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1 Introduction
The primary outcome is often systematically related to other influences apart from treat-
ment in randomized controlled trials. Randomization tends to produce study groups
comparable with respect to known and unknown prognostic factors. Some of these base-
line covariates may be related to the primary outcome and may exhibit chance imbalances
between the two treatment groups. The primary aim of covariate adjustment is to reduce
the bias in the estimate of treatment effect and to improve the precision of that estimate.

For binary outcome case, the most popular covariate adjustment method is logis-
tic regression. Despite this, covariate adjustment with logistic regression leads to a
loss of marginal precision in the case of strong outcome-covariate association or strong
treatment-covariate association [1]. Logistic regression lead to biased conditional esti-
mates of treatment effect unless the true model is specified (if needed cobariates are
omitted) [2]. Marginal treatment effect estimator is not equal to conditional estimator
based on covariates.

Koch et al. proposed a nonparametric method for covariate adjustment in randomized
controlled trials. This method is based on the assumption that, on average, the two treat-
ment groups are balanced, and will correct for random imbalances between the treatment
groups [3]. Tsiatis et al. [4] proposed an adjustment method that follows from application
of the theory of semiparametrics by Leon et al. [5]. This approach separates estimation of
the treatment difference from the adjustment, which may lessen concerns over bias that
could result under regression-based adjustment. Zhang et al. expanded on this idea [6]
by developing a broad framework for covariate adjustment in setting with two or more
treatments and general outcome summary measures (e.g. $\log$ odds ratios) by appealing
to the theory of semiparametrics. The estimator gained from this framework yields the
greatest efficiency among all estimators in semiparametric class. However, the simula-
tion studies conducted in this article have been only assumed the case of large sample
size $(n=800)$ . The properties have not been validated in case of small and moderate
sample size. Nonparametric covariate adjustment method and semiparametric covariate
adjustment method have never been compared in simulation study with binary outcome.
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In Section 2.1 and 2.2, we briefly describe nonparametric method [3] and semipara-
metric method produced [6]. In Section 2.3, we compare performance of these methods
in simulation study.

In addition to above topic, we consider stratified randomized controlled trials from
semiparametric covariate adjustment method [6]. Stratified randomization is often used
to prevent imbalance between treatment groups for known factors that influence prognosis
or treatment responsiveness. And stratification may prevent type I error and improve
power for small trials ( $<400$ patients), but only when the stratification factors have a
large effect on prognosis [7].

Most multicentre (or multiregional) trials are stratffied by centres (or regions) either
for practical reasons or because centres are expected to be confounded with other known
or unknown prognostic factors. Japanese multicentre trials have many strata and small
sample size per stratum. When multicentre trials are stratified by centre and centre
effect is not negligible, centre should be adjusted for primary analysis. Similarly, if an
alternative feature such as centre (or region) is used as a stratification factor, then this
should be adjusted for in the primary analysis [8]. According to the ICH-E9 guideline,
multicentre trials is recommended to have large sumple size per stratum in principle (1
group has 10 patients per stratum), and has been based on the use of fixed effect models.
However, fixed effect models may be improper in Japanese multicentre trials (when the
number of sites is large).

The primary analysis should reflect the restriction on the randomization implied by
stratification. When stratified randomization is used, stratification factor is well balanced.
However, there is no guarantee that other baseline characteristics will be similar in the
treatment groups, especially in case of a small sample within strata. In order to adjust
the random imbalance of non-stratified factor, covariate adjustment methods based on
stratified randomization are needed. We consider stratified randomized controlled trials
from semiparametric covariate adjustment method.

We apply Zhang’s semiparametric framework to stratified randomized controlled trials
in Section 3.1 and 3.2, and simulation studies demonstrating performance are summarized
in Section 3.3.

2 Comparison of Covariate Adjustment Methods in
Randomized Controlled Trials with Binary Out-
comes

2.1 Koch’s nonparametric method for covariate adjustment

Denote the data from a 2-arm randomized trial, as $(Y_{i}, X_{i}, Z_{i}),$ $i=1,$ $\cdots,$ $n$ , independent
and identically distributed $(i.i.d.)$ across $i$ , where, for subject $i,$ $Y_{i}$ is outcome; $X_{i}=$

$(X_{1i}, \cdots, X_{\mathscr{O}})^{T}$ is a $(p\cross 1)$ vector of all available baseline covariates; and $Z_{i}=g$ is
indicates assignment to treatment group $g$ with known randomization probabilities $P(Z=$

g $)$ $=\pi_{g},$ $g=0,1;Z_{i}=0$ for assignment of the ith patient to control group and $Z_{i}=1$

for assignment of the ith patient to test treatment group. Randomization ensures that
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$Z$ and $X$ are independent. Let the number of subjects randomized to control group and
test treatment group be $n_{0}= \sum_{i=1}^{n}(1-Z_{i}),$ $n_{1}= \sum_{i=1}^{n}(Z_{i})$ and $n=n_{0}+n_{1}$ . Let $\overline{Y}_{g}$

and $\overline{X}_{g}$ is denote the sample means of the response variables and the covariables for the
patient in the gth group.

