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1 Introduction
In this paper, we present recent results obtained by a joint work with Dr. Kotaro

Morimoto (see [4] for the details) with a brief outline of the strategy of the proof.
We consider a stationary problem to the following chemotaxis model:

$P_{t}=D\nabla\cdot(\nabla P-P\nabla\phi(W)),$ $(x, t)\in\Omega\cross(0, T)$

$W_{t}=\epsilon^{2}\Delta W+F(P, W),$ $(x, t)\in\Omega\cross(0, T)$ ,

$\frac{\partial P}{\partial\nu}=\frac{\partial W}{\partial\nu}=0,$ $(x, t)\in\partial\Omega\cross(0, T)$ ,

where $\Omega\subset R^{N}$ is a bounded smooth domain, and $D,$ $\epsilon^{2}>0$ are positive constants.
Here, $P(x, t)$ is a population density and $W(x, t)$ is a density of certain chemicals,
$\phi(W)$ is a sensitivity function, and $F(P, W)$ is a certain kinetic reaction term.

Formally, from the first equation it follows from the boundary condition that

$\frac{d}{dt}(\int_{\Omega}P(x, t)dx)$ $=$ $\int_{\Omega}\frac{\partial P}{\partial t}dx=D\int_{\Omega}\nabla\cdot(\nabla P-P\nabla\phi(W))dx$

$=$ $D \int_{\partial\Omega}\nu\cdot(\nabla P-P\nabla\phi(W))dS=0$

holds. Thus we have
$\int_{\Omega}P(x, t)dx=\lambda$ (constant). (1)

As the stationary problem to this model, we have

$0=D\nabla\cdot(\nabla P-P\nabla\phi(W))=D\nabla\cdot(P\nabla(\log P-\phi(W))),$ $x\in\Omega$ ,

$0=\epsilon^{2}\Delta W+F(P, W),$ $x\in\Omega$ ,

$\frac{\partial P}{\partial\nu}=\frac{\partial W}{\partial\nu}=0,$ $x\in\partial\Omega$ .
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Then multiplying $\log P-\phi(W)$ and integration by parts, we have

$\int_{\Omega}P|\nabla(\log P-\phi(W))|^{2}dx=\int_{\partial\Omega}(\frac{\partial P}{\partial\nu}-P\phi^{l}(W)\frac{\partial W}{\partial\nu})dS=0$.

Hence, $\log P-\phi(W)=C$ (constant). From the $L^{1}$ conservation law (1), we may
assume $\int_{\Omega}P(x)dx=1$ . So, We obtain

$P(x)= \frac{e^{\phi(W)}}{\int_{\Omega}e^{\phi(W)}dx}$ .

Now we choose $\phi(W)=p\log W$ for some $p>0$ , although other functions $\phi(W)$ sat-
$is\theta ing\phi^{f}(W)>0$ can be chosen, e.g. $\phi(W)=aW,$ $\phi(W)=\frac{aW}{1+W}$ , etc. Then, we
have

$P(x)= \frac{W^{p}}{\int_{\Omega}W^{p}dx}$ .

Therefore, we obtain the following problem for $W$ :

$0= \epsilon^{2}\Delta W+F(\frac{W^{p}}{\int_{\Omega}W^{p}dx}, W),$ $x\in\Omega$ , $\frac{\partial W}{\partial\nu}=0,$ $x\in\partial\Omega$ . (2)

As a kinetic reaction term $F(P, W)$ , there are several models choosing the linear growth:
$F(P, W)=P-\mu W$ with $\mu>0$ (see e.g. [5]), or choosing the exponential growth
model:$F(P, W)=(P-\mu)W$ : (see Levin-Sleeman([6])), or the saturation growth model:

$F(P, W)= \frac{PW}{1+\nu W)}-\mu W+\gamma\frac{P}{1+P}$

with $\nu,$ $\gamma>0$ (see Othmer-Stevens([8])).
In this paper, we consider two cases which have a sturation effect:

$F_{1}(P, W)=-W+ \frac{PW^{q}}{\alpha+\gamma W^{q}},$ $\alpha,$ $\gamma,$ $q>0$ ;

$F_{2}(P, W)=-W+ \frac{P}{1+kP},$ $k>0$ .

