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Abstract
This note will be focused on some relations between the asymptotic profiles of blowup

solutions and blowup rates of those to the pseudo-conformally invariant nonlinear
Schr\"odinger equations. The equation of this type with 2$+$ 1 space-time dimension
appears as a model of self-focusing of a LASER beam in a Kerr medium. This
phenomenon is believed to be well described by blowup solutions of the equation to
some extent. We will see that so-called Nelson diffusions bring us some information on
the asymptotic behavior and limiting profiles of blowup solutions.

1 Introduction
We are concerned with the following psedo-conformally*1 invariant nonlinear Schr\"odinger

equation:
$2i \frac{\partial\psi}{\partial t}+\triangle\psi+|\psi|^{4/d}\psi=0$, in $\mathbb{R}^{d}\cross \mathbb{R}+\cdot$ (1)

Here $i=\sqrt{-1}$ and $\triangle$ is the Laplace operator on $\mathbb{R}^{d}$ . We associate this equation with initial
datum $\psi_{0}$ from $H^{1}(\mathbb{R}^{d})$ , which is the set of all square integrable functions on $\mathbb{R}^{d}$ whose
distributional derivatives up to lst order are also square integrable. We summarize basic,
mathematical facts as to this Cauchy problem in Section 2.

The equation of this type with 2$+$ 1 space-time dimension appears as a model of a LASER
beam propagating along “t-axi.$s$

” (the third axis of our space $\mathbb{R}^{3}$ , say z) in a nonlinear medium
(see, e.g., [1, 2, 15, 45, 40]).

We are assuming that neither charges, currents, nor magnetization exist in a nonlinear
material like an optical fiber. Our basic equation describing a LASER light beam in the

$*1$ We shall discuss this property in Section 2.
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material is Muwell $s$ equations: the electric field $E$ satisfies: $*2$

$\epsilon_{0}\mu_{0}\frac{\partial^{2}E}{\theta t^{2}}-\triangle E=-\mu_{0}\frac{\partial^{2}P}{\partial t^{2}}$ . (2)

The electric polarization field $\mathbb{P}$ will depend on the electric field $E$ nonlinearly (the Kerr effect).

We simply assume here that“3

IP $=\epsilon_{0}(\chi_{e}^{(1)}+\chi_{e}^{(3)}|E|^{2})$ E. {3)

Now we suppose that monochromatic field having angular frequency $\omega$ and wave number
$(0,0, k)$ is applied to the material, so that, introducing a complex amplitude $\varphi$ , we may make
an anzats as follows:

$E(x, y, z, t)=\epsilon\varphi(\epsilon x,\epsilon y,\epsilon^{2}z)e^{i(kz-\omega t)}e_{x}$ , (4)

where $e_{x}=(1,0,0)$ and $\epsilon>0$ is a small constant. $*4$

Figurel A LASER beam propagating in a nonlinear material.

Putting this $E(x,y, z,t)$ of (4) in the wave equation (2) with (3), making a table of coefficients
of powers of $\epsilon^{*5}$ and equating those coefficients of the same power, we get the dispersion

$*2\epsilon 0$ and $\mu 0$ are the vacuum permittivity and vacuum permeability, respectively. Hence $c0= \frac{1}{\sqrt{\epsilon_{O}\mu 0}}$ is the
speed of light in vacuum.

$*3$ $\chi_{e}^{(n)}$ is the n-th order component of electric susceptibility of the material which is assumed to be
isotropic. $\chi_{\epsilon}^{(1)}$ is the linear susceptibility, and $\chi_{c}^{\langle 2)}$ is dropped out by the inversion symmetry of the
material. Hence the $\chi_{e}^{(3)}$ exhibit the first non-negligible nonlinear effect.

$*4\epsilon>0$ may be regard as $\epsilon=\underline{k}_{A,k}(k\gg 1)$ with the “specific wave length” $\frac{1}{k_{O}}$ .
$*5$ Only $\epsilon,$

$\epsilon^{3}$ and $\epsilon^{3}$ terms will appear.
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relation from the $\epsilon$-term, so that the following nonlinear Schr\"odinger equation shows up from
the $\epsilon^{3}$-term $($abandoning the $\epsilon^{5}-term)^{*6}$ :

$2i \frac{1}{k}\frac{\partial\varphi}{\partial Z}+\frac{1}{k^{2}}\triangle_{XY}\varphi+\frac{n_{3}}{n_{0}}|\varphi|^{2}\varphi=0$ . (5)

Here,
$n_{0}=1+\chi_{e}^{(1)}$ , $n_{3}=\chi_{e}^{(3)}$ .

These are relevant to the refractive index $n$ of the media as follows: $*7$

$n=n_{0}+n_{3}|E|^{2}$ .

Analogous arguments of Nelson’s stochastic quantization procedure [35] (see also [8]) give us
another derivation of (5) from the geometrical optical path obtained through refraction index
$n[30]$ . In this note, we shall not discuss this aspect. But the process introduced by Nelson
will play a central role in our analysis (see Section 5). This point could be a novelty of this
note.

In modern understanding, self-focusing of a LASER beam is well described to some extent
by the nonlinear Schr\"odinger equation (5); blowup solutions*8 are considered to describe the
phenomena (see, e.g., [25, 9]). Because of mathematical generosity, we consider (1) which, in
fact, is a “genuine” generalization of (5) with $k=1$ to higher space-dimensions, keeping the
pseudo-conformal invariance of the equations. $*9$

We may say that recent one of the trend in the study of this type of nonlinear Schr\"odinger
equation is to determin their blowup rates of the solutions, and to find relevance between their
asymptotic behavior and blowup rates (e.g., [10, 23, 9, 29] etc.).

