
Markoff spectra, geodesics, palindromes

Ryuji ABE

We investigated the Markoff spectrum for $\mathbb{Q}(i)$ from the point of view of geometry
and combinatorics. The investigation made into the Markoff spectrum for $\mathbb{Q}$ is a
model of this work. The object of geometric study is a simple closed geodesic on
a special once punctured torus. That of combinatorial study is a word representing
a matrix whose axis projects to the simple closed geodesic on the once punctured
torus. Through the word, we obtain a continued fraction expansion of the matrix.
Both the word and the continued fraction expansion mean codings of the simple closed
geodesic. In this expository note, using such geodesics and words, we show and compare
characterizations of the Markoff spectra for $\mathbb{Q}$ and for $\mathbb{Q}(i)$ . Some results are obtained
in collaboration with I.R.Aitchison in a geometric aspect and with B.Rittaud in a
combinatorial aspect.

1 Markoff spectra
Let $f(x, y)=ax^{2}+bxy+cy^{2}$ be an indefinite quadratic form with real coefficients
and with discriminant $D(f)=b^{2}-4ac$ . Define $m(f)= \inf_{(x_{i}y)\in \mathbb{Z}^{2}-\{(0,0)\}}|f(x, y)|$ . The
Markoff spectrum for $\mathbb{Q}$ is defined as the set

$\mathcal{M}=\{\sqrt{D(f)}’ m(f)|(a, b, c)\in \mathbb{R}^{3},$ $D(f)>0\}$ .

The Markoff spectrum for $\mathbb{Q}(i)$ is defined in the same way:

$\mathcal{M}_{1}=\{\sqrt{|D(f)|}/m_{1}(f)|(a, b, c)\in \mathbb{C}^{3},$ $D(f)\neq 0\}$

where $m_{1}(f)= \inf_{(x,y)\in Z[i]^{2}-\{(0,0)\}}|f(x, y)|$ .
We recall that the discrete parts of these spectra are described by using solutions

of Diophantine equations.

Markoff triples are integral solutions $(p, q, r)$ of $Markoff^{f}s$ equation $p^{2}+q^{2}+r^{2}=$

$3pqr$ . In this note we suppose $1\leq p\leq q\leq r$ . We easily verify that (1, 1, 1) and
(1, 1, 2) are Markoff triples. The latter is the unique triple derived from the former.
These are the only Markoff triples that $p,$ $q,$ $r$ are not distinct. All the Markoff triples
consisting of distinct positive integers are obtained by building an infinite binary tree
starting from (1, 2, 5). Here a binary tree means that each node of a tree has two
children. To build the tree we use inductively the following operation: for a Markoff
triple $(p, q, r)\neq(1,1,1),$ $(1,1,2)$ we take

$(p, r, 3pr-q)$ as its left child; $(q, r, 3qr-p)$ as its right child.
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The tree constructed by this operation is called the Markoff tree. It is known that all
the Markoff triples, except for (1, 1, 1) and (1, 1, 2), occur only once in the Markoff tree
(see [CF]).

A member of the Markoff triples is called a Markoff number. Let $K$ denote the set
of the Markoff numbers:

$K=\{1,2,5,13,29,34,89,169,194,233,433,610,985, \ldots\}$ .

A.Markoff proved the following theorem (see [CF]).

Theorem 1.1. The set $\mathcal{M}\cap(0,3)$ is described as $\{\sqrt{9-(4k^{2})}|k\in K\}$ .

Note that $\mathcal{M}\cap[3,\infty)$ is not discrete.

Vulakh-Schmidt $(VS)$ quadruples are integral solutions $(x_{1}, x_{2};y_{1}, y_{2})$ of Vulakh’s
equations: $x_{1}+x_{2}=2y_{1}y_{2},2x_{1}x_{2}=y_{1}^{2}+y_{2}^{2}$ (see [V] and [S]). In this note we suppose
$1\leq x_{1}\leq x_{2},1\leq y_{1}\leq y_{2}$ . We easily verify that (1, 1; 1, 1) and (1, 5; 1, 3) are VS
quadruples. The former is the only quadruple that $x_{1}=x_{2}$ or $y_{1}=y_{2}$ . All the VS
quadruples are obtained by building an infinite ternary tree starting from (1, 1; 1, 1).
Here a ternary tree means that each node of a tree has three children. To build the
tree we use inductively the following operation: for a VS quadruple $(x_{1}, x_{2};y_{1}, y_{2})$ we
take

$(x_{1},2y_{2}(4x_{1}y_{2}-y_{1})-x_{1};y_{2},4x_{1}y_{2}-y_{1})$ as its left child,
$(x_{2},2y_{2}(4x_{2}y_{2}-y_{1})-x_{2};y_{2},4x_{2}y_{2}-y_{1})$ as its center child,
$(x_{2},2y_{1}(4x_{2}y_{1}-y_{2})-x_{2};y_{1},4x_{2}y_{1}-y_{2})$ as its right child.

