ジョセフソン接合の電気力学を記述する
 モデル方程式の周期解

Periodic solutions of the model equation describing electrodynamics of the Josephson junction

山口大学大学院理工学研究科 松野 好雅（Yoshimasa Matsuno） Division of Applied Mathematical Science Graduate School of Science and Engineering Yamaguchi University

Abstract

A novel method is developed for constructing periodic solutions of a model equation describing nonlocal Josephson electrodynamics．This method consists of reducing the equation to a system of linear ordinary differential equations through a sequence of nonlinear transformations．The periodic solutions are obtained in the form of parametric representation．It is found that the large time asymptotic of the solution exhibits a steady profile which does not depend on initial conditions． Last，the exact method is applied to the sine－Hilbert equation to obtain periodic solutions．The detail of this report has been published in J．Phys．A：Math．Theor． 42 （2009） 025401.

1．Model equation

1．1 Nonlocal model equation

Consider a Josephson junction with a thin layer between two superconductors． The phase difference $\phi(x, t)$ across the Josephson junction is described by the following model equation：

$$
\begin{equation*}
\omega_{J}^{-2} \phi_{t t}+\omega_{J}^{-2} \eta \phi_{t}=-\sin \phi+\frac{\lambda_{J}^{2}}{\pi \lambda_{L}} \int_{-\infty}^{\infty} K_{0}\left(\frac{\left|x-x^{\prime}\right|}{\lambda_{L}}\right) \phi_{x^{\prime} x^{\prime}}\left(x^{\prime}, t\right) d x^{\prime}+\gamma \tag{1}
\end{equation*}
$$

K_{0} ：modified Bessel function of order zero，ω_{J} ：Josephson plasma frequency，
λ_{L} ：London penetration depth，λ_{J} ：Josephson penetration depth，
γ ：bias current density across the junction，η ：positive parameter characterizing the resistance of a unit area of the tunneling junction．

Let l be the characteristic space scale of ϕ ．When $\lambda_{L} \ll l$ ，then $K_{0}(x) \sim \pi \delta(x)$ and Eq．（1）reduces to the perturbed sine－Gordon equation

$$
\begin{equation*}
\omega_{J}^{-2} \phi_{t t}+\omega_{J}^{-2} \eta \phi_{t}=-\sin \phi+\frac{\lambda_{J}^{2}}{\lambda_{L}} \phi_{x x}+\gamma . \tag{2}
\end{equation*}
$$

If $l \ll \lambda_{L}$, then $K_{0}(|x|) \sim-\ln |x|$ and Eq. (1) becomes

$$
\begin{equation*}
\omega_{J}^{-2} \phi_{t t}+\omega_{J}^{-2} \eta \phi_{t}=-\sin \phi+\frac{\lambda_{J}^{2}}{\pi \lambda_{L}} \int_{-\infty}^{\infty} \frac{\phi_{x^{\prime}}\left(x^{\prime}, t\right)}{x^{\prime}-x} d x^{\prime}+\gamma \tag{3}
\end{equation*}
$$

In the following, we consider the overdamped case $\eta \gg 1$ and the zero bias current $\gamma=0$. Eq. (3) can then be written in an appropriate dimensionless form as

$$
\begin{equation*}
\phi_{t}=-\sin \phi+H \phi_{x}, \quad H \phi_{x}=\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\phi_{x^{\prime}}\left(x^{\prime}, t\right)}{x^{\prime}-x} d x^{\prime} . \tag{4}
\end{equation*}
$$

1.2 Remarks

- Equation (1) is derived from Maxwell's equations combined with the London equation and the Josephson equation:

Yu. Alief et al, Superconductivity 5 (1992) 230
A. Gurevich, Phys. Rev. B46 (1992) 3187.

- Equation (4) has been proposed for the first time in a purely mathematical context:
Y. Matsuno, J. Math. Phys. 33 (1992) 3039.
- As for a review on nonlocal Josephson electrodynamics:
A.A. Abdumalikov et al, Superconductor Science and Technology, 22 (2009) 023001
R.G. Mints, J. Low Temp. Phys. 106 (1997) 183.