For $F(P, W)=F_{1}(P, W)$ $(or F(P, W)=F_{2}(P, W))$ , the problem (2) become as follows:

$0= \epsilon^{2}\triangle W-W+\frac{1}{\int_{\Omega}W^{p}dx}(\frac{W^{p+q}}{\alpha+\gamma W^{q}}),$ $x\in\Omega$ , (3)

$0= \epsilon^{2}\triangle W-W+\frac{1}{\int_{\Omega}W^{p}dx}(\frac{W^{p}}{1+k\frac{Wp}{\int_{\Omega}Wpdx}}),$
$x\in\Omega$ , (4)

under the Neumann boundary condition $\frac{\partial W}{\partial\nu}=0,$ $x\in\partial\Omega$ . We are concerned with the
point condensation phenomena for these system and studied the existence of multiple
spike stationary solutions to (3) or (4) on an axially symmetric smooth domain $\Omega$ under
certain weak saturation conditions on the parameters $\alpha,$ $\gamma$ and $k$ (see the next section
for the precise assumptions).

For other interesting phenomena (including finite-time blow-up phenomena) on these
system, see [8], [6],[9] and the references therein.
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2 Main Results
We assume that $\Omega$ is $x_{N}$-axially symmetric when $N\geq 2$ and the parameters $p,$ $q,$ $k,$ $\alpha$

and $\gamma$ satsify the following assumptions:
Assumptions:

(A.0): When $N\geq 2,$ $\Omega$ is symmetric w.r. $t$ . $x_{N}$-axis, i.e. if $x=(x’, x_{N})\in\Omega$ , then
$(x”, x_{N})\in\Omega$ for any $x=(x”, x_{N})$ with $|x’|=|x’’|$ . Moreover, $1<p<+\infty$ for $N=1,2$
and $1<p< \frac{N+2}{N-2}$ for $N\geq 3$ .
(A.1): $q>0,$ $\alpha=\alpha(\epsilon),$ $\gamma=\gamma(\epsilon)>0$ and there exists $\alpha_{0}\in[0, +\infty)$ s.t.

$\lim_{\epsilonarrow 0}\epsilon^{N}(\alpha\gamma^{q-1})^{\frac{1}{q}}=\alpha_{0}$ .

(B.1): $k=k(\epsilon)>0$ and there exists $k_{0}\in[0, +\infty)$ s.t.

$\lim_{\epsilonarrow 0}\epsilon^{-N}k=k_{0}$ .

We say the model has a weak saturation effect if the parameters $\alpha,$ $\gamma$ or $k$ satisfy the
condition (A.1) or (B.1) by the analogy to the condition given to the Gierer-Meinhardt
system (see [10] and [3]). Although up to now this definition rather comes from the
technical point of view to obtain spiky stationary solutions, when these conditions does
not hold (we call the model with strong saturation), other type stationary solution
may occur, for example solutions with stripe patterns or solutions with inner transition
layers.

2.1 main result for $F_{1}(P, W)=-W+ \frac{PW^{q}}{\alpha+\gamma W^{q}}$

Let $F(P, W)=F_{1}(P, W)$ and assume (A.0), (A.1). Let $P_{1},$ $P_{2},$ $\cdots,$ $P_{2n}$ be the inter-
section points of $\partial\Omega$ and the $x_{N}$-axis. We choose $m$ points $Q_{k}=P_{j_{k}}(k=1,2, \cdots, m)$

from $\{P_{j}\}_{j=1}^{2n}$ arbitrarily.