(See \S 5.2 in [S].)
Let us define a set $\mathcal{N}(\Lambda)$ as the set of members $x_{1},$ $x_{2}$ and a set $\mathcal{N}(M)$ as the set

of members $y_{1},$ $y_{2}$ of VS quadruples:

$\mathcal{N}(\Lambda)=\{1,5,29,65,169,349,901,985, 4549, 5741, . . .\}$ ,

$\mathcal{N}(M)=\{1,3,11,17,41,59,99,153,339,571,577, \ldots\}$ .
The following theorem is showed in [V] and [S].

Theorem 1.2. The discrete part of $\mathcal{M}_{1}$ is described as

$\{\sqrt{4-\frac{1}{\lambda^{2}}}\lambda\in \mathcal{N}(\Lambda)\}\cup\{\sqrt{3\sqrt{41}/5}\}$ .

The subset of the Markoff spectrum for $\mathbb{Q}(i)$ described by using $\mathcal{N}(\Lambda)$ is called the $VS$

spectrum.
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Figure 1: Fundamental domain of $G_{q}$ .

2 Simple closed geodesics
Let $\mathbb{H}^{2}=\{z=x+iy\in \mathbb{C}|y>0\}$ be the upper half-plane endowed with the hyperbolic
metric $ds^{2}=(dx^{2}+dy^{2})/y^{2}$ . A geodesic in $\mathbb{H}^{2}$ is a semicircle or a ray perpendicular
to the real axis. The group PSL $($2, $\mathbb{R})$ acts on the upper half-plane $\mathbb{H}^{2}$ by fractional
linear transformations. We always identify a matrix $g\in$ PSL $($2, $\mathbb{R})$ with the fractional
linear transformation induced by $g$ .

Hecke groups $G_{q}$ are the groups generated by two matrices $T_{q}$ and $S$ , where

$T_{q}=(012\cos_{1}(\pi\prime q))$ and $S=(\begin{array}{l}0-101\end{array})$ ,

for integers $q\geq 3$ . They are discrete subgroups of PSL$($ 2, $\mathbb{R})$ . A fundamental domain
of $G_{q}$ is represented as follows:

$F_{q}=\{x+iy\in \mathbb{H}^{2}x^{2}+y^{2}\geq 1,$ $|x| \leq\cos(\frac{\pi}{q})\}$

(see Figure 1). For $q=3$ we have the modular group PSL $($ 2, $\mathbb{Z})$ . We use in this note
$G_{3}$ and $G_{4}$ .

A Fricke group is a free group generated by two hyperbolic elements $C,$ $D$ of
PSL $(2, \mathbb{R})$ such that the commutator $[C, D]$ is parabolic. The quotient space of $\mathbb{H}^{2}$

by a Fricke group is identified with a once punctured torus. Let us write $X=$ tr $(C)$ ,
$Y=$ tr $(D)$ and $Z=$ tr$(CD)$ . It is known that $\langle C,$ $D\rangle$ is a Fricke group if and only if
the triple $(X, Y, Z)$ satisfies Fricke’s equation $X^{2}+Y^{2}+Z^{2}=XYZ$ and $X,$ $Y,$ $Z>2$ .

Let us introduce two special Fricke groups (see [C2]). We consider a free group
$\Gamma_{3}^{o}=\langle A_{3},$ $B_{3}\rangle$ generated by

$A_{3}=(\begin{array}{ll}1 11 2\end{array})$ and $B_{3}=(\begin{array}{ll}1 -1-1 2\end{array})$ .
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Figure 2: Fundamental domains of $\Gamma_{3}^{o}$ and $\Gamma_{4}^{o}$ . In the left, the sides with one pile are
identified by $A_{3}$ ; the sides with two piles are identified by $B_{3}$ . In the right, the sides
with one pile are identified by $A_{4}$ ; the sides with two piles are identified by $B_{4}$ .