2. Exact method of solution

2.1 A nonlinear dynamical system

- Dependent variable transformation

We seek periodic solution of (4) of the form

$$
\begin{equation*}
\phi=i \ln \frac{f^{*}}{f}, \quad f=\prod_{j=1}^{N} \frac{1}{\beta} \sin \beta\left(x-x_{j}\right) \tag{5}
\end{equation*}
$$

where $x_{j}=x_{j}(t)$ are complex functions of t with $\operatorname{Im} x_{j}(t)>0, \beta$ is a positive parameter, N is an arbitrary positive integer and f^{*} denotes the complex conjugate expression of f. Using a formula for the Hilbert transform, one has $H \phi_{x}=-\left(\ln f^{*} f\right)_{x}$. Substitution of this expression and (5) into (4) gives the following bilinear equation for f and f^{*}

$$
\begin{equation*}
i\left(f_{t}^{*} f-f^{*} f_{t}\right)=\frac{i}{2}\left(f^{2}-f^{* 2}\right)-f_{x}^{*} f-f^{*} f_{x} \tag{6}
\end{equation*}
$$

- A system of nonlinear ODEs for x_{j}

We divide (6) by $f^{*} f$, substitute f from (5) and then evaluate the residue at $x=x_{j}$ on both sides. This gives a system of nonlinear ODEs for x_{j}

$$
\begin{equation*}
\dot{x}_{j}=-\frac{1}{2 \beta} \frac{\prod_{l=1}^{N} \sin \beta\left(x_{j}-x_{l}^{*}\right)}{\prod_{\substack{l=1 \\ l \neq j)}}^{N} \sin \beta\left(x_{j}-x_{l}\right)}+i, \quad j=1,2, \ldots, N \tag{7}
\end{equation*}
$$

where an overdot denotes differentiation with respect to t.
We introduce the following notations:

$$
\begin{align*}
z=e^{2 i \beta x}, \quad \xi_{j}=e^{2 i \beta x_{j}}, \quad \eta_{j}=e^{2 i \beta x_{j}^{*}}, \quad j=1,2, \ldots, N, \tag{8a}\\
s_{1}=\sum_{j=1}^{N} x_{j}, \quad s_{2}=\sum_{j<l}^{N} x_{j} x_{l}, \quad \ldots, \quad s_{N}=\prod_{j=1}^{N} x_{j}, \tag{8b}\\
u_{1}=\sum_{j=1}^{N} \xi_{j}, \quad u_{2}=\sum_{j<l}^{N} \xi_{j} \xi_{l}, \quad \ldots, \quad u_{N}=\prod_{j=1}^{N} \xi_{j}, \tag{8c}\\
v_{1}=\sum_{j=1}^{N} \eta_{j}, \quad v_{2}=\sum_{j<l}^{N} \eta_{j} \eta_{l}, \quad \ldots, \quad v_{N}=\prod_{j=1}^{N} \eta_{j}, \tag{8d}\\
t_{j}=\sum_{l=1}^{N} \xi_{l}^{j}, \quad j=1,2, \ldots, N . \tag{8e}
\end{align*}
$$

In terms of $u_{j}(j=1,2, \ldots, N)$ and s_{1}, f can be written as

$$
\begin{equation*}
f=\frac{e^{-i \beta\left(N x-s_{1}\right)}}{(2 \beta i)^{N}}\left(z^{N}-u_{1} z^{N-1}+u_{2} z^{N-2}+\ldots+(-1)^{N} u_{N}\right) \tag{9}
\end{equation*}
$$

Thus, $u_{j}(j=1,2, \ldots, N)$ and s_{1} determine the function f completely.
Let us derive a system of equations for u_{j}. To this end, We rewrite (7) in terms of ξ_{j} and η_{j} as

$$
\begin{equation*}
\dot{\xi}_{j}=-\frac{1}{2} \alpha u_{N} \frac{\prod_{l=1}^{N}\left(\xi_{j}-\eta_{l}\right)}{\prod_{\substack{l=1 \\ l \neq j)}}^{N}\left(\xi_{j}-\xi_{l}\right)}-2 \beta \xi_{j}, \quad j=1,2, \ldots, N \tag{10a}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\prod_{j=1}^{N}\left(\xi_{j} \eta_{j}\right)^{-1 / 2}=e^{-i \beta\left(s_{1}+s_{1}^{*}\right)}, \quad u_{N}=\prod_{j=1}^{N} \xi_{j}=e^{2 i \beta s_{1}} \tag{10b}
\end{equation*}
$$

Later, we show that α is a constant independent of t and u_{N} obeys a single nonlinear ODE.

