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Uniform stability and attractivity for linear systems
with periodic coefficients

}2iIRER (Jitsuro Sugie)

Department of Mathematics and Computer Science, Shimane University

1 Introduction

In this paper, we consider the linear system

L _[—r(®)  p(t)
x' = A(t)x = (_ o) — q(t)) X, (1)

where the prime denotes d/dt; the coefficients p(t), ¢(t) and r(t) are continuous for ¢ > 0, and
p(t) is a periodic function with period w > 0. System (1) has the zero solution x(t) = 0 € R2.
We say that the zero solution of (1) is attractive if every solution x(t) of (1) tends to O as time
t increases.

If q(t) and r(t) are also periodic functions with period w, Floquet’s theorem is available. Let
®(t) be the fundamental matrix of (1) with ®(0) = E, the 2 x 2 identity matrix. Then ®(w) is
called the monodromy matrix of (1). Let u; and u, be the eigenvalues of the monodromy matrix
®(w). The eigenvalues p; and u, are often called the Floquet multipliers of (1). By Abel’s
formula,

det (w) = det &(0) exp (—/ (g(s) + r(s))ds) = exp (—/ (q(s) + r(s))ds).
0 0
Thus, the Floquet multipliers y; and p, are the roots of the equation
p? — tr®(w)u + exp (—/ (q(s) + r(s))ds) =0.
0

It is well-known that the zero solution of (1) is attractive if and only if the Floquet multipliers
;1 and s, have magnitudes strictly less than 1. Hence, in the case where p(t), g(t) and r(t) are
periodic, necessary and sufficient conditions for the zero solution of (1) to be attractive are that

|trd(w)| < 1+ exp (—/Ow(q(s) + r(s))ds)

exp (— /O “(a(s) + r(s))ds) <1

For example, we can find Floquet’s theorem in the books [2, 3, 5, 8, 16].
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Although the above conditions are necessary and sufficient for the zero solution of (1) to
be attractive, it is difficult to estimate the absolute value of the trace of ®(w), because it is
impossible to find a fundamental matrix of (1) in general. Of course, Floquet’s theorem is
useless when g(t) or 7(t) is not periodic. Then, without knowledge of a fundamental matrix of
(1), can we decide whether the zero solution is attractive? What kind of condition on A(t) will
guarantee the attractivity of the zero solution of (1)?

2 The main theorem

To give an answer to the above question, we prepare some notations. Let

R() = [ r(e)ds and 9(t) = 2a(t) - r(9)
for t > 0 and denote a positive part and a negative part of 1(t) by
$+(t) = max{0,%(¢)} and _(t) = max{0, —y(t)},

respectively. Note that 1(t) = .. (t) — ¥_(t) and |9(t)| = ¥, (t) + ¥_(¢t).
We introduce an important concept here. A nonnegative function ¢(t) is said to be weakly
integrally positive if

/ B(2)dt = oo

I

for every set I = U[Tn, on) such that 7, + § < 0, < Tpy1 < 0, + A for some § > 0 and
n=1

A > 0. For example, 1/(1 + t) and sin® ¢/(1 + t) are weakly integrally positive functions (see

[6,7,13-15]).
Our main result is stated as follows:

Theorem 1. Suppose that q(t) and R(t) are bounded for t > 0. Suppose also that

(i) ¥4+(t) is weakly integrally positive;

(i1) / Y_(t)dt < oo.
0
. Then the zero solution of (1) is attractive.
To prove Theorem 1, we need some lemmas. We present the lemmas without the proofs.

Lemma 2. Suppose that assumption (ii) in Theorem 1 holds. Let v(t) be nonnegative and
continuously differentiable on [ty, 00) for some ty > 0. If

S(t) S Y- (O(t) for t>to, @
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then V' (t) is absolutely integrable, and therefore v(t) has a nonnegative limiting value.

Lemma 3. Suppose that R(t) is bounded fort > 0. If assumption (ii) in Theorem 1 holds, then
all solutions of (1) are uniformly stable and uniformly bounded.

Recall that p(t) is a periodic function with period w > 0. Let

5= t d p= min p(t).
P tgmp( ) and p tg[lg,g]p()

Taking § > p into account, we see that if 5+ p > 0, thenp > 0; if p+p < 0, then p < 0. Since
p(t) is continuous for ¢ > 0, we see that p(t) has the following property (we omit the proof).

Lemma 4. Let m be any integer. If p+ P > 0, then there exist numbers a and bwith0 < a <
b < w such that

p(t)Z%ﬁ>0 Jor mw+a<t<mw+b.

If p+ P < 0, then there exist numbers a and b with0 < a < b < w such that

1
p(t)§§1_3<0 for mrw+a<t<mw+bd.

3 Proof of the main theorem
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let x(¢; £, Xo) be a solution of (1) passing through (o, x¢) € [0, 00) x RZ.
It follows from Lemma 3 that for any @ > 0, there exists a 3(a) > 0 such that ¢, > 0 and
|I%o]| < « imply that

Ix(t; to, %0)|} < B for t > to. 3)

For the sake of brevity, we write (z(t), y(t)) = x(t; to, Xo) and

v(t) = V(¢ z(t), y(t)).