The quotient space $\mathbb{H}^{2}’\Gamma_{3}^{o}$ is a once punctured torus denoted by Tg. The group $\Gamma_{3}^{o}$ has
(3, 3, 3). This is a torsion-free normal subgroup of $G_{3}$ with index 6. Equivalently, $\mathbb{T}_{3}^{o}$

is a six-fold cover of the modular surface. (See Figure 2.)
Let $\Gamma_{4}^{o}=\langle A_{4},$ $B_{4}\rangle$ be a free group generated by

$A_{4}=(\begin{array}{ll}2\sqrt{2} 1-1 0\end{array})$ and $B_{4}=$ $(\sqrt{2}1$ $\sqrt{2}1)$ .

This is a torsion-free normal subgroup of $G_{4}$ with index 4. The quotient space $\mathbb{T}_{4}^{o}=$

$\mathbb{H}^{2}/\Gamma_{4}^{o}$ is also a once punctured torus, which is a four-fold cover of a fundamental region
of $G_{4}$ . The group $\Gamma_{4}^{o}$ has $(2\sqrt{}, 2\sqrt{}, 4)$ . (See Figure 2.)

In general, if we abelianize a Fricke group $\langle C,$ $D)$ , then the commutator $[C, D]$

becomes the identity; geometrically, the cusp of the quotient space disappears. We
thus have the closed torus corresponding to a once punctured torus. The groups $\Gamma_{3}^{o}$

and $\Gamma_{4}^{o}$ are special in the following sense (see [Cl], [C2], [A]): by abelianization the
closed torus $\mathbb{C}’\langle 1,$ $\rho\rangle$ is obtained from $\mathbb{T}_{3}^{o}$ and $\mathbb{C}\langle 1,$ $i\rangle$ is obtained from $\mathbb{T}_{4}^{o}$ , where 1, $\rho$ ,
and $i$ mean the translations on $\mathbb{C}:z\mapsto z+1,$ $z\mapsto z+\rho$ (with $\rho=e^{\frac{2}{3}\pi i}$ ) and $z\mapsto z+i$ ,
respectively.

In order to interpret geometrically the Markoff spectrum for $\mathbb{Q}$ , H.Cohn introduced
in [Cl] triples of matrices each of which is a generator of $\Gamma_{3}^{o}$ . Here “a generator of a
group” is used in the following sense: let $\langle C,$ $D\}$ be a free group; an element C’ is called
a generator of $\langle C,$ $D\rangle$ if there exists a $D’$ satisfying $\langle C,$ $D\rangle=\langle C’,$ $D’\rangle$ . We proposed
in [AR2] an algorithm constructing an infinite binary tree of triples of matrices such
that every matrix in the tree is defined by using two special matrices $N_{1}=B_{3}^{-1}$ and
$N_{2}=B_{3}^{-1}A_{3}^{-1}B_{3}^{-1}$ .

Let us show the construction of the tree. Each node of the tree has type $I$ or $\Pi$ .
The type is determined in the following way: the root has type $I$ ; the left child of a
node has the same type as the parent; the right child has the other type. We assign a
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triple of matrices $(N_{1}, N_{2}, N_{5}=N_{2}N_{1})$ to the root, where

$N_{1}=(\begin{array}{ll}2 l1 1\end{array}),$ $N_{2}=(\begin{array}{ll}5 22 1\end{array}),$ $N_{5}=(\begin{array}{ll}12 75 3\end{array})$ .

Let $(N, N’, N”)$ be a triple of matrices in a node of the tree. The children of $(N, N’, N”)$
are defined by using the following algorithm.

Algorithm CM.

$\bullet$ If the node is of type $I$ , then the left child is $(N, N”, N’\prime N)$ and the right child is
$(N’, N”, N’ N^{l\prime})$ .

$\bullet$ If the node is of type $\Pi$ , then the left child is $(N, N”, NN”)$ and the right child
is $(N’, N”, N”N’)$ .

We call the tree thus obtained the Cohn-Markoff tree and a matrix appearing in it a
Cohn-Markoff (CM) matri.

We can prove the following theorem by induction (see [AR2]).

Theorem 2.1. Each Cohn-Markoff matrix has a form

$N_{k}=(\begin{array}{ll}a bk d\end{array})\in G_{3}$ and $tr(N_{k})=3k$ ,

where $k$ is a Markoff number.

Note that the theorem contains the following assertion: if $(N_{p}, N_{q}, N_{r})$ is a triple of
matrices in the Cohn-Markoff tree, the (2, 1)-entry of the third matrix $N_{f}N_{p}$ $($or $N_{p}N_{r})$

of its left child is $3pr-q$ ; the (2, 1)-entry of the third matrix $N_{q}N_{r}$ $($or $N_{r}N_{q})$ of its
right child is $3qr-p$.