Koch et al. proposed a covariate adjustment for comparison of continuous, ordinal
and binary responses in a randomized controlled trial [3]. We focus on binary response
case. Two approaches are available for estimating covariance structure $V$ . One is a
randomization approach while the other is a sampling-based approach that assumes that
the study is a sample of a population. Sampling-based approach cannot preserve the
probability of the type I error [9]. Thus, we use randomization approach in this study.
Koch $s$ method is based on a weighted least-squares procedure to estimate the $\delta$ in the
linear model

$E(d)$ $=$ $E(\begin{array}{l}d_{Y}d_{X}\end{array})=E(\begin{array}{l}\overline{Y}_{1}-\overline{Y}_{0}\overline{X}_{1}-\overline{X}_{0}\end{array})=(\begin{array}{l}\delta 0\end{array})=\delta(\begin{array}{l}10\end{array})=\delta G$,

where $0$ denotes a $(p\cross 1)$ vector of $0’ s$ . $\delta$ is estimated with weights based on a estimate
$V$ for the covariance matrix of $d$ , which is given by

$V$ $=$ $\sum_{i=1}^{n}\frac{n}{n_{0}n_{1}(n-1)}((Y_{i}-\overline{Y})(X_{i}-X)^{T}(Y_{i}-\overline{Y})_{-}^{2}$ $(X_{i}-X)(X_{i}-X)^{T}(Y_{i}-\overline{Y}_{-})(X_{i}-X_{-}^{-})^{T})$

$=$ $(\begin{array}{ll}V_{YY} V_{YX}^{T}V_{YX} V_{XX}\end{array})$ .

The resulting estimator of $\delta$ , which is the adjusting dffierence between the means of the
response variable is given by

$\hat{\delta}$

$=$ $(G^{T}V^{-1}G)^{-1}GV^{-1}d$

$=$ $d_{Y}-V_{YX}^{T}V_{XX}^{-1}d_{X}$

$=$ $(\overline{Y}_{1}-\overline{Y}_{0})-V_{YX}^{T}V_{XX}^{-1}(\overline{X}_{1}-\overline{X}_{0})$

and variance of $\hat{\delta}$ is approximately equal to

Var $(\hat{\delta})$ $=$ $(G^{T}V^{-1}G)^{-1}=V_{YY}-V_{YX}^{T}V_{XX}^{-1}V_{YX}$ .

A test statistic for comparison of the two treatments with adjustment for the covariates
is $T_{Koch}^{2}=\hat{\delta}^{2}/Var(\hat{\delta})$ , it approximately has the chi-square distribution with 1 degree of
freedom.

2.2 Zhang’s semiparametric method for covariate adjustment
Leon et al. developed the model conceptualizing the situation in terms of counterfactu-
als or potential outcomes [5]. Ideally, if we could observe outcome $Y$ on each subject
under both treatments, we would have complete sample information on treatment effect.
Of course, this is usually impossible, but randomization allows us to regard unobserved
outcome as ‘missing completely at random (MCAR)’ [10]. For subjects randomized to
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experimental treatment, we observe only their outcome under assigned treatment; the
outcome they would have experienced under control is hence ‘missing’, and vice versa.
Covariate adjustment may be viewed as an attempt to use covariates that are correlated
with outcome to recover some of the ‘lost’ information (relative to the ‘ideal’) due to
this ‘missingness’. Tsiatis et al. [4] proposed an adjustment method that follows from
application of the theory of semiparametrics (e.g. [11, 12]) in order to estimate treatment
differences in randomized controlled trials.

Zhang et al. derived the class of estimating functions using the theory of semipara-
metrics [6]. For binary outcome, one may consider a logistic regression model

$E(Y|Z;\theta)$ $=$ logitP$(Y=1|Z;\theta)=\alpha+\beta Z$

where logit$(p)=\log\{p/(1-p)\}$ and $\beta$ is the $\log$ odds ratio for treatment 1 relative to
treatment $0$ . The usual maximum likelihood estimator for $\beta$ in this model is obtained by
solving $\sum_{i=1}^{n}m(Y_{i}, Z_{i};\theta)=0$ , where $\theta=(\alpha, \beta^{T})$ . The estimating function is written as

$m(Y_{i}, Z_{i};\theta)$ $=$ $(\begin{array}{l}1Z\end{array})\{Y-\frac{\exp(\alpha+\beta Z)}{1+\exp(\alpha+\beta Z)}\}$ .

The estimating function for $\theta$ is unbiased and based only on $(Y, Z)$ in model leading
to consistent, asymptotically normal estimators. Zhang et al. proposed a fixed unbiased
estimating function $m(Y_{i}, Z_{i};\theta)(2\cross 1)$ for $\theta$ , using all of $(Y, X, Z)$ may be written as

$m^{*}(Y_{i}, X, Z_{i};\theta)$ $=$ $m(Y_{i}, Z_{i}; \theta)-\sum_{g=0}^{1}\{I(Z=g)-\pi_{g}\}q_{g}^{(2)}(X)$ (1)

where $q_{g}^{(2)}(X),$ $g=0,1$ are arbitrary 2-dimensional functions of $X$ . Because $Z$ and $X$ are
independent, the second term in $m^{*}(Y_{i}, X_{i}, Z_{i};\theta)$ has mean zero; thus, $m^{*}(Y_{i}, X_{i}, Z_{i};\theta)$ is
unbiased estimating function based on $(Y, X_{i}, Z)$ . The adjusted estimator $\hat{\theta}^{*}$ obtained by
solving $\sum_{i=1}^{n}m^{*}(Y_{i}, X_{i}, Z_{i};\theta)=0$ is more efficient than an unadjusted estimator obtained
by solving $\sum_{i=1}^{n}m(Y_{i}, Z_{i};\theta)=0$ . When $q_{g}^{(2)}(X)\equiv 0,$ $g=0,1$ , estimating function (1)
reduces to the original estimating function, which does not take account of auxiliary
covariates, and leads to an unadjusted estimator.