2 The NLS: basic facts
We summarize the basic properties of the Cauchy problem for the nonlinear Schrodinger

equation (abbreviated to NLS) of the form:

$\{\begin{array}{ll}2i\frac{\partial\psi}{\partial t}+\triangle\psi+|\psi|^{p-1}\psi=0, (x, t)\in \mathbb{R}^{d}\cross \mathbb{R}+,\psi(0)=\psi_{0}\in H^{1}(N^{d}). \end{array}$

$*6$ We are ignoring the backscattering effect, or assuming the slowly varying approximation.
$*7$ In case of anisotropic or random media, these are not constant but “functions”.
$*8$ The solutions explode their $L^{2}$ norm of the gradients in finite time. For the precise definition, see

Section 2.
$*9$ The invariance property is inherited to the structure of solutions of (1) regardless of the difference of

the space-dimension $d$ . This will be discussed in section 2.
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Here, the index $p$ in the nonlinear term satisfies: $p\in(1,2^{*}-1)$ , where $2^{*}= \frac{2d}{d-2}$ for
$d\geqq 3;2^{*}=\infty$ for $d=1,2$ . The umique local existence theorem is well known (see, e.g.,
[14, 6, 40] $)$ : for any $\psi_{0}\in H^{1}(\mathbb{R}^{d})$ , there exists a unique solution $\psi$ in $C([0,T_{\max});H^{1}(\mathbb{R}^{d}))$

for some $T_{\max}\in(0, \infty]$ (maximal existence time) such that $\psi$ satisfies the following three
conservation laws of $L^{2}$-norm (charge), momentam, energy (Hamiltonian) in this order:

$\Vert\psi(t)\Vert^{2}=\Vert\psi(0)\Vert^{2}$ ,

$\Im\int_{R^{d}}\overline{\psi(x,t)}\nabla\psi(x,t)dx=\Im\int_{R^{d}}\overline{\psi_{0}(x)}\nabla\psi_{0}(x)dx=\Im\langle\psi_{0},$ $\nabla\psi_{0}\rangle$ ,

$\mathcal{H}_{p+1}(\psi(t))\equiv\Vert\nabla\psi(t)\Vert^{2}-\frac{2}{p+1}\Vert\psi(t)\Vert_{p}^{p}\ddagger_{1}^{1}=\mathcal{H}_{p+1}(\psi_{0})$ .

It is worth while noting that a certain number $p>1$ (the index appearing in the nonlinear
term) divides the world of solutions of NLS into two parts:

$\bullet$ When $1<p<1+ \frac{4}{d}$ , every solution exists globally in time, i.e., $T_{\max}=\infty$ .

For: we have an a priori bound on $\Vert\nabla\psi(t)\Vert$ by virtue of the energy conservation law
and the Gagliardo-Nirenberg inequality:

$\Vert f\Vert_{p}^{p}\ddagger_{1}^{1}\leqq C_{p,d}\Vert f\Vert^{p+1_{2}(p-1)}-4\Vert\nabla f\Vert^{\#(p-1)}$.

$\bullet$ When $2^{*}-1>p \geqq 1+\frac{4}{d}$ , there exists a class of initial data which give rise to blowp
solutions, that is,

$T_{\max}<\infty$ and $\lim_{t\uparrow\tau_{\max}}\Vert\nabla\psi(t)\Vert=\infty$ .

Hence, our equation (1) is the borderline case for the existence of blowup solutions. This
fact can be easily seen in a weighted energy space $H^{1}(\mathbb{R}^{d})\cap L^{2}(\mathbb{R}^{d};|x|^{2}dx)^{*10}$ : If we assume
in addition that $|x|\psi_{0}\in L^{2}(\mathbb{R}^{d})$ , then the corresponding solution $\psi$ of NLS satisfies

$|x|\psi(\cdot)\in C([0, T_{\max});L^{2}(\mathbb{R}^{d}))$

and

$\Vert|x|\psi(t)\Vert^{2}=|||x|\psi(0)||^{2}+2t\Im(\psi(0),$ $x\cdot\nabla\psi(0)\rangle+t^{2}\mathcal{H}_{p+1}(\psi(0))$

$- \frac{d}{p+1}(p+1-(2+\frac{4}{d}))\int_{0}^{t}(t-\tau)\Vert\psi(\tau)\Vert_{p}^{p}\ddagger_{1}^{1}d\tau$.

This identity (sometimes called the virial identity) shows that every negative energy solution
has to blow up in a finite time, provided that $p \geq 1+\frac{4}{d}$ . For $p=1+ \frac{4}{d}$ , the last term in

$10$ The form domain of harmonic oscillators, $-\Delta+c|x|^{2}(c>0)$ .
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the right hand side vanishes; this is one of the appearance of the invariance property of our
equation under the pseudo-conformal transformations.

In what follows, we will quote our equation (1) as (NSC). We write it again here:

$2i \frac{\partial\psi}{\partial t}+\triangle\psi+|\psi|^{4/d}\psi=0$. (NSC)

We use the following symbol for the energy of (NSC):

$\mathcal{H}(\psi(t))\equiv\Vert\nabla\psi(t)\Vert^{2}-\frac{2}{2+\frac{4}{d}}\Vert\psi(t)\Vert_{2}^{2}\ddagger_{\#}^{3}$ .

We need some knowledge about standing wave solutions of NLS. The standing waves are
solutions of variable separation type of the form: $\psi(x,t)=Q(x)\exp(it/2)^{*11}$ We collect
necessary ingredients for our equation (NSC) here. Of course, $Q$ solves the following nonlinear
scalar field equation:

$\triangle Q-Q+|Q|^{4/d}Q=0$ , $Q\in H^{1}(\mathbb{R}^{d})\backslash \{0\}$ . (6)

Especially, the ground state $Q_{g}$ is significant among other standing waves (usually called
bound states). The ground state is characterized as the minimal action solution of (6) $:^{r12}$

$\mathcal{H}(f)=0\}$ .$\mathcal{N}_{1}:=inff\in H^{1}(R^{d})f\not\equiv 0\{\Vert\nabla f\Vert^{2}+\Vert f\Vert^{2}-\frac{2}{2+\frac{4}{d}}\Vert f\Vert_{2}^{2}\ddagger_{a}^{3}4$

In this case, this variational problem is equivalent to each of the followings:

$\mathcal{N}_{1}=inff\in H^{1}(R^{d})f\not\equiv 0\{\Vert f\Vert^{2}$ $\mathcal{H}(f)\leqq 0\}$ ,
$\mathcal{N}_{2}:=f\in H^{1}(\mathbb{R}^{d})\inf_{f\not\equiv 0}\frac{\Vert f||^{4}z||\nabla f\Vert^{2}}{||f\Vert_{2+\not\in}^{2+_{7}^{4}}}$,

where these variational values are relevant to each other [43] (see also [27]):

$\mathcal{N}_{2}=\frac{2}{2+\frac{4}{d}}\mathcal{N}_{1}^{2}a$ ,

and $\mathcal{N}_{2}$ gives the best constant for the following Gagliardo-Nirenberg inequality,

$\Vert f\Vert_{2}^{2}:\frac{4}{ad4}\leqq\frac{1}{\mathcal{N}_{2}}\Vert f\Vert^{a}\Vert\nabla f\Vert^{2}4$. (7)

Here the important thing is that the ground state $Q_{g}$ gives these variational values$*13$ such
that:

$\mathcal{N}_{2}=\frac{2}{2+\frac{4}{d}}\Vert Q_{g}\Vert i^{4}\ddagger$ , $\mathcal{H}(Q_{g})=0$ .