Recall that the Euclidean height of a geodesic $\tilde{\gamma}$ in $\mathbb{H}^{2}$ is defined by $|\eta-\xi|\prime 2$ if $\eta$

and $\xi$ are finite or by $\infty$ otherwise, where $\eta$ and $\xi$ are the two endpoints of $\tilde{\gamma}$ . We now
state Cohn’s theorem:

Theorem 2.2. The discrete part of the Markoff spectrum for $\mathbb{Q}$ is given by the Eu-
$\mathbb{T}_{3}^{o}clidean$

heights of the lifts of the simple closed geodesics on the once punctured torus

Proof. It is known that the outer automorphism group of the free group on $C$ and $D$ is
generated by the three operations: exchanging $C$ and $D$ ; replacing $C$ by $C^{-1}$ ; replacing
$C$ by $CD$ . Combining this fact with Algorithms CM, we have each CM matrix is a
generator of $\Gamma_{3}^{o}$ . Thanks to the following proposition by Nielsen (see [H]), the axis of
each CM matrix projects to a simple closed geodesic on $\mathbb{T}_{3}^{o}$ .

Proposition 2.1. Let $\langle C,$ $D\rangle$ be a Fricke group. A geodesic $\tilde{\gamma}$ in $\mathbb{H}^{2}$ is the axis of a
generator of $\langle C,$ $D\rangle$ if and only if $\tilde{\gamma}$ projects to a simple closed geodesic on the once
punctured torus $\mathbb{H}^{2}’\langle C,$ $D\}$ .
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Moreover, we can directly compute the Euclidean height of the axis of a CM matrix
$N_{k}:(1\prime 2)\sqrt{9-(4’ k^{2})}$ . $\square$

In order to interpret geometrically the Markoff spectrum for $\mathbb{Q}(i)$ , we established in
[AA] an algorithm building an infinite temary tree of quadruples of matrices such that
each matrix in the tree is defined by using $A_{4}$ and $B_{4}$ . Let us show the construction
of the tree. Each node has type $I$ or $\Pi$ . The type is determined by the rules: the root
has type $I$ ; the left and right children of a node have the same type as the parent, the
center child has the other type. We assign a quadruple of matrices $(\Lambda_{1}, \Lambda_{5};M_{1}, M_{3})$ to
the root, where

$\Lambda_{1}=$ $(\sqrt{2}3$ $\sqrt{2}1)=B_{4}A_{4}$ , $\Lambda_{5}=(5\sqrt{2}139\sqrt{2}7)=M_{3}M_{1}$ ,

$M_{1}=$ $(\sqrt{2}1$ $\sqrt{2}1)=B_{4}$ , $M_{3}=(4\sqrt{2}32\sqrt{2}5)=\Lambda_{1}M_{1}$ .

Let $(\Lambda, \Lambda’;M, M’)$ be a quadruple of matrices in a node of the tree. The children of
$(\Lambda, \Lambda’;M, M’)$ are defined by using the following algorithm.

Algorithm VS.
$\bullet$ If the node is of type $I$ , then the left child is $(\Lambda, \Lambda(M’)^{2};M’, \Lambda M’)$ , the center

child is $(\Lambda’, (M’)^{2}\Lambda’;M’, M’\Lambda’)$ and the right child is $(\Lambda’, \Lambda’M^{2};M, \Lambda’M)$ .
$\bullet$ If the node is of type $\Pi$ , then the left child is $(\Lambda, (M’)^{2}\Lambda;M’, M’\Lambda)$ , the center

child is $(\Lambda’, \Lambda’(M’)^{2};M’, \Lambda’ M’)$ and the right child is $(\Lambda’, M^{2}\Lambda’;M, M\Lambda’)$ .
The tree built by Algorithm VS is called the $VS$ tree.

The following theorem is proved by induction (see [AR2]).

Theorem 2.3. $\bullet$ Every matrit which is the first or the second element in any
quadruple of the $VS$ tree has $a$ form;

$\Lambda_{\lambda}=$ $(\sqrt{2}\lambda a$ $\sqrt{2}bd)\in G_{4}$ and tr $(\Lambda_{\lambda})=4\lambda$ where $\lambda\in \mathcal{N}(\Lambda)$ .

$\bullet$ Evew matrix which is the third or the fourth element in any quadruple of the $VS$

tree has a form:

$M_{m}=$ $(\sqrt{2}\alpha m$ $\sqrt{2}\delta\beta)\in G_{4}$ and $tr(M_{m})=2\sqrt{2}m$ where $m\in \mathcal{N}(M)$ .