2.2 Linearization

The system of nonlinear ODEs (10) can be linearized in terms of the variables u_{j} defined by (8c). We multiply ξ_{j}^{n-1} on both sides of (10a) and sum up with respect to j from 1 to N to obtain

$$
\begin{equation*}
\frac{1}{n} \dot{t}_{n}=-\frac{\alpha}{2} u_{N} \sum_{s=0}^{n}(-1)^{s} v_{s} I_{n-s}-2 \beta t_{n}, \quad n=1,2, \ldots, N \tag{11a}
\end{equation*}
$$

where I_{n-s} is defined by

$$
\begin{equation*}
I_{n-s}=\sum_{j=1}^{N} \frac{\xi_{j}^{N+n-s-1}}{\prod_{\substack{l=1 \\(\neq j)}}^{N}\left(\xi_{j}-\xi_{l}\right)} \tag{11b}
\end{equation*}
$$

In deriving (11), we have used the identity

$$
\begin{equation*}
I_{n}=0, \quad-N+1 \leq n \leq-1 \tag{11c}
\end{equation*}
$$

- Time evolution of u_{j}

The time evolution of u_{n} follows from (11a) with the help of the formulas

$$
\begin{equation*}
u_{n}=\frac{(-1)^{n-1}}{n} \sum_{j=0}^{n-1}(-1)^{j} u_{j} t_{n-j}, \quad 1 \leq n \leq N, \quad \sum_{j=0}^{n}(-1)^{j} u_{j} I_{n-j}=0, \quad n \geq 1 \tag{12}
\end{equation*}
$$

where $u_{0}=1$ and $I_{0}=1$. In fact, differentiating the first formula in (12) by t and substituting (11a) for \dot{t}_{n-j}, we can show that the quantity h_{n} defined by

$$
\begin{equation*}
h_{n}=\dot{u}_{n}+\frac{\alpha}{2} u_{N} u_{n}-\frac{\alpha^{-1}}{2} u_{N-n}^{*}+2 \beta n u_{n}, \quad n=1,2, \ldots, N \tag{13}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
h_{n}=\frac{(-1)^{n-1}}{n} \sum_{j=0}^{n-1}(-1)^{j} h_{j} t_{n-j}+\frac{(-1)^{n+1} r_{n}}{2 n \alpha} \tag{14a}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{n}=\sum_{j=1}^{n} u_{N-j+n}^{*}\left[-\sum_{s=1}^{j}(-1)^{n-s} s I_{j-s}+(-1)^{n-j} t_{j}\right] . \tag{14b}
\end{equation*}
$$

The quantity in the brackets on the right-hand side of (14b) can be shown to vanish identically so that $r_{n} \equiv 0$. It follows from this and (14a) that

$$
\begin{equation*}
h_{n}=\frac{(-1)^{n-1}}{n} \sum_{j=0}^{n-1}(-1)^{j} h_{j} t_{n-j}, \quad n=1,2, \ldots, N \tag{15}
\end{equation*}
$$

Solving (15) with the initial condition $h_{0}=\alpha u_{N} / 2-u_{N}^{*} /(2 \alpha)=0$, we obtain the relations $h_{n} \equiv 0(n=1,2, \ldots, N)$. Thus, we see that u_{n} evolves according to the following system of ODEs

$$
\begin{equation*}
\dot{u}_{n}+\frac{\alpha}{2} u_{N} u_{n}-\frac{\alpha^{-1}}{2} u_{N-n}^{*}+2 \beta n u_{n}=0, \quad n=1,2, \ldots, N \tag{16}
\end{equation*}
$$

