0}$ has $2^{p+1}$ distinct roots, corresponding

to $2^{p+1}$ distinct initial points for all of $period- 2^{p+1}$ orbits (not all are of least period).

Even if we find all roots of the polynomial, another question that concems distinguishing

the combinatorics of these roots is the itinerary of their corresponding orbits.

Corollary 10. Let $0\neq\hat{\epsilon}\not\in M_{\mu}^{-1}$ . Assume $\tilde{z}_{0}$ is one root of the aforementioned $2^{p+1}$ -degree

polynomial for $z_{0}$ with $\epsilon=\hat{\epsilon}$ and the itinemry of its orbit is $\alpha=\{\alpha_{n}\}_{n\geq 0}$ . Then $\tilde{z}_{0}$ can be

obtained by integrating the $(p+1)$ -coupled ODEs, namely $\tilde{z}_{0}=z_{0}^{*}(\hat{\epsilon};\alpha)$ .

Because for every $n\geq 0$ the solution $z_{n}^{*}(\epsilon)$ of (3) depends continuously on $\epsilon$ and has
to be bounded away from the two dynamic rays, the itinerary sequence of $\{z_{n}^{*}(\epsilon)\}_{n\geq 0}$ is
equal to $\{z_{n}^{*}(0)\}_{n\geq 0}$ .

Once initial conditions $z_{n}^{*}(\epsilon=0)$ for all $n\geq 0$ are given, the value of the solution $z_{n}^{*}(\epsilon)$

of (3) at $\epsilon=\hat{\epsilon}\in\overline{\mathbb{C}}\backslash M_{\mu}^{-1}$ depends only on $\hat{C^{\sim}}$ . Because $\hat{c-}$ may locate arbitrarily close to
$\partial M_{\mu}^{-1}$ , we have to specify an integral curve that can approach as close as possible to the
boundary $\partial M_{\mu}^{-1}$ . This can be done if the integral curve we employ is an external ray.

Define
$\hat{\Phi}_{n}(c):=2\sqrt[n]{q_{c}^{n}(c)}$ (6)

in $\overline{\mathbb{C}}\backslash M_{c}$ by the branch $(\hat{\mathfrak{D}}_{n}(c)=c+O(1)$ as $carrow\infty$ . The sequence $(\hat{I})n$ converges as
$narrow\infty$ uniformly on compact subsets of $\overline{\mathbb{C}}\backslash M_{c}$ to the function $\hat{\Phi}$ with $\hat{\Phi}(c)\equiv\hat{\phi}_{c}(c)$ ,

which is biholomorphic from $\overline{\mathbb{C}}\backslash M_{c}$ to $\overline{\mathbb{C}}\backslash \overline{\mathbb{D}}_{1}$ , and the inverse $\hat{\Phi}_{n}^{-1}$ converges to $\hat{\Phi}^{-1}$

uniformly on compact subsets of $\overline{\mathbb{C}}\backslash$ IDl. For $\theta\in \mathbb{R}\mathbb{Z}$ , the set

$\mathcal{R}(\theta;M_{c}):=\{\hat{\Phi}^{-1}(re^{i2\pi\theta})|1<r\leq\infty\}$
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is called the extemal my of angle $\theta$ of the Mandelbrot sets $M_{c}$ . In contrast to $\hat{\Phi}^{-1}$ , the
map $\Phi^{-1}$ defined by

$\Phi^{-}.(w):=\frac{1}{(\hat{B}^{-1}(1/w)}$ (7)

is a biholomorphism of $\mathbb{D}_{1}$ onto $\overline{\mathbb{C}}\backslash M_{c}^{-1}$ .

Suppose $\beta\not\in M_{c}^{-1}$ and $\Phi(\beta)=w\in \mathbb{D}_{1}$ . The relation between $\beta$ and $\epsilon$ is

$\beta=\frac{4\epsilon^{2}}{2\epsilon-1}$ ,

in particular, $\beta=-4\epsilon^{2}+O(\epsilon^{3})$ when $\epsilon$ is small. By the Riemann Mapping Theorem,

there exists a unique biholomorphic map

$\Psi:\overline{\mathbb{C}}\backslash M_{\mu}^{-1}arrow \mathbb{D}_{1}$

satisfying $\Psi(0)=0$ and $\Psi(\epsilon)=-2i\epsilon+O(\epsilon^{2})$ when $\epsilon$ is small. Consequently, the following

diagram commutes

$\epsilon\in\overline{\mathbb{C}}\backslash M_{\mu}^{-1}arrow^{\Psi}\mathbb{D}_{1}$ $\overline{\mathbb{C}}\backslash M_{\mu}\ni\mu$

$|$ $\sim^{r}$ $|$ $\Psi(\epsilon)\mapsto(\Psi(\epsilon))^{2}$

$\beta\in\overline{\mathbb{C}}\backslash M_{c}^{-1}arrow^{\Phi}\mathbb{D}$

$1arrow^{\Phi^{-1}\hat(1’\cdot\cdot)}\overline{\mathbb{C}}\backslash M_{c}\ni c\downarrow$

.

In the diagram the map $\wedge f:\overline{\mathbb{C}}\backslash M_{J^{J}}^{-1}arrow \mathbb{D}_{1},$ $\epsilon\mapsto w$ , is defined by

$T(\epsilon)=(\Psi(\epsilon))^{2}=w$ .

