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Abstract
A novel method is developed for constructing periodic solutions of a model

equation describing nonlocal Josephson electrodynamics. This method consists of
reducing the equation to a system of linear ordinary differential equations through
a sequence of nonlinear transformations. The periodic solutions are obtained in
the form of parametric representation. It is found that the large time asymptotic of
the solution exhibits a steady profile which does not depend on initial conditions.
Last, the exact method is applied to the sine-Hilbert equation to obtain periodic
solutions. The detail of this report has been published in J. Phys. $A$ : Math. Theor.
42 (2009) 025401.

1. Model equation
1.1 Nonlocal model equation

Consider a Josephson junction with a thin layer between two superconductors.
The phase difference $\phi(x, t)$ across the Josephson junction is described by the
following model equation:

$\omega\phi+\omega\eta\phi=-\sin\phi+\frac\int K(\frac)\phi(x, t)dx+\gamma$. (1)

$K$ : modified Bessel function of order zero, $\omega$ : Josephson plasma frequency,

$\lambda$ : London penetration depth, $\lambda$ : Josephson penetration depth,
$\gamma$ : bias current density across the junction, $\eta$ : positive parameter characterizing
the resistance of a unit area of the tunneling junction.

Let $l$ be the characteristic space scale of $\phi$ . When $\lambda<<l$ , then $K(x)\sim\pi\delta(x)$

and Eq. (1) reduces to the perturbed sine-Gordon equation

$\omega\phi+\omega\eta\phi=-\sin\phi+\frac\phi+\gamma$ . (2)
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If $l<<\lambda$ , then $K(|x|)\sim-\ln|x|$ and Eq. (1) becomes

$\omega\phi+\omega\eta\phi=-\sin\phi+\frac\int\frac dx+\gamma$. (3)

In the following, we consider the overdamped case $\eta>>1$ and the zero bias current
$\gamma=0$ . Eq. (3) can then be written in an appropriate dimensionless form as

$\phi=-\sin\phi+H\phi$ , $H \phi=\frac P\int\frac dx$ . (4)

1.2 Remarks. Equation (1) is derived from Maxwell $s$ equations combined with the London
equation and the Josephson equation:

Yu. Alief et al, Superconductivity 5 (1992) 230
A. Gurevich, Phys. Rev. B46 (1992) 3187.. Equation (4) has been proposed for the first time in a purely mathematical

context:
Y. Matsuno, J. Math. Phys. 33 (1992) 3039.. As for a review on nonlocal Josephson electrodynamics:
A.A. Abdumalikov et al, Superconductor Science and Technology, 22 (2009)

023001
R.G. Mints, J. Low Temp. Phys. 106 (1997) 183.

2. Exact method of solution
2.1 A nonlinear dynamical system. Dependent variable transformation

We seek periodic solution of (4) of the form

$\phi=i\ln\frac$ , $f= \prod\frac\sin\beta(x-x)$ , (5)

where $x=x(t)$ are complex functions of $t$ with ${\rm Im} x(t)>0,$ $\beta$ is a posi-
tive parameter, $N$ is an arbitrary positive integer and $f$ denotes the complex
conjugate expression of $f$ . Using a formula for the Hilbert transform, one has
$H\phi=-(\ln ff)$ . Substitution of this expression and (5) into (4) gives the
following bilinear equation for $f$ and $f$

$i(ff-ff)= \frac(f\text{ノ})-ff-ff$ . (6)
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. A system of nonlinear ODEs for $x$

We divide (6) by $ff$ , substitute $f$ from (5) and then evaluate the residue at
$x=x$ on both sides. This gives asystem of nonlinear ODEs for $x$

$=- \frac\frac+i$ , $j=1,2,$ $\ldots,$
$N$ , (7)

where an overdot denotes differentiation with respect to $t$ .
We introduce the following notations:

$z=e$ , $\xi=e$ , $\eta=e$ , $j=1,2,$ $\ldots,$
$N$, $(8a)$ .

$s= \sum x$ , $s= \sum xx$ , ..., $s= \prod x$ , $(8b)$

$u= \sum\xi$ , $u= \sum\xi\xi$ , ..., $u= \prod\xi$ , $(8c)$

$v= \sum\eta$ , $v= \sum\eta\eta$ , ..., $v= \prod\eta$ , $(8d)$

$t= \sum\xi$ , $j=1,2,$ $\ldots$ , $N$ . $(8e)$

In terms of $u(j=1,2, \ldots, N)$ and $s,$ $f$ can be written as

$f= \frac(z-uz+uz+\ldots+(-1)u)$ . (9)

