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Abstract
All positive integral solutions to Markoff’s equation are in one-to-one correspon-
dence with all analytic continuations of a transcendental solution germ to a special sixth
Painlevé equation via the Riemann-Hilbert correspondence. We explicitly determine
the parameter value and the initial condition for the Markoff-Painlevé transcendent.

1 Markoff’s Diophantine Equation

In 1879 and 1880 A.A. Markoff [9, 10] discussed a Diophantine equation of the form
mf + mg + mg = 3m1m2m3 (ml, mao, m3) € Ns, (1)

in the study of badly approximable irrational numbers and indefinite binary quadratic forms.

We present some known facts about Markoff’s equation (1) (see e.g. [1]). It has the
trivial solution (1,1, 1). It also has another simple solution (1,1, 2). These two solutions are
referred to as the exceptional solutions. Any other solution is called a regular solution. Any
regular solution has mutually distinct components. There are infinitely many solutions and
there is a simple algorithm which produces all of them. It is based on a large symmetry
G = (01,03, 03) = Zy * Zy x Zy leaving equation (1) invariant, where o; is the involution

o1 (ml,mg,mg) — (3m2m3 - ma, m?)m3)7 (2)

with o, and o3 being defined in similar manners. T'wo solutions are said to be neighbors if
they share two components. Any regular solution (m;, my, m3) has exactly three neighbors
oi(my1, m2,m3), ¢ = 1,2,3, one smaller and two larger, where the ordering is defined by

(my, ma, m3) < (M}, my, msy) if max{my, ma, m3} < max{mj, my, ms}.

Starting with the trivial solution (1,1,1), apply o1, 02, o3 recursively in all possible ways
to produce infinitely many solutions. This process can be incorporated into a tree in Figure
1, which is known as Markoff’s tree. Any solution occurs exactly once in the tree and the
G-orbit through the trivial solution (1,1, 1) constitutes all the solutions to equation (1).

The aim of this note is to throw a bridge between the Markoff orbit and a very special
solution to the sixth Painlevé equation via the Riemann-Hilbert correspondence.
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Figure 1: Markoff’s tree
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Figure 2: Monodromy map . : M,(k) O along a loop v € m(Z, 2).

2 The Sixth Painlevé Equation

The sixth Painlevé equation Pyj(k) is a Hamiltonian system

dg O8H() dp _BH(k)

= , = —— 3

dz Op dz dq (3)
with a complex time variable z € Z := P! — {0, 1, 0o} and unknown functions ¢ = ¢(z) and
p = p(z), depending on complex parameters « in the four-dimensional affine space

K::{K:(Ro,lﬁl,lﬁz,ng,lﬁ)E(Ci . 2K0+n1+l<,2+/<,3+fg4=1},

where the Hamiltonian H(x) = H(q, p, 2; k) is given by

2(z — 1)H(K) = (g0q.q1)p* — {k1q1q: + (k2 — 1)qoq1 + k390G }P + Ko(Ko + K4)qz,

with g, := ¢g—v for v € {0, z,1}. Any meromorphic solution germ at any point z € Z admits
a global meromorphic continuation along any path in Z emanating from z. This property is
known as the Painlevé property for the sixth Painlevé equation [2].

Let M, (k) be the set of all meromorphic solution germs to equation (3) at a base point
z € Z. Tt is realized as the moduli space of (certain) stable parabolic connections, thereby
provided with the structure of a smooth quasi-projective rational complex surface, where a
stable parabolic connection is a rank-two vector bundle over P! together with a Fuchsian
connection having four regular singular points and a parabolic structure that satisfies a sort
of stability condition in geometric invariant theory (2, 3, 4].

By the Painlevé property, any solution germ @ € M,(k) continues analytically along
any loop v € m(Z, z). Let 7.Q be the result of the analytic continuation. Then the map

7* : Mz(K') - Mz("‘")) Q — ’YtQ)
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Figure 3: Dynkin diagram of type Dfll)

is a holomorphic automorphism of M,(x) (see Figure 2), which is called the monodromy
map along the loop «. It represents the multi-valuedness along v of the solution germs.

3 Affine Weyl Groups and Stratification

The parameter space K of Painlevé VI admits some affine Weyl group actions, in terms of
which K carries a natural stratification. We shall now describe these structures [6, 7, 8].

The standard complex Euclidean inner product on C2 induces an inner product on K
through the forgetful isomorphism K — C2, (ko, &1, K2, k3, K1) — (K1, K2, K3, k4). For each
i € {0,1,2,3,4} let w; : £ O be the orthogonal reflection in the affine hyperplane H; :=
{x € K : k; = 0}. These five reflections generate an affine Weyl group of type Dgl),

W(D‘(il)) = (W, W1, Wa, w3, wg) N K.

Denote the nodes of the Dynkin diagram Dgl) by {0,1,2,3,4} as in Figure 3. The automor-
phism group of the Dynkin diagram Dfil) is the symmetric group S; of degree 4 permuting
{1,2, 3,4} while fixing the central node 0. The semi-direct product

W(FED) :=W(DP) xSy~ K

is an affine Weyl group of type F4(1), which is the full symmetry group of Painlevé VI.

