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We analyze a mathematical model of the population dynamics among a mimic, corresponding model,
and their predator populations. The predator changes its search-and-attack probability by forming
and losing its search image. The predator cannot distinguish the mimic from the model, so that each
predator searches and attacks them with common probability. Once a predator predates a model
individual, it comes to omit both the model and the mimic species $hom$ its diet menu, and then
not to search nor attack them in the same day. If a predator predates a mimic individual, it comes
to increase the search-and-attack probability for both model and mimic. The predator may lose
the repulsive/attractive search image with a probability per day. Analyzing our model, we can find
the condition for the persistence of model and mimic populations, and then get the result that the
condition for the persistence of model population does not depend on the mimic population size,
while the condition for the persistence of mimic population does depend on the the predator’s ability
of the repulsive search image formation.

本研究では，ベイツ型の mimic (擬態) 種とそれに対する model (被擬態) 種，それらに対する捕食者種
の間の個体群動態の数理モデルを解析した。捕食者における探索像の記憶と忘却により捕食確率が変化す
る。 毎日の捕食活動時間における個体群動態を常微分方程式系で，$T$ 日間の捕食シーズンの後の生残個体
による繁殖を Beverton-Holt 差分方程式モデルで与えて，次の捕食シーズンの初期条件を定めるという
過程から成る数理モデルを構築し，解析した。 model 種と mimic 種は捕食者に同類の餌として認識され
る。 model 個体を捕食した後の捕食者の捕食確率は $0$ に，mimic個体を捕食した後の捕食者の捕食確率は
ある高レベルに遷移する。 捕食者個体群サイズは餌個体群サイズに依存せず，一定であるとする。捕食活
動時間終了時の高捕食確率状態にある捕食者の頻度，捕食回避状態にある捕食者の頻度は，捕食履歴 (記
憶 $)$ の忘却により，翌日までにある一定の割合で減少し，その減少した頻度分により，翌日の中庸な捕食
確率状態にある捕食者の初期頻度が定まる。構成された数理モデルの解析により，model個体群の存続条
件は，mimic 個体群サイズに依存しないが，mimic 個体群の存続は，捕食者の探索像記憶保持の程度に依
存することが示された。

1 Introduction
In this work, we analyze a mathematical model of the population dynamics among a mimic, corresponding
model, and their predator populations. The predator changes its search-and-attack probability by forming
and losing its search image. We analyze a mathematical model consisting of the daily population dynamics
with ordinary differential equations, the seasonal population dynamics with difference equations, and the
annual population dynamics with difference equations.

The predator cannot distinguish the mimic from the model, so that each predator searches and attacks
them with common probability. Once a predator predates a model individual, it comes to omit both the
model and the mimic species from its diet menu, and then not to search nor attack them in the same
day. If a predator predates a mimic individual, it comes to increase the search and attack probability for
the model and the mimic. The predator population size is assumed to be kept constant, independently
of the model and the mimic population sizes. The frequency of predators with higher search-and-attack
probability and that with zero search-and-attack probability decreases by a rate between the subsequent
days, because of the predator $s$ losing the search image. Analyzing our model system, we can get the result
such that the condition for the persistence of model population does not depend on the mimic population
size, while the condition for the persistence of mimic population does depend on the predator $s$ ability of
the search image formation.
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Figure 1: Multi time-scale structure of population dynaniics in our model.

Figure 2: Pradator $s$ state transition due to predating the model or the mimic prey.

2 Model
We analyze a mathematical model consisting of the daily population dynamics with ordinary differential
equations, the seasonal population dynamics with difference equations, and the annual population dy-
namics with difference equations (see Fig. 1). Each predation season is composed with the daily dynamics
repeated day by day in $T$ days.

The predator population size is assumed to be kept constant, given by $P$ , independently of the model
and the mimic population sizes. This means such an assumption that the predator is a generalist and has
some other preys to keep the stationary population size, so that it can survive and sustain its population
even if the model and the mimic population go extinct.