An estimator for corresponding to an estimating function in class (1) yields the greatest
efficiency gain over $\hat{\theta}$ among all estimators with estimating functions in class (1). The
estimator $\hat{\theta}^{*}$ is consistent and asymptotically normal with asymptotic “sandwich” type
covariance matrix

$V_{S}^{*}$ $=$ $V_{M}^{\hat{*}}\hat{\Sigma}_{0}V_{M}^{\hat{*}}=\{\begin{array}{ll}Var(\hat{\alpha}^{*}) \hat{\beta}^{*})Cov(\hat{\alpha}^{*}\hat{\beta}^{*})Cov(\hat{\alpha}^{*} Var(\hat{\beta}^{*})\end{array}\}$ ,

where $V_{M}^{\hat{*}}=[ \sum_{i}\{-\partial/\partial\theta^{T}m(Y_{i}, Z_{i};\theta)\Vert_{\theta=\hat{\theta}^{r}}\}]^{-1},$ $\Sigma_{0}^{\wedge}=\sum_{i}\{m^{*}(Y_{i}, X, Z_{i};\theta)^{\otimes 2}\}$ , and $u^{\otimes 2}=$

$uu^{T}$ . In general, the optimal estimator in class (1) that has the smallest asymptotic vari-
ance is the solution to

$\sum_{i=1}^{n}[m(Y_{i}, Z_{i};\theta)-\sum_{g=0}^{1}\{I(Z_{i}=g)-\pi_{9}\}E\{m(Y_{i}, Z_{i};\theta)|X_{i}, Z_{i}=g\}]$ $=$ $0$
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Conditional expectations $E\{m(Y_{i}, Z_{i};\theta)|X_{i}, Z_{i}=g\},$ $g=0,1$ is replaced by the term
$m\{E(Y|X, Z=g), g;\theta\}=(1, g)^{T}[E(Y|X, Z=g)-\exp(\alpha+\beta g)/\{1+\exp(\alpha+\beta g)\}]$ .
We may postulate parametric regression models $E(Y|X, Z=g)=q_{g}^{*}(X)$ for vector basis
function $X$ . This representation is called gdirecth implementation strategy in Zhang et al.
[6]. The improved estimator $\hat{\theta}^{*}$ holds consistency and asymptotic normality regardless of
whether or not parametric models $q_{g}^{*}(X)$ are correct specifications of the true $E(Y|X,$ $Z=$

$g)$ .
An improved test statistic for the hypothesis that is equal to zero is $T_{Zhang}^{2}=\hat{\beta}^{*2}/Var(\hat{\beta}^{*})$ ,

where, it approximately has the chi-square distribution with 1 degree of freedom.

2.3 Simulation Studies I
We report result of simulation based on 5000 Monte Carlo data sets. In simulation I, we
focus on estimation of marginal $\log$ odds ratio for treatment effect whereas $\beta$ is defined
conditional on $X$ . We considered 2-arms randomized controlled trial with binary response
Y. Binary outcome $Y_{i}$ was generated according to a logistic regression model

logit $\{E(Y_{i}|Z_{i})\}=-0.9+\beta Z_{i}+\gamma X_{i}$ , (2)

so that $\beta$ is the $\log$ odds ratio for treatment 1 relative to treatment $0$ , and $\gamma$ is covariate
effect. For each scenario, treatment indicator $Z$ was generated from Bernoulli with $P(Z=$
1 $)$ $=P(Z=0)=0.5$ , and covariate $X$ was continuous value generated from standard
normal distribution.

In the first set of simulations (scenario A), we considered influence of sample size $(n=$

$50,400)$ and the strength of association between $Y$ and $X(\gamma=0.6,1.2,1.8)$ . We estimate
the marginal $\log$ odds ratio for treatment $Z=1$ relative to $Z=0$ in (2) by each method.
We compared Monte Carlo bias (MC Bias), Monte Carlo standard deviation (MC SD),
the average of estimated standard errors (Ave. SE), the Monte Carlo mean squared error
for the unadjusted estimator divided by that for the indicated estimator (RE), empirical
size and power and Monte Carlo coverage probability of 95% Wald confidence intervals
(CP) computed with the following three methods: 1) the unadjusted estimator based on
the data on $(Y, Z)$ (Unadj.), 2) nonparametric method (Koch), 3) semiparametric method
(Zhang). To estimate conditional expectations $E\{m(Y_{i}, Z_{i};\theta)|X_{i}, Z_{i}=g\},$ $g=0,1$ , we
develop two types parametric regression models $q_{g}^{*}(X)$ based on the data $(Y_{i}, X_{i})$ for $i$ in
group $g:$ 3-A) Logit type, $E(Y_{i}|X_{i}, Z_{i}=g)=q_{g}^{*}(X)=$ logit $(\zeta_{0}+X_{i}\zeta_{g})$ (Zhang-A), 3-B)
Linear type, $E(Y_{i}|X_{i}, Z_{i}=g)=q_{g}^{*}(X)=\zeta_{0}+X_{i}\zeta_{g}$ (Zhang-B)