Given a proper subdiagram * of the Dynkin diagram D,(ll), let I be a proper subset of
{0,1,2,3,4}} representing *. The closed stratum associated with * is then defined by

K (%) = the W(Ffl))—translates of the affine subspace H; := ﬂ H;,

iel
1. o2 1 2
0. v
'a‘ 4 .
3.. ..4 30' ‘04
AP As
I=1{0,1,2,3) I1=1{1,2,3,4} I=1{0,1,2}

Figure 4: Some strata and their Dynkin subdiagrams
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which does not depend on the choice of the representative I. For I = @) one has the big open
stratum X (@) and some other strata are given in Figure 4. The adjacency relations among
the strata are depicted in Figure 5, where ¥+ — * indicates that () is a subset of X(*). Let
K (%) be the relatively open stratum associated with the closed stratum K(x).

) — A — AP? — AP AY

Lo !

Az—’ A3———+D4

Figure 5: Adjacency relations among the strata

4 Riemann-Hilbert Correspondence

The study of Painlevé equation is developed not directly on the moduli space M,(k), but
by passing to a character variety S(6) via the Riemann-Hilbert correspondence [2, 3, 4, 8],

RH, . : M.(k) = S(0), Q+— p, with 0 = rh(k). (4)

Here the character varieties for Painlevé VI can be realized as a four-parameter family of
complex affine cubic surfaces S() = { z = (21, z2,23) € C? : f(z,0) =0} with

f(x,0) := 212923 + 22 + 72 + 23 — 0171 — 0225 — G373 + 04, (5)

parametrized by 6 = (6,,0;,603,64) € © := C* and rh : K — © is a holomorphic map which is
a branched W(D‘(il))-covering ramifying along Wall (the union of all reflection hyperplanes)
and mapping it onto the discriminant locus V := {§ € © : A(8) = 0} of the cubic surfaces
(see Figure 6). A fundamental fact for the map (4) is the following.

Theorem 1 ([2, 3, 4]) If k € K(*) then the character variety S(0) with 8 = rh(k) has
simple singularities of Dynkin type * and the Riemann-Hilbert correspondence (4) is a proper
surjective holomorphic map that gives an analytic minimal resolution of S(6).

/
A() =0
rh \
—
VAN N \ 4
K-space Wall ©-space

Figure 6: The Riemann-Hilbert correspondence in the parameter level
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Figure 7: Three basic loops in m(Z, z), where 2; =0, z; = 1 and 23 = oo.

Take an algebraic minimal desingularization ¢ : §(8) — S(8). Then the Riemann-Hilbert
correspondence (4) uniquely lifts to a biholomorphism RH, . : M, (k) — S(6) such that

M, (k) 3(6)
M;(R) =5 5(6)

is commutative. Via the lifted Riemann-Hilbert correspondence ﬁﬁz,n, the monodromy map

Yo : M (k) O is strictly conjugate to an automorphism o : $(6) O in a way shown below.
The cubic surface S(§) admits three involutive automorphisms o;, i = 1,2, 3, where

01 : (T1, 2, x3) — (61 — 21 — Tox3, T2, T3), (6)

with o2 and o3 being defined in similar manners. They lift in a unique way to automorphisms
of the desingularized surface S (0) which will be denoted by the same symbols o;. On the
other hand the fundamental group m,(Z, z) is represented as

m1(Z,2) = (71,72, 73 | MYy = 1),

where ;, i = 1,2, 3, are the basic loops as in Figure 7. For each i = 1,2, 3, the monodromy
map along the loop 7 is conjugate to the automorphism o;,,0; of S (9) where the index 2
should be considered modulo 3, via the lifted Riemann-Hilbert correspondence.

Let G be the group generated by the three involutions oy, 0'2, o3. It is a universal
Coxeter group of rank three, having the only relations 0? = 02 = 02 = 1. Let G(2) be the
index-two subgroup of all even words in G. The last paragraph says that the monodromy
action m(Z, z) ~ M, (k) is faithfully represented by the group action G(2) ~ S S(6). Thus
the full group action G ~ S(G) may be thought of as faithfully representing the “half-
monodromy” action. The corresponding “half-loops” are depicted in Figure 8, where the
half-loop corresponding to o; is denoted by the same symbol o; and w := exp(27i/3). The
choice of the two base points —w and —w? is just for a later convenience (see Theorem 2).
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Figure 8: Three half-loops: the point at infinity is invisible

5 The Markoff-Painlevé Transcendent

If we put (zi,z2,13) = (—3mi, —3my, —3m3), then formula (5) implies that the Markoff
cubic (1) is just the cubic surface S() with parameters (8;,0;,63,64) = (0,0,0,0) and the
involution (2) agrees with the involution (6). Moreover we observe that

1 111
(K'07"‘-'11"“'2’ K’S)KMI) - (—Z’ 51 —2-7 5) 0) € ’C(Al) (7)

lies over 6 = (0,0, 0, 0) relative to the small Riemann-Hilbert correspondence rh : X — ©.
The main theorem of this note is now stated as follows.

Theorem 2 Via the Riemann-Hilbert correspondence (4), the Markoff orbit in Section 1
corresponds to all the analytic continuations of the solution germ to equation (3) with pa-
rameters (7) that satisfies the initial condition

(g,p) = (%—/)_;—’, 0) at z= —w.

The proof of this theorem will be given elsewhere.
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