$*11$ We may consider a frequency $\omega>0$ of the standing waves as $Q_{\omega}(x)\exp(i\omega t/2)$ . Then, $Q_{\omega}$ solves
$\triangle Q_{(v}-\omega Q_{\omega}+|Q_{\omega}|^{4/d}Q_{\omega}=0$ . But this doesn’t matter for our analyses in the sequel: Consider the
dilations, $\mathbb{R}_{+}\ni\omega\mapsto\sqrt{\omega}^{d/2}Q(\sqrt{\omega}x)$ .

“12 We abuse the terminology here. We should say that $Q_{g}e^{it/2}$ is the ground state of (NSC), and that the
other standing waves of the form $Qe^{it/2}$ should be referred as bound states.

$*13$ $\sqrt{\omega}^{d/2}Q_{g}(\sqrt{\omega}x)$ gives these values as well.
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Furthermore, we know that $Q_{g}$ is positive, so that it is radially symmetric and monotonically

decreasing. $*14$ Such a shape of the ground state is referred to as a Toumes profile in the field

of nonhinear optics; it is reported that such a profile appears in self-focusing singularities in

LASER beams under general circumstances [25]. Some numerical computations also support

this fact (see, e.g., [9]). However, we always have exceptions. $*15$ Furthermore, another type

of singularities are observed in numerically for (NSC) with $d=2[10]$ and in real experiments

in LASER beams [9]. We shall briefly discuss this aspect in the next section.
From the fact that $\#$ is the best constants for (7), one can easily verify that if $\Vert\psi_{0}\Vert<\Vert Q_{g}\Vert$ ,

then we always have an $H^{1}$-bounded, global-in-time solution of (NSC), i.e., $T_{\max}=\infty:^{*16}$ the

size of $L^{2}$-norm alone control the $H^{1}$ norm. This is one of the peculiarities of our NLS equation

with $p=1+ \frac{4}{d}$ , that is our equation (NSC). We will see at the end of this section that this
estimate is sharp [44] in the sense that there exists a blowup solutions whose $L^{2}$-norm is just

the same as II $Q_{g}\Vert$ .
Now we shall discuss the pseudo-conformal invariance of our equation (NSC). Pragmatically

we can safely say that psedo-conformal invariance is the invarint property under the following

space-time transformations:$*17T>0$ ,

$[ \mathcal{G}(T)\psi](x, t)=(T-t)^{-d/2}\exp\{-\frac{i|x|^{2}}{2(T-t)}\}\psi(\frac{x}{T-t},$ $\frac{t}{T(T-t)})$ , $T>0$ .

That is, if $\psi$ solves (NSC), then $\mathcal{G}(T)\psi$ also solves (NSC).

Applying this transformation to a standing wave solution $Q(x)e^{tf}$ , we obtain an explicit

blowup solution of (NSC):

$\tilde{Q}(x, t)=(T-t)^{-d/2}\exp\{-\frac{i|x|^{2}}{2(T-t)}\}Q(\frac{x}{T-t})\exp(\frac{it}{2T(T-t)})$ , (8)

which blows up at $T>0$ such that:

$\lim_{t\uparrow T}\Vert\nabla\tilde{Q}(t)\Vert=\infty$ with $\Vert\nabla\tilde{Q}(t)\Vert_{\wedge}^{\vee}\frac{1}{T-t}$ , (9)

and
$\lim_{t\uparrow T}\int_{\mathbb{R}^{d}}|x|^{2}|\tilde{Q}(x, t)|^{2}dx=0$ , $\Vert\tilde{Q}(t)\Vert=\Vert Q\Vert$ , (10)

so that we have: as $t\uparrow T$ ,
$|\tilde{Q}(x, t)|^{2}dxarrow\Vert Q\Vert^{2}\delta_{0}(dx)$ . (11)

14 This is a classical, beautiful result due to Gidas-Ni-Nirenberg [11], and Kwong [18] proved that the
positive solution is unique up to space-translations.

$*15$ As we will see just below, there are blowup solutions in which the singularities are described by any
bound states other than the ground state.

$*16\iota$‘A LASER beam of weak intensity is dispersed in the medium where it propagates.”
$*17$ It is also referred to as Talanov lens transformations [41].
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The whole intensity of a LASER beam concentrates at the origin. However, such a behavior
as (11) is not ”generic” for blowup solutions. We can say that $L^{2}$-concentration phenomena
in blowup solutions are peculiar to (NSC), but every blowup solution does not concenrate its
$L^{2}$ mass at a single point. $*18$ “Single point blowup” as in (11) occurs in a very restrictive
situations: these two theorems are a kind of inverse problem:

Theorem 1 ([33]). We assume that $\psi_{0}\in H^{1}(\mathbb{R}^{d})\cap L^{2}(\mathbb{R}^{d};|x|^{2}dx)$ . If the corresponding
solution $\psi$ blows up at a time $T>0$ and satisfies

$\lim_{t\uparrow T_{\max}}\Vert|x-a|\psi(t)\Vert=0$ for some $a\in \mathbb{R}^{d}$ ,

then $\psi$ should be of the $fom$: up to Gallilei tmnsfomations, $*19$

$\psi(x,t)=(T-t)^{-d/2}\exp\{-\frac{i|x|^{2}}{2(T-t)}\}\Psi(\frac{x}{T-t},$ $\frac{t}{T(T-t)})$

for some solution $\Psi\in C([0, \infty);H^{1}(\mathbb{R}^{d})\cap L^{2}(\mathbb{R}^{d};|x|^{2}dx))$ of $(NSC)$ such that $\mathcal{H}(\Psi)=0$ .

Theorem 2 ([34]). Suppose one of the folloerying two conditions holds:
(i) $d=1$ ,
(ii) $d\geqq 2$ , and $\psi_{0}$ being mdially symmetric.

If we have, for some $T>0$ and $a\in \mathbb{R}^{d}$ ,

$|\psi(x, t)|^{2}dxarrow\Vert\psi_{0}\Vert^{2}\delta_{a}(dx)$ as $t\uparrow T$,

then
$|x|\psi_{0}\in L^{2}(\mathbb{R}^{d})$ and $\lim_{t\uparrow T}\Vert|x-a|\psi(t)\Vert=0$ as $t\uparrow T$ .