Then, we have
(t) = 5670 (1) + (1)) @
and
V' (t) = —(g(t) — 7())e*RIP(t) < ¥_(t)u(2) Q)

for ¢t > to. Hence, from Lemma 2, we see that »(t) has a limiting value vy > 0. If vo = 0, then
by (4) the solution (z(t),y(t)) tends to 0 as t — oo. This completes the proof. Thus, we need
consider only the case in which vy > 0. We will show that this case does not occur. '

Because of (3), we see that |y(t)| is bounded for t > t,. Hence, |y(¢)| has an inferior limit
and a superior limit. First, we will show that the inferior limit of |y(t)| is zero, and we will then
show that the superior limit of |y(t)] is also zero.
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Suppose that liminf,_, [y(¢)] > 0. Then, there exista v > 0 and a T} > t, such that
ly(t)| > ~ for t > T. It follows from (5) and Lemma 2 that

o0 1 o0
’ ds = = 2R(s),,2 d
0> [ (e)lds = ; / ()| 2Ry2(5)ds

> —1-72 Vi (s)e?F)ds > -1-’)’26—21' Y. (s)ds,
2 Jn 2 T
where L is the number given in the proof of Lemma 3. This contradicts assumption (i). Thus,
we see that liminf, . |y(¢)| = 0.
Suppose that lim sup,_,, |y(t)| > 0. Let v = limsup,_,, |y(t)|. Since g(t) is bounded, we
can find a g > 0 such that
‘ lg(t)] <g for t > 0. (6)

Since v(t) tends to a positive value vy as t — oo, there exists a T > ¢, such that

1
0< —2—'00 <v(t) < E;—vo for t > Ts. @)

Let £ be so small that

0 in{ 1 Pre”hv, g e ®)
DR TSR R TRy (o) o T Ry o e
where a and b are the numbers given in Lemma 4. Then, since lim inf;_,o, |y(t)] = 0, we can

select two intervals [7,,, 0,,] and [t,, s,] with [t,, s,] C [Tn, 04}, T < T and 7, — coasn — 00
such that [y(7,)| = |y(0.)| = €, ly(ta)| = v/2, Jy(s,)| = 3v/4 and

lyt)| > e for 7, <t < o, 9)
ly(t)l <e for o, <t < Toy, (10)
%V < |y(®)| < gu for t, <t < sn. (11)

By (4), (7) and (10), we have

|z(t)| = \/26“2R(t)v(t) —y2(t) > Ve Hyy — g2 (12)

foro, <t < 7141.
Claim. The sequences {7,} and {o,} satisfy 7,,;; — 0, < 2w for any integer n.

Suppose that there exists an ng € N such that 7,,, 11 — 0,, > 2w. We can choose anm € N
such that (m — 1)w < ¢,, < mw. Hence, we have

Tro+1 > Ong + 2w > (M — Nw + 2w = (m + 1)w,

and therefore [mw, (m + 1)w] C [0Ong, Tne+1]- There are two cases to consider: (a) p + p=>0
and (b) p + p < 0. In case (a), by Lemma 4, p(t) > p/2 > O for ¢t € [a + mw, b+ mw] C
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[mw, (m + 1)w]. Hence, using the second equation in system (1) with (6), (10) and (12), we
have

Y02 pOlle®)] ~ laOlly(e)] > 55w — €2 — e 13)

for a + mw < t < b+ mw. It follows from (8) that

(14)

e=2Lyy — 2 —

From (10) and (13), we can estimate that

b+muw
2 > y(b+ mw)| + ly(a + mw)| > / o/ (5)ds
a+mw
b4+-mw 1
= / |v/(s)|ds > (b - a) (51_’ e~2Lyy — g2 — qs)
a+mw

This contradicts (14). In case (b), by Lemma 4, p(t) < p/2 < 0 fort € [a + mw, b+ mw] C
[mw, (m + 1)w]. Hence, combining this with (6), (10) and (12), we obtain

1
'@ 2 [p@)llz(®)] - la@lly@E)] 2 —5pve > v - - e (15)
for a + mw < t < b+ mw. It follows from (8) that

(16)

From (10) and (15), we can estimate that

b+mw

2e 2 |y(b+ mw)| + |y(a + mw)| 2 y'(s)ds
a+mw
b4+mw 1
= / |¥'(s)lds > (b— a) (_52 e 2Ly — 2 — qe)
a+mw

This contradicts (16). Thus, the claim is proved.
Let] = U [Tn, o). Then, by means of Lemma 2 with (5) and (9), we get

n=1

wo> [ Wis)lds = 5 / “l(s)|?ROy2 (s)ds
to o

> Lo [y (s)P(s)ds > 2ere?t . (s)as.
to

LS
l\.')