Note that $(a, b, d)$ and $(\alpha, \beta, \delta)$ are in $\mathbb{Z}^{3}$ . Note also that the theorem contains the
following assertion: if $(\Lambda_{x_{1}}, \Lambda_{x_{2}};M_{y_{1}}, M_{y_{2}})$ is a quadruple of matrices in the VS tree, for
its left child the (2, 1)-entry of the second matrix $\Lambda_{x_{1}}M_{y_{2}}^{2}$ $($or $M_{y_{2}}^{2}\Lambda_{x_{1}})$ is $\sqrt{}(2y_{2}(4x_{1}y_{2}-$

$y_{1})-x_{1})$ , that of the fourth matrix $\Lambda_{x}M_{y_{2}}1$ $($or $M_{y_{2}}\Lambda_{x1})$ is $4x_{1}y_{2}-y_{1}$ ; for its center
child the (2, 1)-entry of $M_{y_{2}}^{2}\Lambda_{x_{2}}$ $($or $\Lambda_{x_{2}}M_{y_{2}}^{2})$ is $\sqrt{}(2y_{2}(4x_{2}y_{2}-y_{1})-x_{2})$ , that of $M_{y_{2}}\Lambda_{x_{2}}$

$($or $\Lambda_{x_{2}}M_{y_{2}})$ is $4x_{2}y_{2}-y_{1}$ ; for its right child the (2, 1)-entry of $\Lambda_{x_{2}}M_{y_{1}}^{2}$ $($or $M_{y_{1}}^{2}\Lambda_{x_{2}})$ is
$\sqrt{}(2y_{1}(4x_{2}y_{1}-y_{2})-x_{2})$ , that of $\Lambda_{x_{2}}M_{y_{1}}$ $($or $M_{y_{1}}\Lambda_{x_{2}})$ is $4x_{2}y_{1}-y_{2}$ .

The following proposition is obtained from Algorithm VS and Proposition 2.1.

18



Figure 3: Fundamental domains of $\Gamma_{4}^{o}$ and $\langle P_{4},$ $Q_{4},$ $R_{4})$ .

Proposition 2.2. The axes of the matnices $\Lambda_{\lambda}$ and $M_{m}$ in the $VS$ tree project to simple
closed geodesics on the once punctured toms $\mathbb{T}_{4}^{o}$ .

Using this, we proved the following theorem in [AA].

Theorem 2.4. The $VS$ spectrum is given by the Euclidean heights of the axes of the
matrices $\Lambda_{\lambda}$ in the $VS$ tree. These axes project to simple closed geodesics on a particular
immersed totally geodesic twice punctured to$\Gamma us$ in the Bommean rings complement.

The Borromean rings complement is realized as a quotient space of the upper half-
space $\mathbb{H}^{3}$ by a special subgroup of the Picard group PSL$(2, \mathbb{Z}[i])$ with index 24. In
the proof of this theorem the following fact is crucial: the twice punctured torus in
the Borromean rings complement is conformally equivalent to a twice punctured torus
$\mathbb{H}^{2}/\langle P_{4},$ $Q_{4},$ $R_{4}\rangle$ , denoted by $\mathbb{T}_{4}^{t}$ , where $P_{4}=B_{4}A_{4}^{-1},$ $Q_{4}=A_{4}^{-1}B_{4}^{-1},$ $R_{4}=B_{4}^{2}$ :

$P_{4}=$ $(\sqrt{2}1$ $\sqrt{2}3),$ $Q_{4}=(-\sqrt{2}1$ $-\sqrt{2}3),$ $R_{4}=(2\sqrt{2}32\sqrt{2}3)\cdot$

Moreover, $\mathbb{T}_{4}^{t}$ is a double covering of the once punctured torus $\mathbb{T}_{4}^{o}$ . (See Figure 3.)

3 Palindromes
Let $w=a_{0}\ldots a_{n}$ be a finite word on an alphabet $\mathcal{A}$ . We write the reversed word
$a_{n}\ldots a_{0}$ by $w^{*}$ . The word $w$ is called a palindrome if $w=w^{*}$ . Let $\ell$ be a letter of $\mathcal{A}$ .
The notation $\#\ell(w)$ stands for the number of occurrences of $\ell$ in the word $w$ .