Table 1 shows results of precision comparison for the first set $(\beta=0.6)$ . As all
estimators showed negligible bias, bias is not reported. For each case, both covariate
adjustment methods (Koch and Zhang-A, B) yield considerable efficiency and precision
gain over the unadjusted estimator. Comparison of the average of the standard error
and Monte Carlo standard deviation shows that sandwich type variance estimator is
underestimated in the case of small sample size $(n=50)$ . And Zhang’s Wald confidence
interval estimated with Zhang’s method does not achieve the nomina195% level in our
simulation. Koch $s$ method has more precise estimator than Zhang’s method in small
sample case $(n=50)$ . In moderate-size and moderate-strong association $(n=400,$ $\gamma=$

1.2, 1.8), Zhang’s method performs more precise estimation than Koch $s$ estimator, this
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results confirm a theory of semiparametric efficiency. Table 2 shows that Zhang’s Wald
type tests yield greater power than Koch $s$ method. But Zhang’s method does not achieve
the 5% nominal level in small sample size case $(n=50)$ . In contrast, Koch $s$ test achieves
the 5% nominal level in all situations.

In the second set of simulation (scenario B), we considered a logistic regression model
that there are some interactions between treatment $Z$ and covariate X.

logit $\{E(Y_{i}|Z_{i})\}=-0.9+\beta Z_{i}+\gamma X_{i}+\tau(Z_{i}\cross X_{i})$ ,

where $\tau$ is the interaction factor. Table 3 shows the performance of the semiparametric
method in such circumstance.

In moderate-size $(n=400)$ , Zhang’s methods more precise estimation than Koch $s$ es-
timator, depending on the strength of the interaction factor. The optimal $E(Y|X, Z=g)$

are the true regression relationships of $Y$ on $X$ for each treatment ‘separately’. With
semiparametric covariate adjustment method, the regression relationship of $Y$ on $X$ is
constructed for each treatment separately. Thus, semiparametric method give good per-
formance under the condition such as interactions between treatment $Z$ and covariate
X.

3 Extensions for stratified studies

Stratified analysis offer three distinct advantages over non-stratffied analysis in clinical
trial: 1) it enables us to eliminate the variation between strata, 2) it provides comparison
of broad patient population without loss of precision, and 3) it provides a broad patient
population to support generalizability of findings. In order to extend Zhang’s framework
to stratified analysis, we produce two strategies due to sample size per stratum. The first
is combining strata based on weighted average for large sample size per stratum. The
second is application of the framework to conditional logistic regression for small sample
size per stratum.

3.1 Weighted average strategy (Large sample size per stratum)

In the case of clinical trials with at least moderately large sample per stratum (e.g.
$n_{h}\geq 50),\hat{\beta}_{h}^{*}$ and $V_{Sh}^{*}$ is estimated by using $Y_{h},$ $X_{h}$ and $bZ_{h}$ via the counterparts of
(1) from the hth stratum. Let $w_{h}$ be a standardized weight for the hth stratum such
that $\sum_{h=1}^{q}w_{h}=1$ . Analysis for combined strata is then based on $\hat{\beta}^{*}=\sum_{h=1}^{q}w_{h}\hat{\beta}_{h}^{*}$ and
$V_{S}= \sum_{h=1}^{q}w_{h}^{2}V_{Sh}^{*}$ , where

$w_{h}$ $=$ $\frac{1/V_{Sh}^{*}}{\sum_{h’=1}^{q}1/V_{Sh’}^{*}}$

This estimator based on $w_{h}$ is the best (i.e. minimum variance) weighted average to
estimate for a common mean [13].
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3.2 Application to conditional logistic regression (Small sample
size per stratum)

Above weighted average strategy is improper in case of small sample size per stratum.
Because standard asymptotic properties of covariate adjustment estimators from every
stratum do not hold, when the number of strata is large and the data are sparse. And the
number of parameters grows at the same rate as the number of strata. Those situations
commonly occur in the multicentre trials. When multicentre trials are stratified by centre,
some centres have few patients (e.g. Japanese multicentre trials).

In order to extend semiparametric model framework to the stratified randomized con-
trolled trial with small sample size per stratum, we apply the framework to conditional
logistic regression model. Hauck recommended using the conditional maximum likeli-
hood estimator (i.e. conditional logistic regression) or the Mantel-Haenszel estimator
of common odds ratio [14]. These estimators have good asymptotic properties for both
asymptotic cases: 1) the number of strata is fixed and sample size within each stratum
becomes large, 2) the stratum sizes are fixed, but the number of strata becomes large.
We consider a conditional logistic model

logit $\{E(Y|Z, h;\beta)\}$ $=$ $\alpha_{h}+\beta Z$ , (3)

where the nuisance parameters $\alpha_{h}$ are the stratum-specific intercepts. Approximate like-
lihood [15] for this model is written as

$L(\beta)$ $=$ $\prod_{h=1}^{q}L(\beta;Z, Y, h)=\prod_{h=1}^{q}\frac{\prod_{i--c_{1}}^{c_{m_{h}}}\exp(\beta Z_{hi}Y)}{\sum_{c}\prod_{i=c_{1}}^{c_{m_{h}}}\exp(\beta Z_{hi})}$ ,