It is remarkable that u_{N} obeys a single nonlinear ODE of the form

$$
\begin{equation*}
\dot{u}_{N}+\frac{\alpha}{2} u_{N}^{2}-\frac{\alpha^{-1}}{2}+2 \beta N u_{N}=0, \quad u_{N}=e^{2 i \beta s_{1}}, \quad \alpha=\sqrt{\frac{u_{N}^{*}}{u_{N}}} \tag{17}
\end{equation*}
$$

and other $N-1$ variables $u_{1}, u_{2}, \ldots, u_{N-1}$ constitute a system of linear ODEs. Rewriting (17) in terms of s_{1}, we can put it into a nonlinear ODE for s_{1}

$$
\begin{equation*}
\dot{s}_{1}=\frac{1}{2 i \beta} \sinh \left(2 \beta \operatorname{Im} s_{1}\right)+i N \tag{18}
\end{equation*}
$$

where $\operatorname{Im} s_{1}$ implies the imaginary part of s_{1}.

3. Periodic solutions

3.1 Construction of periodic solutions

The first step for constructing periodic solutions is to integrate (18). It follows from the real and imaginary parts of (18) that

$$
\begin{equation*}
\operatorname{Re} \dot{s}_{1}=0, \quad \operatorname{Im} \dot{s}_{1}=-\frac{1}{2 \beta} \sinh \left(2 \beta \operatorname{Im} s_{1}\right)+N \tag{19}
\end{equation*}
$$

Thus, the real part of s_{1} becomes a constant $\operatorname{Re} s_{1}(t)=\operatorname{Re} s_{1}(0) \equiv b$ whereas integration of the equation for $\operatorname{Im} s_{1}$ yields an explicit expression. In terms of a new variable $y=2 \beta \operatorname{Im} s_{1}$, it is given by

$$
\begin{equation*}
e^{-y}=\frac{2 \nu_{N}\left(-\tanh \frac{y_{0}}{2}+1\right) \cosh \nu_{N} t+\left\{(2 \beta N+1) \tanh \frac{y_{0}}{2}-2 \beta N+1\right\} \sinh \nu_{N} t}{2 \nu_{N}\left(\tanh \frac{y_{0}}{2}+1\right) \cosh \nu_{N} t+\left\{(2 \beta N-1) \tanh \frac{y_{0}}{2}+2 \beta N+1\right\} \sinh \nu_{N} t} \tag{20}
\end{equation*}
$$

where $\nu_{N}=\sqrt{(\beta N)^{2}+(1 / 4)}$ and $y_{0}=y(0)=2 \beta \operatorname{Im} s_{1}(0)$, For $n=1,2, \ldots, N-1$, on the other hand, (16) can be written in the form

$$
\begin{equation*}
\dot{u}_{n}=-\left(\frac{1}{2} e^{-2 \beta \operatorname{Im} s_{1}}+2 \beta n\right) u_{n}+\frac{\alpha^{-1}}{2} u_{N-n}^{*} . \tag{21}
\end{equation*}
$$

Note from (10b) and $\operatorname{Re} s_{1}=b$ that $\alpha=e^{-2 i \beta b}$ becomes a constant. The solution of the initial value problem for (21) can be put into the form of a rational function

$$
\begin{equation*}
u_{n}(t)=\frac{G_{n}}{F}, \quad n=1,2, \ldots, N-1 \tag{22a}
\end{equation*}
$$

with

$$
\begin{gather*}
F=2 \nu_{N}\left(\tanh \frac{y_{0}}{2}+1\right) \cosh \nu_{N} t+\left\{(2 \beta N-1) \tanh \frac{y_{0}}{2}+2 \beta N+1\right\} \sinh \nu_{N} t \tag{22b}\\
G_{n}=2 \nu_{N}\left(\tanh \frac{y_{0}}{2}+1\right)\left[u_{n}(0) \cosh \nu_{n} t\right. \\
\left.+\frac{1}{\nu_{n}}\left\{\beta(N-2 n) u_{n}(0)+\frac{\alpha^{-1}}{2} u_{N-n}^{*}(0)\right\} \sinh \nu_{n} t\right] \tag{22c}
\end{gather*}
$$

where $\nu_{n}=\sqrt{\beta^{2}(N-2 n)^{2}+(1 / 4)}$. We see that the expression (22) with $n=N$ produces (20) and hence it can be used for all u_{n}.