3.1 Cohn-Markoff case
Algorithm CM allows us to write a CM-matrix $N_{k}$ as a finite word on the alphabet
$\{N_{1}, N_{2}\}$ . We call this word the $(N_{1}, N_{2})$ -word of $N_{k}$ . For the sake of simplicity, in this
subsection, we usually use the letters 1 and 2 instead of $N_{1}$ and $N_{2}$ .

Theorem 3.1. For $k\in K,$ $k\geq 5$ we have $N_{k}=2\sigma 1$ where $\sigma$ is a palindrome on
{1, 2}.
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Figure 4: The cutting sequence of (5, 3): 121121

The theorem is proved inductively by using Algorithm CM (see [AR2]). We show
below how to find the $(N_{1}, N_{2})$-word of $N_{k}$ without knowing the $(N_{1}, N_{2})$-words of the
matrices in the node of its parent.

Let $(u,v)$ be a pair of mutually prime positive integers. Take a rectangle whose
horizontal length is $u$ and vertical length is $v$ , and tile this rectangle by unit squares.
Consider the diagonal of this rectangle from the left-bottom comer to the top-right
corner. Going up along the diagonal, we write 1 each time we cross a vertical line, and
2 each time we cross a horizontal line. The cutting sequence $C(u, v)$ of the pair $(u,v)$ is
the sequence of ls and $2s$ obtained in this way. (For example, see Figure 4.) Note that
the assumption that $u$ and $v$ are mutually prime ensures that the diagonal never passes
through a point of integer coordinates. Note also that $C(u, v)$ is always a palindrome.

We define the $Fkobeni\iota\iota s$ coordinates of $N_{k}$ by the pair

$(\# N_{1}(N_{k}), \# N_{2}(N_{k}))$ .

Let us consider a Markoff triple $(p, q, r)$ . Theorem 2.1 allows us to find a triple of
CM-matrices $(N_{p}, N_{q}, N_{r})$ . Then we can take the triple of the $\mathbb{R}obenius$ coordinates of
$(N_{p}, N_{q}, N_{r})$ , denoted by $((p_{1},p_{2}), (q_{1}, q_{2}), (r_{1}, r_{2}))$ . (For example, $((1,0), (0,1), (1,1))$
for (1, 2, 5). $)$ We obtain the following relations from Algorithm CM and the definition
of the Frobenius coordinates:

$(p_{1},p_{2})+(q_{1}, q_{2})=(r_{1}, r_{2})$ and $p_{1}q_{2}-p_{2}q_{1}=\pm 1$ .

Using these, we can prove the following theorem.

Theorem 3.2. Let $2\sigma 1$ be the $(N_{1}, N_{2})$ -word of any CM-matnx $N_{k}$ apart from $N_{1}$ and
$N_{2}$ , Then, $\sigma$ is the cutting sequence of the Frobenius coordinates of $N_{k}$ .

Now we can regard Algorithm CM as an algorithm which makes essentially the cutting
sequence of a pair of mutually prime positive integers.

The $(N_{1}, N_{2})$-word of a CM matrix $N_{k}$ , in other words, the cutting sequence of
its Frobenius coordinates directly relates to the continued fraction expansion of $N_{k}$ .
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Recall that any fractional linear transformation of PSL $($ 2, $\mathbb{Z})$ can be written as

$z \mapsto a_{0}+\frac{}{a_{1}+\frac{1}{+\frac{11}{a_{n}\pm z}}}$

,

where $a_{i}\in \mathbb{Z}$ and $a_{i}\neq 0$ for $i=1,$ $\ldots$ , $n-1$ . Let $N$ be a CM-matrix whose $(N_{1}, N_{2})-$

word is equal to $w=2w_{1}\ldots w_{n-1}1$ . Since $N_{1}$ and $N_{2}$ have the following expansions:

$N_{1}(z)=1+ \frac{1}{1+\frac{1}{z}}$
and

$N_{2}(z)=2+ \frac{1}{2+\frac{1}{z}}$
,

applying to $w$ the substitutions $1\mapsto 11$ and $2\mapsto 22$ , we have the word $22w_{1}w_{1}\ldots$

$w_{n-1}w_{n-1}11$ . This gives the continued fmction expansion of $N$ . If $w_{1}\ldots w_{n-1}$ is a
palindrome, then $w_{1}w_{1}\ldots w_{n-1}w_{n-1}$ is also a palindrome. It is the fact that A.Markoff
originally used to prove Theorem 1.1.