Thus, $u(j=1,2, \ldots, N)$ and $s$ determine the function $f$ completely.
Let us derive a system of equations for $u$ . To this end, We rewrite (7) in terms

of $\xi$ and $\eta$ as

$\dot=-\frac\alpha u\frac-2\beta\xi$ , $j=1,2,$ $\ldots,$
$N$, $(10a)$

where

$\alpha=\prod(\xi\eta)=e$ , $u= \prod\xi=e$ . $(10b)$

Later, we show that $\alpha$ is a constant independent of $t$ and $u$ obeys a single
nonlinear ODE.
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2.2 Linearization
The system of nonlinear ODEs (10) can be linearized in terms of the variables

$u$ defined by (8c). We multiply $\xi$ on both sides of (10a) and sum up with
respect to $j$ from 1 to $N$ to obtain

$\frac n=-\frac u\sum(-1)vI-2\beta t$ , $n=1,2,$ $\ldots,$
$N$, (lla)

where $I$ is defined by

$I= \sum\frac$ . $(11b)$

In deriving (11), we have used the identity

$I=0$, $-N+1\leq n\leq-1$ . $(11c)$

. Time evolution of $u$

The time evolution of $u$ follows from (lla) with the help of the formulas

$u= \frac\sum(-1)ut$ , $1\leq n\leq N$ , $\sum(-1)uI=0$ , $n\geq 1$ ,

(12)
where $u=1$ and $I=1$ . In fact, differentiating the first formula in (12) by $t$ and
substituting (lla) for $i$ , we can show that the quantity $h$ defined by

$h= \dot+\frac uu-\frac u+2\beta nu$ , $n=1,2,$ $\ldots,$
$N$, (13)

satisfies the relation

$h= \frac\sum(-1)ht+\frac$ , $(14a)$

where

$r= \sum u[-\sum(-1)sI+(-1)t]$ . $(14b)$

The quantity in the brackets on the right-hand side of (14b) can be shown to
vanish identically so that $r\equiv 0$ . It follows from this and (14a) that

$h= \frac\sum(-1)ht$ , $n=1,2,$ $\ldots$ , $N$ . (15)
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Solving (15) with the initial condition $h=\alpha u/2-u/(2\alpha)=0$ , we obtain the
relations $h\equiv 0(n=1,2, \ldots, N)$ . Thus, we see that $u$ evolves according to the
following system of ODEs

$\dot+\frac uu-\frac u+2\beta nu=0$ , $n=1,2,$ $\ldots$ , $N$. (16)

It is remarkable that $u$ obeys a single nonlinear ODE of the form

$\dot+\frac u-\frac+2\beta Nu=0$ , $u=e$ , $\alpha=\sqrt{}$ , (17)

and other $N-1$ variables $u,$ $u,$ $\ldots,$
$u$ constitute a system of linear ODEs.

Rewriting (17) in terms of $s$ , we can put it into a nonlinear ODE for $s$

$\dot=\frac\sinh(2\beta{\rm Im} s)+iN$, (18)

where ${\rm Im} s$ implies the imaginary part of $s$ .

3. Periodic solutions
3.1 Construction of periodic solutions

The first step for constructing periodic solutions is to integrate (18). It follows
from the real and imaginary parts of (18) that

${\rm Re}\dot=0$ , ${\rm Im} s=- \frac\sinh(2\beta{\rm Im} s)+N$ . (19)

Thus, the real part of $s$ becomes a constant ${\rm Re} s(t)={\rm Re} s(0)\equiv b$ whereas
integration of the equation for ${\rm Im} s$ yields an explicit expression. In terms of a
new variable $y=2\beta{\rm Im} s$ , it is given by

$e= \frac$ ,

(20)
where $\nu=\sqrt{}/4$) and $y=y(0)=2\beta{\rm Im} s(0)$ , For $n=1,2,$ $\ldots,$ $N-1$ ,
on the other hand, (16) can be written in the form

$\dot=-(\frac e+2\beta n)u+\frac u$ . (21)

Note from (10b) and ${\rm Re} s=b$ that $\alpha=e$ becomes a constant. The solution
of the initial value problem for (21) can be put into the form of a rational function

$u(t)=\underline$ $n=1,2,$ $\ldots,$ $N-1$ , $(22a)$
$F$

’
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with

$F=2 \nu(\tanh\frac+1)\cosh\nu t+\{(2\beta N-1)\tanh\frac+2\beta N+1\}\sinh\nu t$,
$(22b)$

$G=2 \nu(\tanh\frac+1)[u(0)\cosh\nu t$

$+ \frac\{\beta(N-2n)u(0)+\frac u(0)\}\sinh\nu t]$ , $(22c)$

where $\nu=\sqrt{}/4$). We see that the expression (22) with $n=N$
produces (20) and hence it can be used for all $u$ .

3.2 Properties of solutions. Asymptotic form of the solution as $tarrow\infty$

$uarrow 0$ , $n=1,2,$ $\ldots,$ $N-1$ , $uarrow e(\sqrt{}-2\beta N)$ , (23)

$\phi\sim 2\tan[\frac\tan\beta(Nx-b-\frac)]$ , (24)

$u \equiv\phi\sim\frac$ . (25)

. Novel features of solutions
1 $)$ The asymptotic form of $u$ does not depend on initial conditions except for a
phase constant $b$ . It represents a train of nonlinear periodic standing waves.