Now we discuss the sharpness of the estimate $\Vert\psi_{0}\Vert\leq\Vert Q_{g}\Vert$ : Choosing $Q=Q_{9}$ in (8), we see
that this threshold value 1 $Q_{g}\Vert$ is sharp for the existence of blowup solutions as we mentioned
before. Merle [21] proved that the explicit blowup solution of (8) with $Q=Q_{g}$ is the only
blowup solution$*20$ in $\{\psi\in H^{1}(\mathbb{R}^{d})|\Vert\psi\Vert=\Vert Q_{g}\Vert\}^{*21}$

3 The Ioglog law

Before going to discuss the generic behavior of blowup solutions of (NSC), we recall some
known facts and results as to the blowup rates.

‘18 We shall discuss the gereric behavior of blowup solutions in Section 4.
$*19\psi(x, t)\mapsto e^{i(vx-1}z^{|v|^{2}t)}\psi(x-vt, t)$ for $v\in R^{d}$ .
$*20$ up to space translations, Galilei transformations, dilations and multiplication of $e^{i\theta}$ for $\theta\in[0,2\pi)$

$*21$ We do not need the weight condition.
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It had been long conjectured that the rate of blowup (speed of blowup) is:

$\Vert\nabla\psi(t)\Vert_{\wedge}^{\vee}\sqrt{\frac{\ln\ln(T_{\max}-t)^{-1}}{T_{\max}-t}}$,

and the singularities are believed to be described by a Townes profile. This behavior is called
’ the loglog law”. But, explicit blowup solutions constructed in the previous section behave
as:

$\Vert\nabla\psi(t)\Vert_{\wedge}^{\vee}\frac{1}{T_{\max}-t}$ .

Hence, we are in an odd and messy situation. For a short history of the quest for the loglog
law, see, e.g., [40]. It was Perelman [39] who first succeeded in constructing a blowup solution
of (NSC) with $d=1$ near the ground state level which obey the loglog law in a rigorous

mathematical way. Subsequently, Merle and Raphael had been studying with vigor [22, 23, 24]
that, for $d=1,2,3,4$ , every blowup solution slightly above the groud state level obeys the
loglog law. For general class of (large) blowup solutions, the validity of the loglog law is still an
open question, however. One of the key fact of their analyses is that Towens profile describe
the singularity.$*22$

Now we have, at least, two types of blowup rates, which makes the situation complicated.

More worse, Fibich-Gavsh-X.P.Wang [10] suggests the existence of blowup solutions that show
“self-similar” rate:

$\Vert\nabla\psi(t)\Vert_{\wedge}\sqrt{\frac{1}{T_{\max}-t}}$ .

They [10] find that the ”self-similar solution” of (NSC) showed up instead of Towens profile,

when we rescaled the singularities.

Their numerical observation in [10] together with the results of Perelman [39] and Merle
Raphael [22, 23, 24] also suggests that the asymptotic profile of blowup solutions and their
blowup rates are closely relevant. It seems that these aspects cannot be considered separately

at all.
Thus, it seems natural to ask that: under the following two conditions of blowup rates: $*23$

$\int_{0}^{T_{m\cdot x}}\Vert\nabla\psi(t)\Vert dt<\infty$ and $\lim_{t\uparrow T_{m*x}}\sqrt{T_{\max}-t}\Vert\nabla\psi(t)\Vert=\infty$,

do we always have

$\Vert\nabla\psi(t)\Vert_{\wedge}^{\vee}\sqrt{\frac{\ln\ln(T_{\max}-t)^{-1}}{T_{\max}-t}}$

$*22$ “Near” the ground state level, we have only one $L^{2}$-concentration point (see Theorem 3 in Section 4).
23 The lower bound is known ([7, 42, 6]); $||\nabla\psi(t)||>\sim\tau_{\max-t}^{1}$ .
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with a certain universal structure of singularities$?^{*24}$

In the last section, we shall consider this problem by means of Nelson diffusions.

4 Asymptotic Profiles of Blowup Solutions
In order to investigate the generic behavior of blowup solutions, we employ a kind of renor-

malization technique. Let $\psi$ be a blowup solution of (NSC). We choose a time sequence as:
$t_{n}\uparrow T_{\max}$ , $\sup$ $\Vert\psi(t)\Vert_{2+_{a}^{4}}=\Vert\psi(t_{n})\Vert_{2+_{E}^{4}}$ ,

$t\in[0,t.)$

and define the scaling parameter

$\lambda_{n}=\frac{1}{\Vert\psi(t_{n})\Vert_{2+\S}^{1+\doteqdot}}$
.

Using this $\lambda_{n}$ , we investigate the asymptotic behavior of

$\psi_{n}(x, t)=\lambda_{n}^{\S}\overline{\psi(\lambda_{n}x,t_{n}-\lambda_{n}^{2}t)}$

in some functional spaces. $*25$ We have:

Theorem 3 ([27, 28]). The renomalized solution $\psi_{n}$ behaves like a finite superposition of
0-energy, 0-momentum, global-in-positive-time solution of (NSC) accompanied by a “tail “ (or
”shoulder”). Precisely, we have:

$\psi_{n}(x, t)-(\sum_{j=1}^{L}\psi^{j}(x-\gamma_{n}^{j}, t)+\varphi_{n}(x, t))arrow 0$ as $narrow\infty$

in the strong topology of $C([0, T];L^{2}(\mathbb{R}^{d}))$ (for any $T>0$). Here,
(i) “Singularities“ are carri $ed$ by $\psi^{j}(x, t)$ ’s, which are solutions of (NSC) in $C_{b}(\mathbb{R}_{+};H^{1}(\mathbb{R}^{d}))$

with $\mathcal{H}(\psi^{j})=0$ and $\Im\langle\psi^{j},$ $\nabla\psi^{j}\rangle=0$ ;
(ii) The “tail” $\varphi_{n}(x, t)$ solves:

$\{\begin{array}{ll}2i\frac{\partial\varphi_{n}}{\partial t}+\triangle\varphi_{n}=0, (x, t)\in \mathbb{R}^{d}\cross \mathbb{R}_{+},\varphi_{n}(x, 0)=\psi_{n}(x, 0)-\sum_{j=1}^{L}\psi^{j}(x-\gamma_{n}^{j}, 0), x\in \mathbb{R}^{d},\end{array}$

that is, $\varphi_{n}(x, t)$ ’s are solutions of the free Schrodinger equation; and
(iii) the sequences $\{\gamma_{n}^{1}\},$ $\{\gamma_{n}^{2}\},$ $\cdots$ , $\{\gamma_{n}^{L}\}$ are in $\mathbb{R}^{d}$ such that $\lim_{narrow\infty}|\gamma_{n}^{j}-\gamma_{n}^{k}|=\infty(j\neq k)$.