Theorem 1 Then there exists $\alpha_{1}\in(0, +\infty]s.t$ . if $0\leq\alpha_{0}<\alpha_{1}$ , then for sufficiently
small $\epsilon>0$ there exists a stationary solution $(P_{\epsilon}, W_{\epsilon})$ to the chemotaxis model satisfying
$P_{\epsilon}= \frac{u_{\epsilon}^{p}}{\int_{\Omega}u_{\epsilon}^{p}dx},$

$W_{\epsilon}= \frac{u_{\epsilon}}{\gamma\int_{\Omega}u_{\epsilon}^{p}dx}$ . Here, $u_{\epsilon}$ is a solution to

$\epsilon^{2}\triangle u-u+\frac{u^{p+q}}{\alpha\gamma^{q-1}(\int_{\Omega}u^{p}dx)^{q}+u^{q}}=0,$ $x\in\Omega$ ,

$\frac{\partial u}{\partial\nu}=0(x\in\partial\Omega)$ ,

satisfying the following asymptotic profile:

$u(x)>0(x\in\Omega)$

(1) $u_{\epsilon}(x) \sim w_{\delta}.(\frac{x-Q_{j}}{\epsilon}),$ $x\sim Q_{j}$ ;
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(2) $\int_{\Omega}u_{\epsilon}^{p}dx=\frac{m\epsilon^{N}}{2}\int_{R^{N}}w_{\delta}^{p}$. $dx+o(\epsilon^{N})$ ;

(3) $u_{\epsilon}(x) \leq C\exp(-\frac{Cd(x,Q)}{\epsilon}),$ $x\in\Omega,$ $Q=\{Q_{1}, \cdots, Q_{m}\}$ .

Remark 1 $w_{\delta}(\delta\geq 0)$ is a unique positive solution to

$\Delta w-w+\frac{w^{p+q}}{\delta+w^{q}}=0,$ $x\in R^{N}$ ,

$w(0)= \max w$ , $w(x)arrow 0(|x|arrow+\infty)$ .

Moreover, $\delta_{*}$ is detemined for $\alpha_{0}$ as follows:

$\frac{\delta^{1/q}}{\frac{m}{2}\int_{R^{N}}w_{\delta_{*}}^{p}dx}*=\alpha_{0}$ .

Remark 2 Furthermore, under the assumption $p+q<+\infty(N=1,2),$ $p+q<$
$\frac{N+2}{N-2}(N\geq 3)$ , we have an information for $\alpha_{1}\in(0, +\infty]$ as follows: for $q=1,$ $\alpha_{1}\geq$

$( \frac{m}{2}\int_{R^{N}}v_{0}^{p}dx)^{-1}$ ; for $q>1,$ $\alpha_{1}=+\infty$; for $0<q<1,0<\alpha_{1}<+\infty$ . Here, $v_{0}$ is a
unique positive solution to

$\Delta v-v+v^{p+q}=0,$ $x\in R^{N}$ , $v( O)=\max v,$ $v(x)arrow 0(|x|arrow+\infty)$ .

2.2 main result for $F_{2}(P, W)=-W+ \frac{P}{1+kP}$

Let $F(P, W)=F_{2}(P, W)$ and assume (A.0), (B.1). Choose arbitrary $m$ points $Q_{j}(j=$

$1,2,$ $\cdots,$ $m)$ as before.

Theorem 2 Then for sufficiently small $\epsilon>0$ there exists a stationary solution $(P_{\epsilon}, W_{\epsilon})$

to the chemotaxis model satisfying $P_{\epsilon}= \frac{u_{\ell}^{p}}{J_{\Omega}u_{\epsilon}^{p}dx},$
$W_{\epsilon}= \frac{u_{e}}{\int_{\Omega}u_{e}^{p}dx}$

. Here, $u_{\epsilon}$ is a solution to

$\epsilon^{2}\triangle u-u+\frac{u^{p}}{1+k(\int_{\Omega}u^{p}dx)^{-1}vP}=0,$ $x\in\Omega$ ,

$\frac{\partial u}{\partial\nu}=0(x\in\partial\Omega)$ ,

satisfying the following asymptotic profile:

$u(x)>0(x\in\Omega)$

(1) $u_{\epsilon}(x) \sim w_{\delta.*}(\frac{x-Q_{j}}{\epsilon}),$ $x\sim Q_{j}$ ;