$\log L(\beta)$ $=$ $\sum_{h=1}^{q}\log L(\beta;Z, Y, h)=\sum_{h=1}^{q}[\sum\beta Z_{hi}Y_{hi}-\log\{\sum_{c}\prod_{i=c_{1}}^{c_{m_{h}}}\exp(\beta Z_{hi})\}]$

where $m_{h}= \sum_{i=1}^{n_{h}}Y_{hi}$ , the summation is over all combination $c=(c_{1}, \cdots, c_{m_{h}})$ of $m_{h}$

“cases” chosen from the $n_{h}$ individuals in the stratum. About computation of the con-
ditional likelihood function [16]. The score function and information function are given
by

$U(\beta)$ $=$ $\frac{\partial}{\partial\beta}\log L(\beta)=\sum_{h=1}^{q}[\sum_{i=1}^{n_{h}}\beta Z_{hi}Y_{hi}-\log\{\sum_{c}\prod_{i=c_{1}}^{c_{m_{h}}}\exp(\beta Z_{hi})\}]$

and

$I_{0}(\beta)$ $=$ $- \frac{\partial^{2}}{\partial\beta^{2}}\log L(\beta)=\sum_{h=1}^{q}D_{h}$

Thus, the estimating function may be written as

$m(Y, Z, h;\beta)$ $=$ $\sum_{i=1}^{n_{h}}Z_{hi}Y_{h}i-\frac{\sum_{c}(\sum_{i--c_{1}}^{c_{m_{h}}}Z_{h}i)h}{\sum_{c}\prod_{i=c_{1}}^{c_{m_{h}}}\exp(\beta Z_{h}i)}$
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maximum partial likelihood estimator (MPLE) for in this model is obtained by solving
$\sum_{h=1}^{q}m(Y, Z, h;\beta)=0$ . The adjusted estimator obtained by solving $\sum_{h=1}^{q}m(Y, X, Z, h;\beta)=$

$0$ is more efficient than an unadjusted estimator obtained by solving $\sum_{h=1}^{q}m(Y, Z, h;\beta)=$

0. We used a Newton-Raphson algorithm to solve the estimating equation. Stratified
Zhang’s unbiased estimating function is written as

$m^{*}(Y, X, Z, h;\beta)$ $=$ $m( Y, Z, h;\beta)-\sum_{g=0}^{1}[\{I(Z=g)-\pi_{hg}\}\cross a_{g}(X_{hi})]$

where $a_{g}(X_{hi}),$ $g=0,1$ are arbitrary functions of $X$ . The optimal estimating function is
given by

$m^{*}(Y, X, Z, h;\beta)$ $=$ $m( Y, Z, h;\beta)-\sum_{g=0}^{1}[\{I(Z=g)-\pi_{hg}\}$

$\cross E\{m(Y, Z, h;\beta)|X_{h}, Z_{h}=g\}]$ (4)

$=$ $m( Y, Z, h;\beta)-\frac{n_{h1}n_{h0}}{n_{h}}(\overline{q}_{1(h1)}^{*}-\overline{q}_{1(h0)}^{*})$

where $\overline{q}_{1(hg)}^{*}=n_{hg}^{-1}\sum_{n_{h}}^{-1}I(Z_{hi}=g)q_{1}^{*}(X_{h}i),$$q_{1}^{*}(X_{h}i)=E(Y|X, Z=g, h;\zeta_{1})$ . In general,
$\hat{\beta}_{opt}$ that has smallest asymptotic variance in class (4) is the solution to $\sum_{h=1}^{q}m(Y, X, Z, h;\beta)=$

$0$ . We develop a parametric regression model based on the data $(Y_{i}, X_{i})$ for $i$ in treatment
group $(Z=1)$

$q_{1}^{*}(X_{hi})$ $=$ $E\{Y_{i}|X_{i},$ $Z_{i}=1,$ $h;\zeta_{1})=$ logit $(\alpha+X_{i}^{T}\zeta_{1}+u_{h})$

where $\zeta_{g}=(\zeta_{g1}, \cdots, \zeta_{gp}),$ $u_{h}$ are the stratum-specific random effects. We obtain the
“ sandwich” type estimator of variance as a function of $\beta$ ,

$V_{S}^{*}$ $\approx$ $\{I_{0}(\hat{\beta}^{*})\}^{-1}$Cov$\{U(\hat{\beta}^{*})\}\{I_{0}(\hat{\beta}^{*})\}^{-1}$

$=$ $\{\sum_{h=1}^{q}\hat{D}_{h}^{*}\}^{-1}[\sum_{h=1}^{q}\{m^{*}(Y, X, Z, h;\hat{\beta}^{*})\}]\{\sum_{h=1}^{q}\hat{D}_{h}^{*}\}^{-1}$

$=$ $V_{M}^{*}[ \sum_{h=1}^{q}\{m^{*}(Y, X, Z, h;\hat{\beta}^{*})\}]V_{M}^{*}$ (5)