Hence, it follows from assumption (i) and the claim that lim inf, (0, — 7,) = 0. Since
[tn, Sn) C [Tn, 0x), it follows that

lim inf(s, — t,) = 0. (17)

n—oo
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By (4), (7) and (11), we have

)
lz(t)| = \/23‘2R(t)v(t) —y%(t) < 4/3eyy - T

for t, <t < sn. Let K = max{|p, |p|}. Then, from (6) and (11), we see that

YO < POl + la@llu(e)] < Ky f3e2v0 ~ 7+ 20

fort, <t < sp. Letting N = K/3e2Lvy — v2/4 + 3Gv/4 and integrating this inequality from
t, to s,, we obtain

3 = ()] = [5(t)] < [y(s0) - y(ta)
/t "V (s)ds| < /t "Iy (5)lds < N(sn — ta).

This contradicts (17). We therefore conclude that lim sup,_, ., |y(t)| = v = 0.
In summary, y(t) tends to zero as t — oo. Hence, there exists a T3 > T} such that

ly(t)| < e for t > Ts. (18)

Let I be an integer satisfying lw > T3. Using (18) instead of (10) and following the same
process as in the proof of the claim, we see that if 5 + p 2> 0, then

b+lw
/ y'(s)ds

+lw

2e > |y(b+ lw)| + ly(a + lw)| >

b+lw 1
= [ W@ > 0= o) (Ve =2 -3¢ ) > 22

+lw

which is a contradiction; if p + p <0, then

) ' b+lw
% > [y(b+ lw)| + y(a + lw)] > / y(s)ds
at+lw
b+lw 1
= / 1/ (s)|ds > (b — a) (——2-2 e 2lyy — €2 — E&) > 2e,
a+lw

which is again a contradiction. Thus, the case of vy > 0 cannot happen.
The proof of Theorem 1 is thus complete. a

4 Examples

We illustrate our main result with simple examples in which p(t), g(t) and r(t) are periodic. It is
well-known that if the zero solution of a linear periodic system is attractive, then it is uniformly
asymptotically stable (for example, see [5, 18]).
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Example 1. Let A > 0. Consider system (1) with

0. (19

p(t) =cost, q(t) = and 7(¢)

2 —sint

Then the zero solution is attractive.

Since A\/3 < ¢(t) < X and R(t) = 0, it is clear that g(¢t) and R(t) are bounded for ¢ > 0.
Also, assumptions (i) and (ii) are satisfied. In fact, we have

2)
B(O) = 20a(0) - 7(t) = 5,
and therefore
) = — b_(t) =0
¥ ( 2 —sint B

for t > 0. Hence, v, (t) is weakly integrally positive and

/0 (D)t =o.

Thus, by means of Theorem 1, we conclude that the zero solution is attractive.

Figure 1(a) shows a positive orbit of (1) with (19) and A = 0.1. The starting point x, is
(—1,0) and the initial time ¢, is 0. The positive orbit moves around the origin 0 in a clockwise
and a counter-clockwise direction alternately, because p(t) changes its sign. The positive orbit
approaches the origin O as it goes up and down.

(a) (b)
Figure 1: (a) A positive orbit of (1) with (20); (b) a positive orbit of (1) with (21)

Example 2. Let A > 1. Consider system (1) with
p(t) = cosMt, gq(t) =cos’t+sint and r(t) =sint. - (20)

Then the zero solution is attractive.
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It is easy to check that ¢(¢) and R(t) are bounded for ¢ > 0 and that assumptions (i) and (ii)
are satisfied. We omit the details. :

In Figure 1(b), we show a positive orbit of (1) with (20) and A = 4. The positive orbit starts
from the point (—1, 0) at the initial time 0. The positive orbit goes to the right and then goes to
the left, and it repeats such a movement regularly. Although the positive orbit displays intricate
behavior, it approaches the origin 0 ultimately.

In Examples 1 and 2, all coefficients of (1) are periodic functions with period 27. However,
we cannot find the monodromy matrix ®(27). It is particularly hard to estimate the absolute
value of the trace of ®(27). For this reason, we cannot apply Floquet’s theorem to Examples 1
and 2 directly. Theorem 1 has the advantage of being applicable to cases where the monodromy
matrix of (1) cannot be found and cases where ¢(t) or () is not periodic.

Fortunately, in Examples 1 and 2 the Floquet multipliers 4; and yu; can be calculated by a
numerical scheme. As shown in Tables 1 and 2, || < 1 and |u3| < 1. Hence, we see that the
zero solution of (1) is attractive.

A 13 K2
1 0.3351718550789 0.0793024028529
0.1 0.8888872982404 0.7827240687567
0.01 0.9882826823640 0.9758079535053
0.001 0.9988220356864 0.9975540561378

Table 1: Floquet multipliers of (1) with (20)

A M B2
1 0.5569470757759 0.0775907086028
10 0.9845517600942 0.0438919719768
100 0.9998429464892 0.0432207062297
1000 0.9999986933319 0.0432139974342

Table 2: Floquet multipliers of (1) with (21)

Remark. The zero solution of system (1) with (19) is attractive if and only if A > 0. In fact, if

A <0, then

ol [

a(s) +r(s))ds) — exp (- /0 w2—_)é§1—§ds) > 1.

Hence, as mentioned in Section 1, the zero solution is not attractive in this case.
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