3.2 Vulakh-Schmidt case
By the construction of the VS tree, we know every matrix $N$ in the VS tree is repre-
sented as a word on the alphabet $\{A_{4}, B_{4}\}$ . We call this the $(A_{4}, B_{4})$ -word of $N$ . We
define the Euclidean pair (briefly, E-pair) of $N$ as

$(\# B_{4}(N), \# A_{4}(N))$ .

Theorem 2.3 ensures that for each $\lambda\in \mathcal{N}(\Lambda)$ there exists $\Lambda_{\lambda}$ and that for each $m\in$

$\mathcal{N}(M)$ there exists $M_{m}$ . Let denote the E-pair of $\Lambda_{\lambda}$ by $(\lambda_{1}, \lambda_{2})$ and that of $M_{m}$

by $(m_{1}, m_{2})$ . For a VS quadruple, we have a quadruple of E-pairs. (For example,
$((1,1), (3,1);(1,0), (2,1))$ for (1, 5; 1, 3). $)$

Let $((\lambda_{1}, \lambda_{2}), (\lambda_{1}’, \lambda_{2});(m_{1}, m_{2}), (m_{1}’, m_{2}))$ be a quadruple of E-pairs for a VS quadru-
ple $(\lambda, \lambda’;m, m’)$ . We obtain the following relations from Algorithm VS and the defi-
nition of E-pairs:

$(m_{1}’, m_{2}’)=(\lambda_{1}, \lambda_{2})+(m_{1}, m_{2})$ ,
$(\lambda_{1}’, \lambda_{2}’)=(m_{1}, m_{2})+(m_{1}’, m_{2})=(\lambda_{1}, \lambda_{2})+2(m_{1}, m_{2})$.

Using these, we plainly get the following proposition.

Proposition 3.1. The E-pair $(\lambda_{1}, \lambda_{2})$ of a matrix $\Lambda_{\lambda}$ satisfies $(\lambda_{1}, \lambda_{2})\equiv(1,1)$ (mod
2$)$ . The E-pair $(m_{1}, m_{2})$ of a $mat_{7}\dot{n}xM_{m}$ satisfies $(m_{1}, m_{2})\equiv(1,0)$ or $(0,1)$ (mod 2).

We can interpret geometrically this proposition. We stated in \S 2 that the closed
torus $\mathbb{C}/\langle 1,$ $i)$ is obtained from $\mathbb{T}_{4}^{o}$ by the abelianization of $\Gamma_{4}^{o}$ and that the twice
punctured torus $\mathbb{T}_{4}^{t}$ is a double covering of $\mathbb{T}_{4}^{o}$ . We now consider the abelianization of
$\langle P_{4},$ $Q_{4},$ $R_{4}\rangle$ and have the complex plane $\mathbb{C}$ is a universal covering of the abelianized
image of $\mathbb{T}_{4}^{t}$ . (See Figures 3, 5 and 6.)
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Figure 5: Abelianized images of the fundamental domains in Figure 3.

Figure 6: Two colored lattice in the complex plane.

We identify naturally $\mathbb{C}$ with $\mathbb{R}^{2}$ . Let denote $\Omega=\{(k, l)\in \mathbb{Z}^{2}\}$ . Corresponding
to the two cusps of $\mathbb{T}_{4}^{t}$ , the lattice $\Omega$ is decomposed into the following two disjoint
sub-lattices:

$\Omega_{w}=\{(k,$ $l)\in\Omega|(k,$ $l)\equiv(O,$ $0)$ or (1, 1) (mod2) $\}$ ,
$\Omega_{b}=\{(k,$ $l)\in\Omega|(k,$ $l)\equiv(1,0)$ or $(0,1)$ (mod2) $\}$ .

In Figure 6, we take the origin $(0,0)$ as a white point, and hence $\Omega_{w}$ is the sub-lattice
of white points and $\Omega_{b}$ is the sub-lattice of black points.

As a corollary of Proposition 3.1, we thus have:

Corollary 3.1. The E-pair of a matrix $\Lambda_{\lambda}$ gives a vector from the $07\dot{n}gin$ to a point in
$\Omega_{w}$ . The E-pair of a matrix $M_{m}$ gives a vector from the orrigin to a point in $\Omega_{b}$ .

See, for example, Figure 6.

The $(N_{1}, N_{2})$-word of a CM-matrix was essentially given by the cutting sequence of
its Frobenius coordinates. For the $(A_{4}, B_{4})$-word of a matrix in the VS tree, we can give
a similar characterization. For the sake of simplicity, here we use for $(A_{4}, B_{4})$ -words
letters $f$ and $e$ instead of $A_{4}$ and $B_{4}$ , respectively, and for making a cutting sequence
we code a vertical line by $e$ and a horizontal line by $f$ .