The reproductions of model, mimic, and predator species is assumed to occur between the subsequent
predation seasons. In other words, there is no reproduction of model, mimic or predator within the pre-
dation season, so that the model and the mimic populations monotonically decrease due to the predation
during the predation season.
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Daily dynamics
The predator cannot distinguish the mimic $hom$ the model, so that each predator searches and attacks
them with common probability. Once a predator predates a model individual, it comes to omit both the
model and the mimic species from its diet menu, and then not to search nor attack them in the same
day. If a predator predates a mimic individual, it comes to increase the search-and-attack probability for
both the model and the mimic (see Fig. 2).

At the predation period in the $k$ th day of predation season, the predator subpopulation without
any search image for the model/mimic prey is now given by $P_{k}^{0}(t)(k=1,2, \ldots,T)$ , at time $t$ after
the beginning of the predation period $(t=0)$ . In the same way, the predator subpopulation with
higher search-and-attack probability after predating a mimic prey is given by $P_{k}^{+}(t)$ , and that with
zero probability after predating a model prey by $P_{k}^{-}(t)$ . From the assumption of a constant predator
population size,

$P_{k}^{0}(t)+P_{k}^{+}(t)+P_{k}^{-}(t)=P$

for any $t\in[0, \tau]$ , where $\tau$ is the length of predation period in which the daily dynamics undergoes in
each day. The model and the mimic population sizes at time $t\in[0, \tau]$ in the daily dynamics are given
by $m_{k}(t)$ and $x_{k}(t)$ .

In our model, the daily dynamics is governed by the following ordinary differential equations:

$\frac{dm_{k}(t)}{dt}$ $=-F_{M}^{0}P_{k}^{0}(t)-F_{M}^{+}P_{k}^{+}(t)$ ;

$\frac{dx_{k}(t)}{dt}$ $=-F_{X}^{0}P_{k}^{0}(t)-F_{X}^{+}P_{k}^{+}(t)$ ;

$\frac{dP_{k}^{0}(t)}{dt}$ $=-F_{M}^{0}P_{k}^{0}(t)-F_{X}^{0}P_{k}^{0}(t))$ (1)

$\frac{dP_{k}^{+}(t)}{dt}$
$=F_{X}^{0}P_{k}^{0}(t)-F_{M}^{+}P_{k}^{+}(t)$ ;

$\frac{cfP_{k}^{-}(t)}{dt}$ $=F_{M}^{0}P_{k}^{0}(t)+F_{\#\backslash 1}^{+}P_{k}^{+}(t)$ ,

where $\Gamma_{M}^{0}\langle$ is the predation rate for the model per unit population size of $P_{k}^{0}(t)$ at time $t$ , and the others
are defined as well, which are now given by

$F_{M}^{0}=\mu_{k}(t)\cdot b_{0}\{m_{k}(t)+xk(t)\}$ ; $F_{M}^{+}= \mu_{k}(t)\cdot\frac{b_{0}}{c+}\{m_{k}(t)+x_{k}(t)\}$;

$F_{X}^{0}=\chi_{k}(t)\cdot b_{0}\{m_{k}(t)+x_{k}(t)\}$ ; $F_{X}^{+}= \chi_{k}(t)\cdot\frac{b_{0}}{c+}\{m_{k}(t)+x_{k}(t)\}$

with

$\mu_{k}(t)=\frac{m_{k}(t)}{m_{k}(t)+x_{k}(t)}$ ; $\chi_{k}(t)=\frac{x_{k}(t)}{mk(t)+x_{k}(t)}$ .

Parameter $b_{0}$ is the predation coefficient of the predator which does not experience the predation of the
model and the mimic preys. The contact rate of a predator with preys is assumed to be proportional to
the sum of model and mimic populations, $m_{k}(t)+x_{k}(t)$ . Parameter $c^{+}$ is positive and less than 1, which
gives the increase of predation rate by the creation of search image due to the predation of the mimic
prey.