(2) $\int_{\Omega}u_{\epsilon}^{p}dx=\frac{m\epsilon^{N}}{2}\int_{R^{N}}w_{\delta}^{p}..dx+o(\epsilon^{N})$ ;

(3) $u_{\epsilon}(x) \leq C\exp(-\frac{Cd(x,Q)}{\epsilon}),$ $x\in\Omega,$ $Q=\{Q_{1}, \cdots, Q_{m}\}$ .
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Remark 3 There exists a constant $\delta^{*}$ such that for $\delta\in[0, \delta^{*})w_{\delta}$ is a unique positive
solution to

$\Delta w-w+\frac{w^{p}}{1+\delta w^{p}}=0,$ $x\in R^{N}$ ,

$w( O)=\max w$ , $w(x)arrow 0(|x|arrow+\infty)$ .
Moreover, $\delta_{**}$ is determined for $k_{0}$ as follows:

$\delta_{**}\int_{R^{N}}w_{\delta}^{p}..dx=k_{0}$ .

3 Related works
When $k=0$, or $\alpha=0$ , or $\gamma=0$ , then the problem is decoupled and is reduced to

the study of the equation $\Delta u-u+u^{p}=0$ (e.g. Lin-Ni-Takagi $([5]),$ Ni-Takagi([7])).
Sleeman,Ward, Wei([9]) studied the case $F(P, W)=F_{1}(P, W)$ with $q=1$ and the fixed
$\alpha=1$ , i.e. $\alpha_{0}=0$ . They showed existence of one spike solution which concentrates
at the nondegenerate local maximum point of the mean curvature function on $\partial\Omega$ and
studied its stability. Although our results are restricted for the domains with axial
symmetry, our results do note need nondegeneracy of the mean curvature function, e.g.
a ball or an annulus are allowed as $\Omega$ .
Similar problem for the Gierer-Meinhardt (shadow) system have been studied by Wei-
Winter([10]), Kurata-Morimoto([3]).

4 Uniqueness and nondegeneracy of solutions to the
limiting problem

To construct multi-spike stationary solutions in main theorems, we need good ap-
proximated solutions. To construct such approximated solutions, the analysis of the
corresponding limiting problems is very important.

There are many studies on the uniqueness and nondegeneracy of solutions to the
following problem:

$\Delta w+g(w)=0,$ $w>0$ in $R^{N}$ , $w( O)=\max wR^{N}$ ’
$w(z)arrow 0$ as $|z|arrow\infty$ . (5)

We present useful well-known conditions to assure the uniqueness and the nondegener-
acy. We always assume $g\in C^{1}([0, \infty))$ , and we define

$G(v):= \frac{vg’(v)}{g(v)}$ .

Definition 1 We say $g$ is Type $A$ if $g$ satisfies the following conditions:
$(gl)g(O)=0_{f}g^{f}(0)<0_{f}$ and there exists $a>0$ such that $g(a)=0,$ $g(v)<0$ for
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$v\in(O, a)$ , and $g’(a)>0$ .
$(g2)$ There exists $\theta>a$ such that $\int_{0}^{\theta}g(t)dt=0$ and $g(v)>0$ for $v\in(a, \theta)$ .
$(g3A)g(v)>0$ for $v>a$ .
$(g4A)$ The function $G(v)$ is nonincreasing in $[\theta, \infty)$ and converges to a finite limit $L\geq 1$

as $varrow\infty$ . $G(v)\geq G(\theta)$ for $v\in(a, \theta]$ . $G(v)\leq L$ for $v\in(O, a)$ .
$(g5A)$ It holds that $\lim_{varrow\infty}g(v)/v^{l}=0$ for some $l\in[0, \infty)$ in case $N=1,2,$ $l \in[0, \frac{N+2}{N-2})$