In the original world of $\psi$ , we have

$\lim_{narrow\infty}\sup_{t\in[t_{n}-\lambda_{n}^{2}T,t_{n}]}\Vert\overline{\psi(\cdot,t)}-\sum_{j=1}^{L}\psi_{n}^{j}(\cdot, t)-\tilde{\varphi}_{n}(\cdot, t)\Vert=0$

$*24$ A Towens profile is expected to appear under an appropriate scaling at each singularity.
$*25$ Information of asymptotic behavior of blowup solutions is encoded in that of the sequence $\{\psi_{n}\}$ .
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urith
$\lim_{narrow\infty}\lambda_{n}^{2}\sup_{t\in[t_{n}-\lambda_{n}^{2}T,t_{n}]}\Vert\tilde{\varphi}_{n}(t)\Vert_{2}^{2}\ddagger_{4}^{3}=0$,

where

$\dot{\psi}_{n}(x,t)=\frac{1}{\lambda_{n}^{d/2}}\dot{\psi}(\frac{x-\gamma_{n}^{j}\lambda_{n}}{\lambda_{n}},$ $\frac{t_{n}-t}{\lambda_{n}^{2}})$ ,

$\tilde{\varphi}_{n}(x, t)=\frac{1}{\lambda_{n}^{d/2}}\varphi_{n}(\frac{x}{\lambda_{n}},$ $\frac{t_{n}-t}{\lambda_{n}^{2}})$ .

If the family of Radon measures defined by $\{|\psi(x, t)|^{2}dx\}_{0\leqq t<T_{m\propto}}$ is tight, then we can show
that: alog $s_{n}$ $:=t_{n}-\lambda_{n}^{2}T$ , we have

$| \psi(x, s_{n})|^{2}dxarrow\sum_{j=1}^{L}\Vert\psi^{j}(0)\Vert^{2}\delta_{a^{j}}(dx)+\mu(dx)$ a$s$ $narrow\infty$

in the sense of measures, where $\mu$ comes from $|\tilde{\varphi_{n}}|^{2}dx$ which has a different nature from the
other part which produces the Dirac measures. However, there remains possibilities that we
have $a^{i}=a^{j}$ for $i\neq j$ (“resonance”) and that $\mu$ itself involves Dirac masses as well.

There arises a simple question here:

Do we always have the tightness of $\{|\psi(x, t)|^{2}dx\}_{0\leqq\iota<T_{m\cdot x}}$?

Of course, in the weighted space $H^{1}(\mathbb{R}^{d})\cap L^{2}(\mathbb{R}^{d};|x|^{2}dx)$, we always have the tightness,
provided that $T_{\max}<\infty$ . Without such a weight-condition, we have:

Theorem 4 ([28]). Suppose one of the following two conditions holds:
(i) $d=1$ and $\mathcal{H}(\psi_{0})<0$,
(ii) $d\geqq 2,$ $\mathcal{H}(\psi_{0})<0$ and $\psi_{0}$ being radially $symmetr\dot{v}c$ .
Then we have $T_{\max}<\infty$ , that is, the corresponding solution $\psi$ of (NSC) blows up in finite
time $T_{\max}$ , and the family of Radon measures $\{|\psi(x, t)^{2}|dx\}_{0\leqq t<T_{m\cdot x}}$ is tight.

Remark 1. Only the nonevistence part of global-in-time solution is proved by Ogawa-
Y. Tsutsumi [37, $38J$.

We should note here that this type of primary problem of proving the nonexistence of global
solutions seems in fact closely relevant to the asymptotic profile of blowup solutions. Indeed,

the following Theorem 5 (weak form of Theorem 4) plays a crucial role in proving the finiteness
of $\psi^{j\prime}s$ .

Theorem 5 ([26, 28]). If $\psi_{0}$ has negative enregy:

$\mathcal{H}(\psi_{0})<0$ ,
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then the corresponding solutions of (NSC) satisfies

$\sup_{t\in[0,T_{mr})}\Vert\nabla\psi(t)\Vert=\infty$ .

Suppose that $T_{\max}=\infty$ . Then we have that, for any $R>0$,

$\lim_{t\uparrow\infty}\sup\int_{|x|>R}|\nabla\psi(x, t)|^{2}dx=\infty$

This theorem is the main ingredient to prove the finiteness of $\psi^{j}$ : If $L=\infty$ in the coure of
tracing the compactness loss of $\psi_{n}$ , we have:

$\lim\sup_{j}\sum_{=1}^{L}\mathcal{H}(\psi^{j})\leqq 0Larrow\infty$.

Thus, Theorem 5 implies$*26\mathcal{H}(\dot{\psi})=0$ for any $j$ , so that we have

$\Vert\psi^{j}\Vert\geqq\Vert Q_{g}\Vert$ for each $j$

by the variational characterization of the ground state $Q_{9}$ . This fact implies the finiteness,
because we have

$\lim\sup_{j}\sum_{=1}^{L}\Vert\psi^{j}||^{2}\leq Larrow\infty\Vert\psi_{0}\Vert^{2}$ .

Now we are back to the tightness problem for $\{|\psi(x, t)^{2}|dx\}_{0\leqq t<T_{m*x}}$ . As we saw, the
problem does not seem to be easy. However, once we know the blowup rate, we immediately
obtain:

Theorem 6 ([29]). Suppose that

$\int_{0}^{T_{\max}}\Vert\nabla\psi(t)\Vert dt<$ $oo$ . (12)

Then the family of Radon measures $\{|\psi(x, t)|^{2}dx\}_{0<t<T_{\max}}$ is tight, and we have:

$| \psi(x,t)|^{2}d_{X-1}\sum_{j=1}^{L}A_{j}\delta_{a^{j}}(dx)+\mu(dx)$ as $t\uparrow T_{\max}$ . (13)

The number of singularities $L$ , and their locations $\{a^{j}\}_{j=1}^{L}$ and amplitudes $\{A^{j}\}_{j=1}^{L}$ are
uniquely detemined.

$*26$ Each $\psi^{j}$ belongs to $L^{\infty}([0, \infty);H^{1}(R^{d}))$ .
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We shall give a ”simple” proof of Theorem 6 by using the Nelson diffusion (constructed

in Section 5) corresponding to the $solution\psi$ , while we have another proof without using the
probabilistic stuff [32].

The blowup rates are also relevant to the asymptotic profiles of the blowup solutions.