Theorem 3.3. Let $N$ be a matrrix $\Lambda_{\lambda}$ or a matrix $M_{m}$ in the $VS$ tree. Suppose that $N$

is not $M_{1}=e$ . Then, the $(A_{4}, B_{4})$ -word of $N$ has a form $ef\sigma$ where $\sigma$ is the cutting
sequence of the E-pair of $N$ .
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We can also regard Algorithm VS as an algorithm which makes essentially the cutting
sequence of a pair $(u, v)\in(\mathbb{Z}^{+})^{2}$ where $u$ and $v$ are mutually prime and $u>v$ .

Let us consider continued fraction expansions of matrices in the VS tree. Recall
that any fractional linear transformation of the Hecke group $G_{4}$ can be written as

$z \mapsto a_{0}\sqrt{}+\frac{}{a_{1}\sqrt{2}+\frac{}{+\frac{111}{a_{n-1}\sqrt{2}+\frac{1}{a_{n}\sqrt{2}\pm z}}}}$

,

where $a_{i}\in \mathbb{Z}$ , not necessarily positive, $a_{i}\neq 0$ for $i=1,$ $\ldots,$ $n-1$ . We call this $\sqrt{}$-Rosen
continued fraction expansion.

Making observations of Algorithm VS, we have:

Lemma 3.1. Let $\Lambda_{\lambda}$ and $M_{m}$ be matrices of the $VS$ tree. They have the following
$\sqrt{}$-Rosen continued fraction expansions;

$\Lambda_{\lambda}(z)=a_{0}\sqrt{}+\frac{}{a_{1}\sqrt{2}+\frac{1}{+\frac{11}{a_{k}\sqrt{2}+z}}},$ $M_{m}(z)=b_{0} \sqrt{}+\frac{}{b_{1}\sqrt{2}+\frac{1}{+\frac{11}{b_{l}\sqrt{2}-z}}}$

,

where $a_{i)}b_{i}\in\{-2, -1,0,1,2\}$ .

Let denote simply these expansions by $\Lambda_{\lambda}=a_{0}a_{1}\ldots a_{k}+$ and $M_{m}=b_{0}b_{1}\ldots b_{l}-$ . More-
over, in what follows, we use 1 and 2 instead of-l and-2. For example, $\Lambda_{1}=110+$ ,
$\Lambda_{5}=111\overline{2}1+,$ $M_{1}=1\overline{1}$ -and $M_{3}=111i-$ . Note that $110+$ is the only word in which
the letter $0$ occurs.

Unfortunately, $\sqrt{}$-Rosen continued fraction expansions are not unique. For exam-
ple, we have the following relations: $2\overline{2}=1lii,\overline{2}2=iill,$ $11\overline{2}=2i\overline{1},$ $ii2=\overline{2}11$ .

Let $\sigma$ be a word on $\{1, \overline{1},2,\overline{2}\}$ and let $\overline{\sigma}$ denote the word obtained from $\sigma$ by
exchanging 1 with 1 and 2 with 2. Note that this operation means changing the sign
of a word, which is caused by a matrix $M_{m}$ (see Lemma 3.1).

We thus know there is no simple relation between the $(A_{4}, B_{4})$-word of a matrix in
the VS tree and its $\sqrt{}$-Rosen continued fraction expansion. However, we can prove
the following theorems (see [AR2]).

Theorem 3.4. Each $matr\dot{\eta}xM_{m}$ in the $VS$ tree has a $\sqrt{}$-Rosen continued fraction
expansion $1\sigma i$ -where $\sigma$ is a palindrome on the alphabet $\{1, \overline{1},2\}$ .

Theorem 3.5. Each matnx $\Lambda_{\lambda}$ in the $VS$ tree has a $\sqrt{}$-Rosen continued fraction
expansion $1\sigma 1+where\sigma$ is an anti-palindrome, that is, $\sigma$ has a form $\xi\eta\overline{\xi}^{*}$ where $\xi$ is
a word on $\{1, i, 2,\overline{2}\}$ and $\eta=2\overline{1}i$ or 112.

In the proof of these theorems, we make use of cutting sequences. We defined in
[AR2] an algorithm by which we obtain the palindrome of Theorem 3.4 from the cutting
sequence of the E-pair of $M_{m}$ and the anti-palindrome of Theorem 3.5 from that of the
E-pair of $\Lambda_{\lambda}$ .
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