in case $N\geq 3$ .
Definition 2 We say $g$ is $\tau ypeB$ if $g(v)$ satisfies the following conditions in addition
to $(gl)$ and $(g2)$ :
$(g3B)$ There exists $b>\theta$ such that $g(b)=0,$ $g(v)>0$ for $v\in(a, b),$ $g(v)<0$ for $v>b$ .
$(g4B)$ Let $\rho\in[a, b)$ be the smallest number such that $(v-\rho)g’(v)\leq g(v)$ for $v\in(\rho, b)$ ,
then either (i) or (ii) holds:
(i) $\theta\geq\rho$,
(ii) $\theta<\rho$ and that $G(v)$ is nonincreasing in $(\theta, \rho),$ $G(v)\geq G(\theta)$ for $v\in(a, \theta),$ $G(v)\leq$

$G(\rho)$ for $v\in(0, a)\cup(\rho, b)$ .

Proposition 1 If $g$ is $\tau ype$ $A$ or $B$, then (5) has a unique solution $w_{f}$ and it satisfies
the following:
$(a)w\in C^{2}(R^{N})\cap H^{2}(R^{N})$ .
$(b)w$ is mdially symmetric, i. e., $w(x)=w(|x|)$ , and $w^{f}(r)<0$ for $r=|x|>0$ .
$(c)w$ decays exponentially together with its derivatives up to the order of 2, that is, for
any $|\alpha|\leq 2$ , I $D^{\alpha}w(x)|\leq Ce^{-c|x|},$ $x\in R^{N}$ , holds for some $C,$ $c>0$ .
$(d)$ The linearized opemtor $L=\Delta+g’(w)$ on $L^{2}(R^{N})$ with domain $H^{2}(R^{N})$ satisfies
$Ker(L)=span \{\frac{\partial w}{\partial x_{1}}, \cdots, \frac{\theta w}{\partial x_{N}}\}$ , and if we regard $L$ as an operator on $L_{rad}^{2}(R^{N})$ with
$Dom,(L)=H_{rad}^{2}(R^{N})$ , then $L$ is bijective, where $L_{rad}^{2}(R^{N})$ and $H_{rad}^{2}(R^{N})$ stand for
the restricted spaces of $L^{2}(R^{N})$ and $H^{2}(R^{N})$ to the mdially symmetric function spaces,
respectively.

For the details of Proposition 1, see [2],[1] and the references therein. We can show
the nonlinearities $g(t)$ treated in this paper are type A or Type B. Therefore, by using
Proposition 1, we obtain the following results which are very important in our analysis.

Proposition 2 Assume that, $q>0,1<p<(N+2)/(N-2)$ if $\delta=0$ and $N\geq 3$ ,
$1<p<\infty$ if $\delta>0$ or $N=1,2$ . Then for any $0<\delta<+\infty$ and $g(t)=-t+ \frac{t^{p+q}}{\delta+t^{q}}$ , the
existence, uniqueness and nondegeneracy of ground state holds.

Proposition 3 Assume that, $1<p<(N+2)/(N-2)$ if $\delta=0$ and $N\geq 3,1<p<\infty$

if $\delta>0$ or $N=1,2$ . Then there exists $\delta^{*}>0$ such that, if $0<\delta<\delta^{*}$ and $g(t)=$

$-t+ \frac{t^{p}}{1+\delta lP}$ , the existence, uniqueness and nondegenemcy of the ground sate holds.

For the proof of Proposition 2, 3, see [4]. Proposition 2 and 3 for the case $\delta=0$ is
well-known and Proposition 3 for the case $\delta>0$ and $p=2$ is due to [10]. However, we
emphasize that Proposition 2 and 3 for other cases seems new.
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5Strategy and Outline of the Proof
We just briefly explain our strategy and te outline of the proof of our theorems.
$\bullet$ (STEPI) For $F=F_{1}$ , let us define $u(x)$ by $W(x)= \frac{u}{\gamma\int_{\Omega}u^{p}dx}$ . Then the problem

is reduced to find the pair $(u(x), \delta)$ s.t.