Making use of the following non-dimensionalizing parameter transformation:

$b_{0}tarrow t_{1}$. $b_{0}\tauarrow\tau$ ; $\frac{P_{k}^{0}(t)}{P}arrow p_{k}^{0}(t)$ ; $\frac{P_{k}^{+}(t)}{P}arrow p_{k}^{+}(t)$ ; $\frac{P_{k}^{-}(t)}{P}arrow p_{k}^{-}(t)$ ,
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the system (1) becomes

$\frac{dm_{k}(t)}{dt}$ $=-P \{p_{k}^{0}(t)+\frac{p_{k}^{+}(t)}{c+}\}m_{k}(t)$ ;

$\frac{dx_{k}(t)}{dt}$ $=-P \{p_{k}^{0}(t)+\frac{p_{k}^{+}(t)}{c+}\}x_{k}(t)$ ;

$\frac{dp_{k}^{0}(t)}{dt}$ $=-\{m_{k}(t)+x_{k}(t)\}p_{k}^{0}(t)$ ; (2)

$\frac{dp_{k}^{+}(t)}{dt}$ $=p_{k}^{0}(t)x_{k}(t)- \frac{p_{k}^{+}(t)}{c^{+}}m_{k}(t)$ ;

$\frac{dp_{k}^{-}(t)}{dt}$ $= \{p_{k}^{0}(t)+\frac{p_{k}^{+}(t)}{c+}\}m_{k}(t)$ .

Now $p_{k}^{0},$ $p_{k}^{+}$ and $p_{k}^{-}$ respectively mean the frequency of predators according to the state characterized by
the search-and-attack probability, satisfying that

$p_{k}^{0}(t)+p_{k}^{+}(t)+p_{k}^{-}(t)=1$

for any $t\in[0, \tau]$ .

Seasonal dynamics
The model and the rnimic population sizes at the end of $k$ th predation period in the predation season
are given by $m_{k}(\tau)$ and $x_{k}(\tau)$ . They give the initial population sizes in the subsequent predation period
of the next day: $(m_{k+1}(0), x_{k+1}(0))=(m_{k}(\tau), x_{k}(\tau))$ . We ignore the death rate due to any other reasons
except for the predation in every day of the predation season.

As for the frequencies in the predator population, we introduce the probability of losing the search
image, say, the forgetting probability. The predator loses its search image with a probability between the
end of a predation period and the beginning of the subsequent predation period. The predator with the
higher search-and-attack probability loses it with probability $1-\sigma^{+}$ , where $\sigma^{+}$ means the probability to
keep the attractive search image $(0\leq\sigma^{+}\leq 1)$ . $\ulcorner\Gamma he$ predator with the lower search-and-attack probability
loses it with probability $1-\sigma^{-}(0\leq\sigma^{-}\leq 1)$ . So the parameter $\sigma^{-}$ means the probability to keep the
repulsive search im\‘age. Therefore, we assume the relation between the predator frequencies at the end
of $k$ th predation period and those at the beginning of $k+1$ th one as follows:

$p_{k+1}^{0}(0)$ $=p_{k}^{0}(\tau)+(1-\sigma^{+})p_{k}^{+}(\tau)+(1-\sigma^{-})p_{k}^{-}(\tau)$ ;

$p_{k+1}^{+}(0)$ $=\sigma^{+}p_{k}^{+}(\tau)$ ; (3)

$p_{k+1}^{-}(0)$ $=\sigma^{-}p_{k}^{-}(\tau)$ .

Hence, if the model and the mimic populations do not exist or goes extinct, the frequency $p^{0}$ asymptoti-
cally approaches 1 day by day in a geometric manner. These boundary conditions for the model/mimic
populations and the predator frequencies govem their seasonal dynamics through each predation season
of $T$ days.

Annual dynamics
Let us consider the $n$ th predation season. The initial population sizes of model and mimic are given by
$m_{1}(0)$ and $x_{1}(0)$ from the definitions for the daily dynamics. These initial population sizes simultaneously
define the initial population sizes for the $n$ th predation season, now rewritten by $M_{n,0}(=m_{1}(0))$ and
$X_{n,0}(=x_{1}(0))$ .