Theorem 7. Suppose that $\psi_{0}$ gives rise to the blowup solution $\psi$ of (NSC) such that

$\lim_{t\uparrow T_{m\cdot x}}\Vert\nabla\psi(t)\Vert=\infty$ . We put:

$\Vert\nabla\psi(t)\Vert_{\wedge}^{\vee}\frac{1}{\sqrt{T_{\max}-t}}$ (SS)

This condition (SS) is imcompatible with the follounng condition (B):

We have $L=1$ , $\varphi_{n}\equiv 0$ and $|x|\psi^{1}\in L^{2}(\mathbb{R}^{d})$ in Theorem 3. (B)

The proof roughly goes as follows [32]: We assume both of the conditions (SS) and (B). It
follows from Tbeorem 6 with the aid of an argument used in proving Theorem 2 in [34] that

$]a\in \mathbb{R}^{d}$ ; $\lim_{t\uparrow T_{m\cdot x}}|\psi(x,t)|^{2}dx=\Vert\psi_{0}\Vert^{2}\delta_{a}(dx)$

with
$|x|\psi_{0}\in L^{2}(\mathbb{R}^{d})$ .

Hence, by Theorem 1, we have another expression of $\psi$ :

$\psi(x, t)=(T_{\max}-t)^{-d/2}\exp\{-\frac{i|x|^{2}}{2(T_{\max}-t)}\}\Psi(\frac{x}{T_{\max}-t},$ $\frac{t}{T_{\max}(T_{\max}-t)})$ , (14)

for some zero-nergy, zero-momentum, global-in-time solution $\Psi$ up to Galilei transformations
and space translations. Applying renormalization procedure as in Theorem 3 to RHS, we have
another sequence which should have the same asymptotic behavior as $\psi_{n}$ , and we have by the
explicit form of blowup solution above and (SS) that

$\psi^{1}\in C(\mathbb{R};H^{1}(\mathbb{R}^{d}))$ and $|t|\psi^{1}\in L^{1}$ $($ (-00, 1); $H^{1}(\mathbb{R}^{d}))$ .

On the other hand, $\psi$ must obey

$\Im\langle\psi^{1},$ $x\cdot\nabla\psi^{1}\rangle=0$.

These contradicts each other. $*27$

From Theorem 7, it holds that:

$\Vert\nabla\psi(t)\Vert_{\wedge}^{\vee}\frac{1}{\sqrt{T_{\max}-t}}\Rightarrow L\geq 2$ or $\varphi_{n}\not\equiv 0$ or $|x|\psi^{1}\in L^{2}(\mathbb{R}^{d})$ .

27 It is easy from the virial identity with $p=1+ \frac{4}{d}$ .
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This suggests that the blowup profile could be different from a Townes profile as is suggested
in [10]

We could expect the following stronger “theorem” :

“Theorem” 8. Suppose that $\psi_{0}$ gives rise to the blowup solution $\psi$ of (NSC) such that
$\lim_{t\uparrow T_{\max}}\Vert\nabla\psi(t)\Vert=\infty$ . We put:

$\{\begin{array}{l}\int_{0}^{T_{\max}}\Vert\nabla\psi(t)\Vert dt<\infty,\lim_{t\uparrow T_{\max}}\sqrt{T_{\max}-t}\Vert\nabla\psi(t)\Vert=\infty,\lim_{t\uparrow T_{m*x}}(T_{\max}-t)\Vert\nabla\psi(t)\Vert=0.\end{array}$ (A)

This condition (A) is imcompatible with the following:

We have $L=1$ , $\varphi_{n}\equiv 0$ and $|x|\psi^{1}\in L^{2}(\mathbb{R}^{d})$ in Theorem 3. (B)

This conjecture suggets that:

$\Vert\nabla\psi(t)\Vert_{\wedge}\cdot\sqrt{\frac{\ln\ln(T_{\max}-t)^{-1}}{T_{\max}-t}}\Rightarrow L\geqq 2$ or $\varphi_{n}\not\equiv 0$ ;

and roughly speaking

$L=1$ and $\varphi_{n}\equiv 0\Rightarrow\Vert\nabla\psi(t)\Vert_{\sim}>\frac{1}{T_{\max}-t}$ .

These properties might be what we expect according to known results and some numerical
simulations.

Simple but Important Obsevation for “Theorem” 8

The 2nd condition of (A) in “Theorem“ 8 gives us some information of singularities. In
Theorem 3, suppose that

$\lim_{t\uparrow T_{\max}}\sqrt{T_{\max}-t}\Vert\nabla\psi(t)\Vert=\infty$ (15)

and that
$\lim_{narrow\infty}\frac{\sqrt{T_{\max}-a_{n}}||\nabla\psi(a_{n})||}{\sqrt{T_{\max}-b_{n}}||\nabla\psi(b_{n})||}=1$

for any sequence $\{a_{n}\}$ and $\{b_{n}\}$ both converging to $0$ as $narrow\infty$ such that

$\lim_{narrow\infty}\frac{a_{n}}{b_{n}}=1$ .

Then we have that $\psi^{j}(j=1,2, \cdots, L)$ in Theorem 3 are defined on the whole real line $\mathbb{R}$ ,
and they are bounded in $H^{1}(\mathbb{R}^{d})$ for $t\in \mathbb{R}$ , that is:

$\psi^{j}\in C\cap L^{\infty}(-\infty, +\infty;H^{1}(\mathbb{R}^{d}))$ $(j=1,2, \cdots, L)$
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with
$\mathcal{H}(\psi^{j})=0$ , $\Im\langle\dot{\psi},$ $\nabla\dot{\psi})=0$ .

If $|x|\dot{\psi}\in L^{2}(\mathbb{R}^{d})$ further, then we obtain
$\Im\langle\dot{\psi},x\cdot\nabla\dot{\psi}\rangle=0$ ,

so that the Virial identity yields
$\Vert|x||\dot{\psi}(t)\Vert=\Vert|x|\psi^{j}(0)\Vert$ for any $t\in \mathbb{R}$ .

These facts above seem to be strongly suggesting that $\dot{\psi}$ ’s are bound states, which is plausible.

In the next section, we shall see that a weak version of this conjecture holds valid (see

Theorems 10 and 11).

5 Nelson Diffusions and its applications

Let $\psi$ be a solution of (NSC) in $C([0,T_{\max});H^{1}(\mathbb{R}^{d}))$ . We can construct a measure on the

path space $\Gamma\equiv C([0,T_{\max});\mathbb{R}^{d})$ which gives us the same prediction as standard Quantum

Mechanics does. In order to state it precisely, put:

$u(x, t)\equiv\{\begin{array}{ll}\Re\frac{\nabla\psi(x,t)}{\psi(x,t)}, if \psi(x,t)\neq 00, if \psi(x, t)=0,\end{array}$

$v(x, t)\equiv\{\begin{array}{ll}\Im\frac{\nabla\psi(x,t)}{\psi(x,t)}, if \psi(x, t)\neq 00, if \psi(x,t)=0,\end{array}$

and define
$b(x,t)\equiv u(x, t)+v(x,t)$ .