$\epsilon^{2}\Delta u-u+\frac{u^{p+q}}{\delta+u^{q}}=0,$ $x\in\Omega$

with Neumann BC and
$\delta=\alpha\gamma^{q-1}(\int_{\Omega}u^{p}dx)^{q}$ .

$\bullet$ For $F=F_{2}$ , let us define $u(x)$ by $W(x)= \frac{u}{\int_{\Omega}u^{p}dx}$ . Then the problem is reduced to
find the pair $(u(x), \delta)$ s.t.

$\epsilon^{2}\Delta u-u+\frac{u^{p}}{1+\delta u^{p}}=0,$ $x\in\Omega$

with Neumann BC and
$\delta=k(\int_{\Omega}u^{p}dx)^{-1}$ .

$\bullet$ (STEP2) For fixed $\delta>0$ , construct a $x_{N}$-axially symmetric solution $u=u_{\delta,\epsilon}(x)=$

$U_{\delta,\epsilon}(x)+\epsilon\phi_{\delta,\epsilon}(x)$ which is continuous in the parameter $\delta\geq 0$ , where $U_{\delta,\epsilon}$ is a suitable
approximated solution and a uniformly bounded function $\phi_{\delta,\epsilon}(x)$ .
In particular, key points for (STEP2) in our analysis are as follows:
(a) For the special nonlinearities above, we can obtain the uniqueness and nondegenemcy
of the gmund state.
(b) Then, the assumption on the symmetry of domain implies the invertibility of the
linearized operator $L_{\delta}=\triangle-1+f_{\delta}’(U_{\delta,\epsilon})$ at the approximated solution $U_{\delta,\epsilon}$ on the
Sobolev spaces with axially symmetry, e.g. for the case $F=F_{1}$ we have

$f_{\delta}(u)= \frac{u^{p+q}}{\delta+u^{q}}$ .

(c) Careful uniform estimates with respect to the parameter $\delta$ and the contraction
mapping principle with parameter enable us to obtain a suitable solution which is
continuous with respect to the parameter $\delta$ .

$\bullet$ (STEP3) Using a global estimate for $u_{\delta,\epsilon}(x)$ (spiky profile) and an asymptotic
behaviour of integrals for $\int_{\Omega}u^{p}dx$ , find the $\delta=\delta_{\epsilon}$ satisfying the matching condition
$($ for $F=F_{1})$ :

$( \delta_{\epsilon})^{1/q}(\int_{\Omega}u_{\delta,\epsilon}^{p}dx)^{-1}=(\alpha\gamma^{q-1})^{1/q}$

Now, it is important to know the behaviour of the function

$\beta(\delta)=\frac{\delta^{1/q}}{\int_{R^{N}}w_{\delta}^{p}dx}$ .
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The matching condition, e.g. for the case $F=F_{2}$ , is as follows:

$\delta_{\epsilon}(\int_{\Omega}u_{\delta,\epsilon}^{p}dx)=k$ .

Here, the behaviour of the function $\beta(\delta)=\delta\int_{R^{N}}w_{\delta}^{p}dx$ is important.

6 Summary and Problems
We obtained mutiple spike stationary solutions to ceratian chemotaxis model with

weak saturation on $x_{N}$-axially symmetric domains. In particular, we showed uniqueness
and nondegenracy of ground state for associated scalar equations and gave a systematic
method to constract a solution of a ceratin class of nonlinear ellptic equations with
nonlocal terms.
We note the following as future Problems:

1. How about the following case?

$F(P, W)= \frac{PW}{k+W}-\mu W+\gamma\frac{P}{1+P}$

2. Construct multiple spiky solutions for general domains and study stability of
spiky solutions. See [9] the stablity of one peak solution which concentrates
near the most curved part of the boundary $\partial\Omega$ for the case $F=F_{2}$ with $\alpha=$

1. Construction of multiple spiky solutions for general domains without any
symmetry seems more difficult.

3. The notion of the weak saturation effect to these chemotaxis models was pro-
posed for the first time in [4]. How about the case with strong saturation effect?
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