The classical variance estimator (model-based variance estimator) for conditional logis-
tic regression is $V_{M}^{*}= \{\sum_{h=1}^{q}\hat{D}_{h}^{*}\}^{-1}$ , which can be related to equation (5) by substi-
tuting $\sum_{h=1}^{q}\hat{D}_{h=1}^{*}$ for $\sum_{h=1}^{q}\{m^{*}(Y, X, Z, h;\hat{\beta}^{*})\}^{2}$ . However, the empirical estimator
$\sum_{h=1}^{q}\{m^{*}(Y, X, Z, h;\hat{\beta}^{*})\}^{2}$ is a fairly good estimator of the Cov $\{U(\hat{\beta}^{*})\}$ as long as $q\gg 1$

and the sandwich type estimator underestimates the variance of an estimated stratum-
level fixed effect when there are a small number of strata [17]. Even when $q\gg 1$ , the
middle of the sandwich estimator may be quite unstable and have substantial bias. Wald
type sandwich tests tend to be liberal [18, 19, 20, 21, 22, 23, 24]. In order to correct
for the sandwich type estimator, we applied the adjustment methods proposed by Fay
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et al. [25], which is applied to conditional logistic regression. This method was proposed
as two type of adjustments; 1) using Taylor series approximations to adjust for the bias
of the sandwich estimator of variance, 2) using a $t$ distribution instead of a chi-square
distribution to calculate significance.

3.3 Simulation Studies II
We report result of simulation based on 5000 Monte Carlo data sets. We focus on estima-
tion of $\log$ odds ratio for treatment effect conditional on strata $h$ . We considered 2-arms
stratified randomized controlled trial with binary response $Y(n=400)$ . $h(=1, \cdots, q)$ is
strata indicator. All strata have the equivalent number of subjects $400/q$ . Binary outcome
$Y_{hi}$ was generated according to a mixed effects logistic regression model

logit $\{E(Y_{hi}|Z_{hi}\}$ $=$ $-0.9+\beta Z_{hi}+\gamma X_{hi}+b_{h}$

for $\beta=0,0.6$ and $\gamma=0.9,1.5,2.1$ . The $b_{h}$ is a random strata effect. Random strata effects
were generated from a normal distribution with mean $0$ and variance 1. We simulated for
two scenarios of stratified studies: A) large sample size per stratum $(q=2,4),$ $B)$ small
sample size per stratum $(q=10,40)$ . For each scenario, we applied “permuted block
randomization (block of size 4)“ to avoid serious treatment imbalance within strata.

We estimate the common $\log$ odds ratio for treatment $Z=1$ relative to $Z=0$ in (3)
by each method. We compared Monte Carlo bias, average length of 95% Wald confidence
interval (L), empirical size and power, Monte Carlo coverage probability of 95% Wald
confidence intervals (CP), and the Monte Carlo mean squared error for the unadjusted
estimator divided by that for the indicated estimator (RE) computed with the following
four methods in two scenarios: For scenario $C$ , we compared three methods: 1) Mantel-
Haenszel Method (MH), 2) Conditional logistic regression unadjusted for covariate X
(CL), 3) Stratified semiparametric method with weighted mean (Zhang-W). In order to
represent conditional expectations $E\{m(Y, Z, h;\beta)|X_{h}, Z_{h}=g\},$ $g=0,1$ , we develop a
logistic model for each stratum: $E(Y_{i}, X_{i}, Z_{i}=g;h)=$ logit $(\zeta_{0hg}+X_{i}^{T}\zeta_{hg})$ using SAS 9.1
PROC LOGISTIC.

For scenario $D$ , we compared four methods: 1) Mantel-Haenszel Method (MH), 2)
Conditional logistic regression unadjusted for covariate X (CL), 3) Stratified semipara-
metric method with bias-corrected variance estimator proposed by Fay et al. (Zhang-F).
In order to represent conditional expectations $E\{m(Y, Z, h;\beta)|X_{h}, Z_{h}=g, h\},$ $g=0,1$ ,
we develop a logistic model with random strata effects $u_{gh}$ : $E(Y_{i}|X_{i}, Z_{i}=g;h)=$

logit $(\zeta_{0hg}+X_{i}^{T}\zeta_{hg}+u_{gh})$ using SAS 9.1 PROC NLMIXED.
Table 4 shows results for scenario $C:q=2,4$ strata studies. “ NC (Non convergence,

% $)$
“ is the proportion of the cases that logistic regression could not computed in any stra-

tum. These cases were excluded from the summary. As all estimators showed negligible
bias, bias is not reported. For both cases, proposed estimator has considerable efficiency
which gains over the estimator unadjusted covariate $X$ (Mantel-Haenszel method and
conditional logistic regression) and its 95% confidence interval covered the true value at
95% nominal level. Table 5 shows that proposed method can preserve the probability
of the type I error. Additionally, proposed method performs more precise estimation in
fewer strata.
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Table 6 shows results for scenario $D$ : highly stratified studies with small sample sizes
per stratum $(q=10,40$ strata$)$ . All estimators are unbiased. For RE, the proposed
method has more precise point estimator than Mantel-Haenszel method and conditional
logistic regression. In respect of interval estimate, the proposed estimator has narrower
confidence interval than Mantel-Haenszel method and conditional logistic regression when
the study has a number of strata and covariate effect is not weak. Table 7 shows that the
proposed Wald test achieves the nominal level with Fay’s bias correction in all situations.
In contrast, the nominal level does not preserved with Morel $s$ bias correction in case of
small strata $(q=10)$ . When the study has a number of strata and covariate effect is not
weak, the proposed test increases in power over the competitors.