Under this notation, we have:

Theorem 9. Let $u,$ $v$ , and $b$ be defined through the solution $\psi$ of (NSC) on $[0, T_{\max})$ . We

associate $\Gamma\equiv C([0, T_{\max});\mathbb{R}^{d})$ uith its Borel $\sigma$ -algebra $\mathcal{F}$ with respect to the Prechet topology.

Let $(\Gamma, \mathcal{F}, \mathcal{F}_{t}, X_{t})$ be evaluation stochastic process $X_{t}(\gamma)\equiv\gamma(t)$ for $\gamma\in\Gamma$ with natuml filtmtion
$\mathcal{F}_{t}=\sigma(X_{s}, s\leqq t)$ . Then there exists a Borel ‘probability“ measure $P$ on $\Gamma$ such that:

(i) $(\Gamma, \mathcal{F}, \mathcal{F}_{t}, X_{t}, P)$ is a Markov process,
(ii) the image of $P$ under $X_{t}$ has density, that is,

$P[X_{t} \in dx]=\frac{|\psi(x,t)|^{2}dx}{||\psi(0)||^{2}}$ , (16)

(iii) The following process $B_{t}$ is a $(\Gamma, \mathcal{F}_{t}, P)$-Brownian motion:

$B_{t^{;=^{f}}}^{de}X_{t}-X_{0}- \int_{0}^{t}b(X_{\tau},\tau)d\tau$. (17)
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Carlen ([3, 4, 5]) proved this theorem for linear Schr\"odinger equations with appropriate
potentials which give rise to the finite energy solutions“28 satisfying $L^{2}$-norm conservation
law. $*29$ His proof works well for our finite energy solutions of NLS, a fortiori (NSC) (see
[29, 32] $)$ .

The process $(\Gamma, \mathcal{F}, \mathcal{F}_{t}, X_{t}, P)$ constructed in Theorem 9 is a so-called weak solution of Ito-
type stochastic differential equation:

$dx_{t}=b(x_{t}, t)dt+dB_{t}$ ,

that is, a kind of martingale problem (see, e.g. [13]): “Find a measure $P$ on $\Gamma$ which make
the functional $B_{t}$ in (17) a Brownian motion¡‘. $*30$ Nelson [35] (see also [36]) proposed such a
process in his theory of stochastic quantization. $*31$ So, the process is referred to as a “Nelson
diffusion”, which is pragmatically a measure defined on the path space $\Gamma$ associated to each
solution of the Schr\"odinger equation in consideration.

We shall not discuss the problem of the stochastic quantization. The important thing here is
the measure $P$ on $\Gamma$ does exist for each solution, although the notorious “Feynman measure”,
which is in nature universal, does not exist mathematically as a canonical measure on $\Gamma$ (see,
e.g., [16] $)$ .

The first benefit of considering the process is that we have a ”simple” proof of Theorem 6.
Under the assumption of (12), one can show with the aid of Borel-Canteli argument that the
process has the limit: $\lim_{t\uparrow T_{\max}}X_{t}$ a.s. The key fact used here is the following estimate:

$E[ \int_{0}^{t}|b(X_{\tau}, \tau)|d\tau]\leq 2\Vert\psi_{0}\Vert\int_{0}^{t}\Vert\nabla\psi(t)\Vert dt$ (18)

It is well known that the convergence of processes implies that of the distributions: $*32$

ョ $\lim_{t\uparrow\tau_{\max}}P[X_{t}\in dx]\equiv\lim_{t\uparrow T_{\max}}|\psi(x, t)|^{2}dx$ ,

so that $\{|\psi(x, t)|^{2}dx\}_{0\leqq t<T_{\max}}$ is tight and we have (13), since we have the limiting profile
under some sequences. $*33$

The second befit is the following theorem [32], which is a weak version of “Theorem” 8.

$*28$ the solution belongs to $C(\mathbb{R};H^{1}(N^{d}))$

$*29$ Carlen proved this type of theorem for finite energy solutions with weight-condition (that is: solutions
in the form domainof harmonic oscillators) in [3], and subsequently in [4] presented the considerably
detailed outline of the proof for purely finite energy solutions. We can complete his proof in [4] with
some modifications (see [17]),

$*30$ Note that $\{X_{t}\}$ is a family of given evaluation maps.
$*31$ F\’enyes [8] also proposed such a concept of Quantization.
$*32$ For simplicity, we “normalize“ the total probability to be $||\psi_{0}\Vert^{2}$ .
$*33$ See the arguments below Theorem 3.
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Theorem 10. Assume that $\sqrt{|x|}\psi_{0}\not\in L^{2}(\mathbb{R}^{d})$ . Then (12) implies ”nontrivial” $\varphi_{n}$ in Theorem
3: Precisely,

$\int_{0}^{T_{m\cdot x}}\Vert\nabla\psi(t)\Vert dt<$ oo $\Rightarrow\int_{R^{d}}|x|\mu(dx)=\infty$

where $\mu$ is the measure found in (13).

The proof is rather simple by using the stochastic differential equation (17). Without the aid

of stochastic stuff, we have the following analogous theorem [32]:

Theorem 11. Assume that $|x|\psi_{0}\not\in L^{2}(\mathbb{R}^{d})$ . Then we have:

$\{\begin{array}{l}\int_{0}^{T_{mm}}\Vert\nabla\psi(t)\Vert dt<\infty\Rightarrow\int_{R^{d}}|x|^{2}\mu(dx)=\infty\sup_{0<t<T_{m\cdot x}}(T_{\max}-t)\Vert\nabla\psi(t)\Vert<\infty\end{array}$

where $\mu$ is the measure found in (13).

The idea of proving Theorems 2 and 4 works well under the assumptions made on the blowup
rates of Theorem 11. Both in Theorem 10 and Theorem 11, we may be able to remove the
weight-conditions made on initial data. In [20], Merle constructed blowup solutions such that
we have (13) with $L\geq 2$ and $\mu\equiv 0$ . But all those blowup rates are the same as that of
explicit blowup solutions. These solution also suggest that the existence of nontrivial $\mu$ is
closely related to the blowup rate.