2 $)$ The initial profile of $u$ with a spatial period $\pi/\beta$ evolves into a periodic wave
with a period $\pi/N\beta$ .

3 $)$ The amplitude of the wave $A(=u-u)$ is a constant independent of the
wavenumber. Indeed, $u=\sqrt{}+1,$ $u=\sqrt{}-1$ and
hence $A=2$ .

4 $)$ The steady profile (25) satisfies the Peierls equation $H\phi=\sin\phi$ in the theory
of dislocation

R. Peierls, Proc. Phys. Soc. 52 (1940) 256.
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Example 1: $N=1,$ $x(0)=3i,$ $\beta=0.2$

$u$

Figure 1. Time evolution of $u$ for $N=1$ (periodic case).

Example 2: $N=2,$ $x(0)=4i,$ $x(0)=2i,$ $\beta=0.4$

$u$

Figure 2. Time evolution of $u$ for $N=2$ (periodic case).

3.3 Long-wave limit $\betaarrow 0$

The long-wave limit $\betaarrow 0$ of the periodic solutions can be derived easily. We
quote the results:

$\phi=i\ln\frac$ , $f= \prod(x-x)=\sum s(t)x,$ $(s=1)$ , (26)

$\dot=-i{\rm Im} s+i(N-j+1)s$ , $j=1,2,$ $\ldots,$
$N$. (27)
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For $N=2$ , the solution reads as follows:

$f=x-sx+s$ , $(28a)$

$s=b+i[-(a-2)(1-e)+a]$ , $(28b)$

$s=-2t-(a-2)(1-e)+b+i[-(a-b)(1-e)+a]$ . $(28c)$

The large time asymptotic of the solution $u\equiv\phi$ is given by a superposition of
$N$ Lorentzian pulses

$u \sim\sum\frac$ , (29)

where $x$ is the nth root of the Hermite polynomial of order $N$ . These results
have been detailed in Matsuno (1992).

Example 1: Nonperiodic case $N=2,$ $x(0)=4i,$ $x(0)=2i$

Figure 3. Time evolution of $u$ for $N=2$ (nonperiodic case).

4. Application
The exact method of solution developed so far can be applied to obtain periodic

solutoins of the sine-Hilbert $(sH)$ equation

$H\theta=-\sin\theta$ , $\theta=\theta(x, t)$ . (30)

4.1 Remark. The $sH$ equation was introduced by Degasperis and Santini in a purely mathe-
matical context:

Phys. Lett. A 98 (1983) 240.
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. The reduction to a Riemann-Hilbert scattering problem was given by Degasperis
et al:

J. Math. Phys. 26 (1985) 2469.. An exact method of solution by means of biliinear transformation method was
developed by Matsuno:

Phys. Lett. A119 (1986) 229; Phys. Lett. A120187(1987); J. Phys. $A$ : Math.
Gen. 20(1987) 3587.

4.2 Periodic solutions
Here, we summarize the procedure for constructing periodic solutions of the $sH$

equation. We seek periodic solutions of the form (5)

$\theta=i\ln\frac$ , $f= \prod\frac\sin\beta(x-x)$ , (31)

The corresponding bilinear equation for $f$ is given by

$(ff)= \frac(f-f)$ . (32)

The system of equations for $x$ becomes

. $j= \frac\frac$ $j=1,2,$ $\ldots,$
$N$ , (33)

and $u$ satisfies the system of equations

$\dot=i(-\frac uu+\frac u)$ , $c=\sqrt{}$ , $j=1,2,$ $\ldots,$
$N$ . (34)

The above system can be solved analytically and solutions are given explicitly.

Example: $N=1$

Substituting $u=e$ into (34)

$\dot=\frac\sinh(2\beta{\rm Im} s)$ , $(35a)$

${\rm Re} \dot=\frac\sinh(2\beta{\rm Im} s)$ , ${\rm Im}\dot=0$ , $(35b)$

$x=s=at+b+i \frac\sinh(2\beta a)$ , $a= \frac\sinh(2\beta{\rm Im} s)$ $b={\rm Res}(0),$ $(35c)$

$u \equiv\theta=\frac$ . (36)

Note that the solution is not a standing wave but a traveling wave.
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5. Summary. We have constructed periodic solutions of a resistive model describing Josephson
electrodynamics by means of a novel linearization procedure.. The large time asymptotic of the periodic solution has a steady profile which
is formed by a balance between nonlinearity and dissipation. This feature is in
striking contrast to periodic solutions of nonlinear dispersive wave equations.. The exact method of solution developed here was applied to the sine-Hilbert
equation to obtain periodic solutions.
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