Using $w=re^{i2\pi\theta},$ $0\leq r<1,0\leq\theta<1$ , we specify the two branches $\prime r_{\pm}^{-1}$ of the inverse
of $\prime r$ as the following:

$er_{\pm}^{-1}(re^{i2\pi\theta}):=\Psi^{-1}(\pm\sqrt{r}e^{i\pi\theta})$ . (8)

Our integral curves for (3) are external rays of $M_{\mu}^{-1}$ . For $\theta\in \mathbb{R}/\mathbb{Z}$ , define the two
extemal $mys\mathcal{R}^{+}(\theta;M_{\mu}^{-1})$ and $\mathcal{R}^{-}(\theta;M_{\mu}^{-1})$ of angle $\theta$ of $M_{\mu}^{-1}$ by

$\mathcal{R}^{+}(\theta;M_{l^{A}}^{-1})$ $:=$ $\{’\Gamma_{+}^{-1}(re^{-i2\pi\theta})|0\leq r<1\}$ ,

$\mathcal{R}^{-}(\theta;M_{l^{A}}^{-1})$ $:=$ $\{’r_{-}^{-1}(re^{-i2\pi\theta})|0\leq r<1\}$ .

4 Two examples

We use finitely many points that constitute an invariant subset to approximate the Julia

set. Consequently the infinitely coupled differential equations (3) become a finitely cou-
pled ODEs. In this section, examples of a periodic orbit and an eventually periodic orbit

are demonstrated. See [8] for more examples.
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4.1 External angle 1/6

We choose the initial conditions $\{z_{0}^{*}(0), z_{1}^{*}(0), \ldots, z_{m}^{*}(0), 1,\overline{10}\}$ with $z_{n}^{*}(0)\in\{0,1\}$ for all
$0\leq n\leq m$ to deal with (3). The initial condition in this case indicates that, after $m+2$

times iterations, orbits will become periodic with period 2. That is, $z_{n}=z_{n+2}$ for all

$n\geq m+2$ . It turns out that the orbit points $z_{n}$ ’s for $n\geq m+2$ satisfy two coupled

equations which read

$\frac{d}{d\epsilon}z_{n}=(1-\epsilon^{2}\prod_{k=0}^{1}(1-2z_{n+k})^{-1})^{-1}\sum_{N=0}^{1}\epsilon^{N}(\prod_{k=0}^{N}(1-2z_{n+k})^{-1})z_{n+1+N}$.

When $0\leq n\leq m+1$ , orbit points $z_{n}$ ’s are govemed by the following differential equations

(see [6]):

$\frac{d}{d\epsilon}z_{n}$ $=$ $\sum_{N=0}^{m+1-n}\epsilon^{N}(\prod_{k=0}^{N}(1-2z_{n+k})^{-1})z_{n+1+N}$

$+$ $(1- \epsilon^{2}\prod_{k=0}^{1}(1-2z_{m+2+k})^{-1})^{-1}\sum_{N=0}^{1}\epsilon^{m+2-n+N}(\prod_{k=0}^{m+2-n+N}(1-2z_{n+k})^{-1})z_{m+3+N}$ .

Hence, with the initial condition taken in this subsection, (3) reduces to a system of
$(m+4)$-coupled ODEs.

We set $m=12$ . Figures 1 $(a)\sim(g)$ show approximations of the Julia set $J(f_{1/\epsilon})$ by
plotting the union of solutions $\bigcup_{n=0}^{15}z_{n}^{*}(\epsilon)$ for six different values of $\epsilon$ integrated along

the ray $\mathcal{R}^{+}(16;M_{\mu}^{-1})$ . The six values of $\epsilon$ are (a) $0,$ $(b)0.129889641+0.141065491i,$ $(c)$

$0.233392345+0.176828347i,$ $(d)0.312689831+0.154912018i,$ $(e)0.312597233+0.150118104i$ ,

(f) $\frac{-i+i\sqrt{1-4i}}{4}$ .

4.2 External angle 1/128

Here, we demonstrate how (3) can be employed to obtain periodic orbits for one of the
Misiurewicz points of angle 1/128, $\epsilon\approx 0.567999678+0.348835133i$ . We choose our initial
condition for (5) to be

$\{z_{0}^{*}(0), z_{1}^{*}(0), \ldots, z_{97}^{*}(0)\}=$

{ $0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1$ ,

$0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,1,0,1$ ,

1, $0,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1$ ,

1, 1, 1, $0,1,1,1,1\}$ ,
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and perform the numerical integration along the parameter ray $\mathcal{R}^{+}(1\prime 128;M_{\mu}^{-1})$ .

Table 1 displays the orbit points together with the numerical errors for the obtained

period-98 orbit. It is clear that the errors are within the order of $10^{-5}$ .
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The Julia set $J(f_{1/\epsilon})$ for six different values of $\epsilon$ along $\mathcal{R}^{+}(1/6;M_{\mu}^{-1})$ . See also

the accompanying 3-D and 2-D animations online [7] for the numerical solutions.

11



Table 1: In the table $Error_{n}=|z_{n+1}-\epsilon^{-1}z_{n}(1-z_{n})|$ .
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