4 Discussion
The unconditional treatment effect is overwhelmingly the focus of the primary analysis in
most randomized trial. Reatment effect estimator ( $\log$ odds ratio) adjusted for covariate
$X$ (conditional on $X$ ) by logistic regression model is not equal to marginal estimator
adjusted by Koch $s$ nonparametric method or Zhangfs semiparametric method [14]. Thus
we did not compare logistic regression with these methods. In the simulation study I,
both Koch $s$ nonparametric method and Zhang’s semiparametric method provided more
precise estimator than unadjusted estimator in every case. Especially, we recommend
that using Koch $s$ nonparametric method is better than Zhang’s semiparametric method,
because 1) Koch $s$ nonparametric method has fewer assumptions (only randomization
and no arbitrary modeling step), 2) in the case of small sample size $(n=50)$ , Koch’s
nonparametric method is superior in terms of MSE, and 3) nonparametric test achieves
the 5% nominal level in all situations. Tsiatis et al. compared these methods with
continuous outcome, and semiparametric method is superior to nonparametric method in
terms of both MSE and Ave. SE in moderate-size trial $(n=400)[4]$ .

We have applied semiparametric model framework to stratified randomized controlled
trials by using two strategies. Proposed method with weighted mean was shown to be
of benefit in large sample size per stratum situation (e.g. stratified by disease stage).
When each stratum has the large sample size, it is ensured that semiparametric method
proposed by Zhang et al. is proper in each stratum. Properness of the proposed method
with weighted mean depends on the sample size per stratum. That kind of stratified
randomized controlled trial is recommended, which keeps the number of strata small [7].

In the case of multicentre trials, which have many strata and small sample size per
stratum, above proposed method is not available. Second proposed method, which is
applied to conditional logistic model, is useful method when centre effect is not negligible
(e.g. postoperative chemotherapy trial) and the trial is highly stratified. Properness of
this method depends on the number of strata. Wald test based on sandwich type variance
estimator may have greater than nominal size if the number of strata is small. In order to
compute standard errors, we use the bias correction proposed by Fay et al. The corrected
sandwich estimator has conservative confidence intervals when the trial has few strata.
However, proposed method does not the smallest length of the confidence interval when
the number of strata is small and covariate effect is not strong. This problem is topic for
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further research.
We need to demonstrate the proposed method to competing methods by application

to clinical trial data. We considered the case of only one covariate effect in simulation
studies. Using the coefficient of determination $R^{2}$ to measure the strength of covariate
effect, $R^{2}$ is large value when outcome is related to a number of covariates. So we expected
that proposed method is more effective in real clinical trial data analysis than simulation
studies.
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Table 1: Simulation results for estimation of the $\log$ odds ratio for treatment Z $=1$

relative to Z $=0$ based on 5000 Monte Carlo data sets. (scenario A)

$\overline{\overline{Estimator^{\frac{n.=50}{MCSDAveSERECP}\frac{n=400}{MCSDAve.SERECP}}}}$

$\beta=0.6,$ $\gamma=0.6$

Unadj. 0.637 0.621 1 0.956 0.21 0.211 1 0.952
Koch 0.609 0.592 1.1 0.956 0.203 0.203 1.07 0.951

Zhang-A 0.622 0.591 1.05 0.95 0.203 0.203 1.07 0.952
Zhang-B 0.625 0.593 1.04 0.951 0.203 0.203 1.07 0.951

$\beta=0.6,$ $\gamma=1.2$

Unadj. 0.643 0.656 1 0.957 0.208 0.208 1 0.953
Koch 0.547 0.538 1.38 0.956 0.185 0.185 1.27 0.951

Zhang-A 0.551 0.531 1.36 0.948 0.184 0.184 1.28 0.953
Zhang-B 0.56 0.538 1.32 0.95 0.185 0.185 1.27 0.951

$\beta=0.6,$ $\gamma=1.8$

Unadj. 0.626 0.602 1 0.953 0.206 0.206 1 0.950
Koch 0.507 0.49 1.52 0.951 0.168 0.169 1.51 0.951

Zhang-A 0.511 0.474 1.5 0.939 0.166 0.165 1.54 0.947
Zhang-BO.5210.4891.440.9440.1690.1691.50.949

Table 2: Proportion of 5000 Monte Carlo data sets for which the null hypothesis $\beta=0$ is
rejected in favor of the alternative $\beta\neq 0$ using the test statistic based on each estimator
and level of significance 0.05. (scenario A)

$\overline{\overline{\frac{n\gamma\frac{\beta=0}{Unadj.KochZhang-AZhang-B}\frac{\beta=0.6}{Unadj.KochZhang-AZhang-B0.1480.1590.l660.l65}}{500.60.0410.0470.0470.045}}}$

1.2 0.043 0.046 0.055 0.051 0.114 0.137 0.145 0.148
1.8 0.05 0.048 0.059 0.056 0.101 0.13 0.146 0.142

400 0.6 0.049 0.046 0.046 0.046 0.757 0.784 0.787 0.784
1.2 0.048 0.053 0.055 0.053 0.63 0.726 0.733 0.728
1.8 0.048 0.044 0.047 0.045 0.463 0.627 0.645 0.629
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Table 3: Results for the second simulation scenario data using 5000 Monte Carlo data
sets. (scenario B)