In our model, the reproduction of the model and the mimic populations is given by what is called
Beverton-Holt model. Since the reproduction season is now assumed to be between subsequent pre
dation seasons, their population sizes $(m_{T}(\tau), x_{T}(\tau))$ at the end of $n$ th predation season determine
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$(M_{n+1,0}, X_{n+1,0})=(m_{1}(0),x_{1}(0))$ at the beginning of $n+1$ th predation season:

$M_{n+1,0}$ $= \frac{r_{M}m_{T}(\tau)}{1+\beta_{M}m_{T}(\tau)}$
.

(4)
$X_{n+1,0}$ $= \frac{r_{X}x_{T}(\tau)}{1+\beta_{X}x_{T}(\tau)}$ ,

where $r_{M}$ and $r_{X}$ are respectively the intrinsic growth rate, $\beta_{M}$ and $\beta_{X}$ the density effect coefficient.
In our model, we assume that the predator completely loses the search image in the period between

subsequent predation seasons. Thus the initial condition for the predator $s$ frequencies according to the
state of search-and-attack probability is given by

$(p_{1}^{0}(0),p_{1}^{+}(0),p_{1}^{-}(0))=(1,0,0)$ ,

on the first day of any predation season, independently of their values at the end of previous season.

3 Analysis

Daily dynamics
From (2), we can easily find that $d(\log m_{k})/dt=d(\log x_{k})/dt$ for any $t\in[0, \tau]$ . This means that the ratio
$Xk(t)/mk(t)$ is constant independently of $t$ , so that $x_{k}(t)/m_{k}(t)=Xk(0)/m_{k}(0)$ for any $t\in[0, \tau]$ and any
$k=1,2,$ $\ldots,$

$T$ . Moreover, from the boundary condition $(m_{k+1}(0),x_{k+1}(0))=(m_{k}(\tau)_{)}x_{k}(\tau))$ , we lastly
have

$\frac{x_{k}(t)}{m_{k}(t)}=\frac{x_{k}(0)}{m_{k}(0)}=u_{n}:=\frac{ir_{1},(0)}{m_{1}(0)}$ (5)

for any $t\in[0, \tau]$ and any $k=1,2,$ $\ldots,$
$T$ in the $n$ th predation season. We remark that, from the

definition, $x_{1}(0)/m_{1}(0)=M_{n,0}/X_{n,0}$ , the ratio at the beginning of the first predation period in the $n$ th
predation season. Furthermore, from (2), we can find that $d(m_{k}+p_{k}^{-}P)/dt=0$ for any $t\in[0, \tau])$ too.
Thus, we have

$m_{k}(t)=m_{k}(0)-\{p_{k}^{-}(t)-p_{k}^{-}(0)\}P$ (6)

for any $t\in[0, \tau]$ .
Now, from (2), since $dm_{k}/dt<0$ for any $p_{k}^{0}>0,$ $p_{k}^{+}>0$ and $m_{k}>0,$ $m_{k}(t)$ is monotonically decreasing

in terrns of $t\geq 0$ . On the other hand, $\prime n_{k}(t)\equiv 0$ is a specific solution for the first differential equation
of (2). Thus, because of the uniqueness of solution, $m_{k}(t)$ with any positive initial value $m_{k}(0)>0$ is
bounded from below. Therefore, $\lim_{tarrow\infty}m_{k}(t)=m_{k}^{*}\geq 0$ exists. Fkom (2) with the trivial boundedness
such that $p^{-}\leq 1$ , making use of the analogous arguments, we find that $\lim_{tarrow\infty}p_{k}^{-}(t)=p_{k}^{-}"$

$\geq 0$ exists, too.
Lastly, this means that $\lim_{tarrow\infty}p_{k}^{+}(t)=p_{k}^{+*}\geq 0$ and $\lim_{\dagger.arrow\infty}p_{k}^{0}(t)=p_{k}^{0*}\geq 0$ exist at the same time.