3.2 Properties of solutions

- Asymptotic form of the solution as $t \rightarrow \infty$

$$
\begin{gather*}
u_{n} \rightarrow 0, \quad n=1,2, \ldots, N-1, \quad u_{N} \rightarrow e^{2 i \beta b}\left(\sqrt{4(\beta N)^{2}+1}-2 \beta N\right) \tag{23}\\
\phi \sim 2 \tan ^{-1}\left[\frac{\sqrt{4(\beta N)^{2}+1}-1}{2 \beta N} \tan \beta\left(N x-b-\frac{N \pi}{2 \beta}\right)\right] \tag{24}\\
u \equiv \phi_{x} \sim \frac{4(\beta N)^{2}}{\sqrt{4(\beta N)^{2}+1}+(-1)^{N} \cos 2 \beta(N x-b)} \tag{25}
\end{gather*}
$$

- Novel features of solutions
1)The asymptotic form of u does not depend on initial conditions except for a phase constant b. It represents a train of nonlinear periodic standing waves.

2) The initial profile of u with a spatial period π / β evolves into a periodic wave with a period $\pi / N \beta$.
3) The amplitude of the wave $A\left(=u_{\max }-u_{\min }\right)$ is a constant independent of the wavenumber. Indeed, $u_{\max }=\sqrt{4(\beta N)^{2}+1}+1, u_{\text {min }}=\sqrt{4(\beta N)^{2}+1}-1$ and hence $A=2$.
4) The steady profile (25) satisfies the Peierls equation $H \phi_{x}=\sin \phi$ in the theory of dislocation
R. Peierls, Proc. Phys. Soc. 52 (1940) 256.

Example 1: $N=1, x_{1}(0)=3 i, \beta=0.2$

Figure 1. Time evolution of u for $N=1$ (periodic case).
Example 2: $N=2, x_{1}(0)=4 i, x_{2}(0)=2 i, \beta=0.4$

Figure 2. Time evolution of u for $N=2$ (periodic case).
3.3 Long-wave limit $\beta \rightarrow 0$

The long-wave limit $\beta \rightarrow 0$ of the periodic solutions can be derived easily. We quote the results:

$$
\begin{gather*}
\phi=i \ln \frac{f^{*}}{f}, \quad f=\prod_{j=1}^{N}\left(x-x_{j}\right)=\sum_{j=0}^{N} s_{j}(t) x^{N-j},\left(s_{0}=1\right) \tag{26}\\
\dot{s}_{j}=-i \operatorname{Im} s_{j}+i(N-j+1) s_{j-1}, \quad j=1,2, \ldots, N \tag{27}
\end{gather*}
$$

For $N=2$, the solution reads as follows:

$$
\begin{gather*}
f=x^{2}-s_{1} x+s_{2}, \tag{28a}\\
s_{1}=b_{1}+i\left[-\left(a_{1}-2\right)\left(1-e^{-t}\right)+a_{1}\right] \tag{28b}\\
s_{2}=-2 t-\left(a_{1}-2\right)\left(1-e^{-t}\right)+b_{2}+i\left[-\left(a_{2}-b_{1}\right)\left(1-e^{-t}\right)+a_{2}\right] . \tag{28c}
\end{gather*}
$$

The large time asymptotic of the solution $u \equiv \phi_{x}$ is given by a superposition of N Lorentzian pulses

$$
\begin{equation*}
u \sim \sum_{j=1}^{N} \frac{2}{\left(x-\sqrt{2 t} x_{j, N}\right)^{2}+1}, \tag{29}
\end{equation*}
$$

where $x_{j, N}$ is the nth root of the Hermite polynomial of order N. These results have been detailed in Matsuno (1992).