$\overline{\overline{Estimator^{\frac{n=400}{MCSDAve.SERECP}}}}$

$\beta=0.6,$ $\gamma=0.9,$ $\tau=0$

Unadj. 0.209 0.209 1 0.952
Koch 0.194 0.194 1.16 0.949

Zhang-A 0.194 0.194 1.15 0.949
Zhang-B

$\frac{0.1950.1941.150.949}{\beta=0.6,\gamma=0.9,\tau=0.3}$

Unadj. 0.211 0.209 1 0.952
Koch 0.192 0.191 1.21 0.949

Zhang-A 0.192 0.19 1.21 0.950
Zhang-B 0.192

$\frac{0.1911.20.949}{\beta=0.6,\gamma=0.9,\tau=0.6}$

Unadj. 0.212 0.209 1 0.950
Koch 0.19 0.187 1.24 0.946

Zhang-A 0.19 0.186 1.25 0.947
Zhang-B

$\frac{0.1910.1871.230.946}{\beta=0.6,\gamma=0.9,\tau=0.9}$

Unadj. 0.209 0.209 1 0.954
Koch 0.186 0.185 1.27 0.949

Zhang-A 0.185 0.184 1.28 0.947
Zhang-BO.1860.1851.260.947
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Table 4: Simulation results for estimation of the $\log$ odds ratio for treatment $Z=1$
relative to $Z=0$ based on 5000 Monte Carlo data sets. (scenario $C;n=400$) NC
(Non convergence): Proportion of the case in which Weight method could not compute
the common $\log$ odds estimator (all observation has same response in any group and
stratum).

$\overline{\overline{\frac{Estimator^{\frac{q--2}{LRECP}\frac{q--4}{=0.9LRE}}}{\beta=0.6,\gamma}}}CP$

MH 0.886 1.00 0.952 0.880 1.00 0.952
CL 0.885 1.01 0.952 0.878 1.01 0.952
Wt 0.826 1.15 0.951 0.821 1.14 0.952

$\frac{NC:0.1\%NC:1.46\%}{\beta=0.6,\gamma=1.5}$

MH 0.857 1.00 0.954 0.854 1.00 0.953
CL 0.856 1.01 0.954 0.853 1.01 0.952
Wt 0.728 1.37 0.951 0.724 1.35 0.950

$\frac{NC:0.04\%NC:0.46\%}{\beta=0.6,\gamma=2.1}$

MH 0.835 1.00 0.956 0.834 1.00 0.956
CL 0.834 1.01 0.956 0.833 1.01 0.956
Wt 0.645 1.65 0.945 0.640 1.61 0.948

$-\underline{NC=0.02\%NC=0.14\%}$

Table 5: Proportion of 5000 Monte Carlo data sets for which the null hypothesis $\beta=0$ is
rejected in favor of the alternative $\beta\neq 0$ using the test statistic based on each estimator
and level of significance 0.05. (scenario C)

$\overline{\overline{\frac{q\gamma\frac{\beta--0}{o^{MHCLWt}}\frac{\beta--0.6}{0.6500.6490.709MHCLWt}}{20.9.0500.0500.050}}}$

1.5 0.047 0.046 0.049 0.515 0.514 0.653
$\frac{2.10.0450.0450.0480.3910.3890.591}{40.90.0490.0490.0500.6450.6440.694}$

1.5 0.048 0.047 0.053 0.520 0.518 0.651
$\underline{\underline{2.1}}$0.0470.0460.0530.3920.3900.585
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Table 6: Simulation results for estimation of the conditional $\log$ odds ratio for treatment
$Z=1$ relative to $Z=0$ based on 5000 Monte Carlo data sets. (scenario $D;n=400$)

$\overline{\overline{Estimator^{\frac{q=10}{RELCP}\frac{q--40}{RELCP}}}}$

$\beta=0.6,$ $\gamma=0.9$

MH 1.00 0.878 0.953 1.00 0.887 0.948
CL 1.03 0.877 0.9522 1.01 0.884 0.950

$\frac{Zhang-F1.170.9280.9526.1.120.8480.948}{\beta=06,\gamma=1.5}$

MH 1.00 0.852 0.950 1.00 0.860 0.953
CL 1.01 0.851 0.950 1.01 0.858 0.954

Zhang-F 1.37 0.818 0.950$\frac{1.360.7560.951}{\beta=0.6,\gamma=2.1}$

MH 1.00 0.833 0.947 1.00 0.841 0.955
CL 1.01 0.832 0.947 0.93 0.839 0.954

Zhang-Fl.650.7330.9491.450.6750.950

Table 7: Proportion of 5000 Monte Carlo data sets for which the null hypothesis $\beta=0$ is
rejected in favor of the alternative $\beta\neq 0$ using the test statistic based on each estimator
and level of significance 0.05. (scenario $D;n=400$)

$\overline{\overline{\frac{q\gamma\frac{\beta=0}{MHCLZhang-F}\frac{\beta=0.6}{0.6490.6480.596MHCLZhang-F}}{100.90.0480.0480.051}}}$

1.5 0.0472 0.047 0.0486 0.514 0.513 0.544
$\frac{2.10.0470.0470.0470.3980.3980.482}{400.90.0560.0570.0510.6500.6490.690}$

1.5 0.045 0.045 0.050 0.503 0.503 0.612
2.1 0.041 0.042 0.048 0.390 0.390 0.551
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