The third benefit will be that we could reveal the hidden mechanism of the loglog law of
the blowup rate for (NSC). Even though the weak solution of (17), once we have a Brownian
motion, the Brownian motion $B_{t}$ satisfies the law of iterated logarithm (LIL) (see, e.g., [12,
13, 19] $)$ :

$\lim_{s\downarrow}\sup_{0}\frac{1}{\sqrt{s\ln\ln\frac{1}{s}}}|B_{T_{m*x}}-B_{T_{m*x}-s}|<\infty$
.

From this, we have:

$\lim_{t\uparrow T_{m}}\sup_{x}\sqrt{}\frac{T_{\max}-t}{\ln\ln(T_{\max}-t)^{-1}}|\frac{B_{T_{m*x}}-B_{t}}{T_{\max}-t}|$

$= \lim_{t\uparrow T_{m}}\sup_{R}\frac{1}{\sqrt{(T_{\max}-t)\ln\ln(T_{\max}-t)^{-1}}}|B_{T_{m*x}}-B_{t}|<\infty$ , $a.s.$ ,

This property could be a hidden mechanism of the loglog law. We might expect the following
“Theorem“ 12, considering a disguise of (17) $:^{*34}$

$\frac{B_{T_{\max}}-B_{t}}{T_{\max}-t}=\frac{x_{\tau_{\max}-X_{t}}}{T_{\max}-t}-\frac{1}{T_{\max}-t}\int^{T_{m*x}}b(X_{\tau}, \tau)d\tau$ .

$*34$ If a blowup sollution $\psi$ belongs to $C([0, T_{\max});H^{1}(\mathbb{R}^{d})\cap L^{2}(|x|^{2}dx))$ , then it can be expressed by
the formula (14) with some $\Psi\in C([0, \infty);H^{1}(\mathbb{R}^{d})\cap L^{2}(|x|^{2}dx))$ such that $\mathcal{H}(\Psi)\geq 0$. Computing the
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“Theorem” 12. Let $\psi$ be a blowup solution of (NSC) such that $\lim_{t\uparrow T_{\max}}\Vert\nabla\psi(t)\Vert=\infty$ . Suppose
that

$\{\begin{array}{l}\int_{0}^{T_{\max}}\Vert\nabla\psi(t)\Vert dt<\infty,\lim_{t\uparrow T_{m*x}}\sqrt{T_{\max}-t}\Vert\nabla\psi(t)\Vert=\infty,\lim_{t\uparrow T_{m*x}}(T_{\max}-t)\Vert\nabla\psi(t)\Vert=0.\end{array}$ (A)

Then we have:

$\lim_{t\uparrow T_{\max}}\sup\sqrt{\frac{T_{\max}-t}{\ln\ln(T_{\max}-t)^{-1}}}(\frac{1}{T_{\max}-t}l^{T_{m*x}}\Vert\nabla\psi(\tau)\Vert d\tau)\vee\wedge 1$ . (19)

We may call the assertion (19) the weak-loglog law. In order to prove this conjecture, we
need to know the sample path trajectories of the Nelson diffusions. For simplicity, we assume
that the origin is one of the $L^{2}$ concentration point, that is, $a^{1}\equiv 0$ in (13). Hence, considering
a subset $\Gamma_{0}$ of $\Gamma$ defined by

$\Gamma_{0}:=\{\gamma\in\Gamma|\gamma(t)arrow 0 as t\uparrow T_{\max}\}$ ,

we have $P(\Gamma_{0})=A_{1}>0^{*35}$

Now we introduce:

$\Gamma_{1}(R):=\bigcup_{\eta>0}\bigcap_{\eta<t<T_{\max}}\{\gamma\in\Gamma||\gamma(t)|\leqq R\frac{1}{\Vert\nabla\psi(t)\Vert}\}$

and

$\Gamma_{2}(R):=\bigcup_{\eta>0}\bigcap_{\eta<t<T_{m*x}}\{\gamma\in\Gamma||\gamma(t)|\leqq R\int^{T_{\max}}\Vert\nabla\psi(\tau)\Vert d\tau\}$ .

If one can prove, under the condition (A) in “Theorem” 12,

$P(\Gamma_{1})>0$ or $P(\Gamma_{2})>0$ ,

then the lower estimate, i.e., $”\sim>$ “-part in (19) could be proved. The upper estimate of
$”\sim<$ “-part could be proved, if one can show that $P(\Gamma_{3})>0$ under the condition (A), where

$\Gamma_{3}:=\Gamma_{0}\cap G\{$ $\bigcup_{R>0}\bigcup_{\eta>0}\bigcap_{\eta<t<T_{\max}}\{\gamma\in\Gamma||\gamma(t)|\leqq R\int^{T_{\max}}\Vert\nabla\psi(\tau)\Vert d\tau\}\}$ .

drift $b$ from this expression, we have an unpleasant term: $\frac{-x}{T_{\max}-t}$ coming from accompanying function
$e^{-\frac{|x|^{2}}{2(T_{\max}-t)}}$ . If $\mu\not\equiv 0$ , this term causes a contradiction under the assumption of (12) (see Thereom
6 and (18) $)$ , so that such a term should be canceled out with another term coming from $\Psi$ . Thus the
leading term might be

$\int^{T_{\max}}\Vert\nabla\psi(t)||(\frac{\nabla\psi^{1}}{\psi^{1}})(\frac{X_{\tau}}{\Vert\nabla\psi(\tau)||},$ $\tau)d\tau$ .

$*35$ We are using the “normalization“ of $P(\Gamma)=\Vert\psi 0\Vert^{2}$ .
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Here, $C$ denotes the operation of taking the complement of the set appearing to just right of

the symbol. The paths in $\Gamma_{3}$ curve “wildly”, reaching $0\in \mathbb{R}^{d}$ finally at $T_{\max}$ .
However, we have not succeeded in proving these subsets $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ of $\Gamma_{0}$ having positive

probabilities. $*36$ At the present, we have [32]:

Theorem 13. We assume (12) and (15) for a blowup solution $\psi$ of (NSC). Then, we have:

$\lim_{t\uparrow T_{m}}\inf_{x}\frac{\sup_{T<t<T_{mm}}|X_{t}-X_{T_{m\cdot x}}|}{\int_{T}^{T_{mm}}||\nabla\psi(\tau)\Vert d\tau}<\infty$
, $a.s.$ ,

and, for any $\epsilon>0$ ,

$\lim_{t\uparrow T_{mm}}\frac{\sup_{T<t<T_{m\propto}}|X_{t}-X_{T_{m\propto}}|}{(\int_{T}^{T_{marrow}}\Vert\nabla\psi(\tau)\Vert d\tau)^{1-\epsilon}}=0$

, $a.s$ .

The first assertion is considerably easy by Fatou’s lemma, while the second needs the Borel-

Canteli lemma.
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