Example 1: Nonperiodic case $N=2, x_{1}(0)=4 i, x_{2}(0)=2 i$

Figure 3. Time evolution of u for $N=2$ (nonperiodic case).

4. Application

The exact method of solution developed so far can be applied to obtain periodic solutoins of the sine-Hilbert (sH) equation

$$
\begin{equation*}
H \theta_{t}=-\sin \theta, \quad \theta=\theta(x, t) \tag{30}
\end{equation*}
$$

4.1 Remark

- The sH equation was introduced by Degasperis and Santini in a purely mathematical context:

Phys. Lett. A 98 (1983) 240.

- The reduction to a Riemann-Hilbert scattering problem was given by Degasperis et al:
J. Math. Phys. 26 (1985) 2469.
- An exact method of solution by means of bilinear transformation method was developed by Matsuno:

Phys. Lett. A119 (1986) 229; Phys. Lett. A120 187(1987); J. Phys. A: Math. Gen. 20(1987) 3587.

4.2 Periodic solutions

Here, we summarize the procedure for constructing periodic solutions of the sH equation. We seek periodic solutions of the form (5)

$$
\begin{equation*}
\theta=i \ln \frac{f^{*}}{f}, \quad f=\prod_{j=1}^{N} \frac{1}{\beta} \sin \beta\left(x-x_{j}\right) \tag{31}
\end{equation*}
$$

The corresponding bilinear equation for f is given by

$$
\begin{equation*}
\left(f^{*} f\right)_{t}=\frac{1}{2}\left(f^{2}-f^{* 2}\right) \tag{32}
\end{equation*}
$$

The system of equations for x_{j} becomes

$$
\begin{equation*}
\dot{x}_{j}=\frac{1}{2 i \beta} \frac{\prod_{l=1}^{N} \sin \beta\left(x_{j}-x_{l}^{*}\right)}{\prod_{\substack{l=1 \\ l \neq j)}}^{N} \sin \beta\left(x_{j}-x_{l}\right)}, \quad j=1,2, \ldots, N \tag{33}
\end{equation*}
$$

and u_{j} satisfies the system of equations

$$
\begin{equation*}
\dot{u}_{j}=i\left(-\frac{c}{2} u_{N} u_{j}+\frac{1}{2 c} u_{N-j}^{*}\right), \quad c=\sqrt{\frac{u_{N}^{*}}{u_{N}}}, \quad j=1,2, \ldots, N \tag{34}
\end{equation*}
$$

The above system can be solved analytically and solutions are given explicitly.
Example: $N=1$
Substituting $u_{1}=e^{2 i \beta s_{1}}$ into (34)

$$
\begin{gather*}
\dot{s}_{1}=\frac{1}{2 \beta} \sinh \left(2 \beta \operatorname{Im} s_{1}\right) \tag{35a}\\
\operatorname{Re} \dot{s}_{1}=\frac{1}{2 \beta} \sinh \left(2 \beta \operatorname{Im} s_{1}\right), \quad \operatorname{Im} \dot{s}_{1}=0, \tag{35b}\\
x_{1}=s_{1}=a t+b+i \frac{1}{2 \beta} \sinh ^{-1}(2 \beta a), \quad a=\frac{1}{2 \beta} \sinh \left(2 \beta \operatorname{Im} s_{1}\right) \quad b=\operatorname{Re} s_{1}(0) \tag{35c}\\
u \equiv \theta_{x}=\frac{4 \beta^{2} a}{\sqrt{1+4 \beta^{2} a^{2}}-\cos 2 \beta(x-a t-b)} \tag{36}
\end{gather*}
$$

Note that the solution is not a standing wave but a traveling wave.

5. Summary

- We have constructed periodic solutions of a resistive model describing Josephson electrodynamics by means of a novel linearization procedure.
- The large time asymptotic of the periodic solution has a steady profile which is formed by a balance between nonlinearity and dissipation. This feature is in striking contrast to periodic solutions of nonlinear dispersive wave equations.
- The exact method of solution developed here was applied to the sine-Hilbert equation to obtain periodic solutions.