If $m_{k}^{*}>0$ , then, from (2), it is necessary that $p_{k}^{0*}=p_{k}^{+*}=0$ so that $p_{k}^{-}‘$ $=1$ . In this case, from (6),
$m_{k}^{*}=m_{k}(0)-\{1-p_{k}^{-}(0)\}P$, which is valid when and only when $mk(0)>\{1-p_{\overline{k}}(0)\}P$ . In contrast, from
(6), if $m_{k}^{*}=0$ , then $p_{k}^{-}"$ $=p_{k}^{-}(0)+m_{k}(0)/P$ which is valid when and only when $p_{\overline{k}}(0)+m_{k}(0)/P\leq 1$ ,
that is, $mk(0)\leq\{1-p_{k}^{-}(0)\}P$ . In this case, from (5), $\lim_{tarrow\infty}xk(t)=x_{k}^{*}=0$ as well.

With these arguments, now we have the following result:

In the daily dynamics given by (2), the system asymptotically approaches the equilibrium state
given by

$(m_{k}(t), x_{k}(t),p_{k}^{0}(t),p_{k}^{+}(t),p_{k}^{-}(t))arrow$$tarrow\infty\{\begin{array}{l}E_{0}(0,0,p_{k}^{0*},p_{k}^{+*},p_{k}^{-*}) if m_{k}(0)\leq\{1-p_{k}^{-}(0)\}P;E_{+}(m_{k}^{*}, u_{n}m_{k}^{*}, 0,0,1) if m_{k}(0)>\{1-p_{k}^{-}(0)\}P\end{array}$ (7)

for $k\geq 1$ .
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Equilibrium state approximation
Now, we introduce an approximation for the state at the end of predation period. Let us assume that the
state $(m_{k}(t),x_{k}(t),p_{k}^{0}(t),p_{k}^{+}(t),p_{k}^{-}(t))$ approaches the equilibrium state given by (7) sufficiently fast. In
other words, we assume that the state at the end of predation period $(m_{k}(\tau),x_{k}(\tau),p_{k}^{0}(\tau),p_{k}^{+}(\tau),p_{k}^{-}(\tau))$

is sufficiently near the equilibrium state given by (7). Thus, as an approximation, we hereafter use the
equilibrium state given by (7) as the state at the end of predation period.

With this approximation, we reset up the relation between the predator frequencies at the end of $k$

th predation period and those at the beginning of $k+1$ th one as follows $(k\geq 1)$ :

$p_{k+1}^{0}(0)$ $= \lim_{tarrow\infty}\{p_{k}^{0}(t)+(1-\sigma^{+})p_{k}^{+}(t)+(1-\sigma^{-})p_{k}^{-}(t)\}$ ;

$p_{k+1}^{+}(0)$ $= \lim_{tarrow\infty}\{\sigma^{+}p_{k}^{+}(t)\}$; (8)
$p_{k+1}^{-}(0)$ $= \lim_{tarrow\infty}\{\sigma^{-}p_{k}^{-}(t)\}$,

instead of (3).
From (7) and (8), as far as the mimic population persists and the system asymptotically approaches

the equilibrium state $E+$ in the $k$ th predation period, we have

$(p_{k+1}^{0}(0),p_{k+1}^{+}(0),p_{k+1}^{-}(0))=(1-\sigma^{-}, 0, \sigma^{-})$.

In contrast, once the mimic population goes extinct in the $k$ th predation period with the equilibrium
state $E_{0}$ in (7), which could be regarded as the consequence of predator‘s overgrazing, we have

$p_{k+1}^{0}(0)$ $=p_{k}^{0*}+(1-\sigma^{+})p_{k}^{+\prime}+(1-\sigma^{-})p_{k}^{-}.$ ;

$p_{k+1}^{+}(0)$ $=\sigma^{+}\rho_{k)}^{+}$

$p_{k+1}^{-}(0)$ $=\sigma^{-}p_{k}^{-}.$ .

Subsequently, since the mimic and the model populations have gone extinct, the system (2) gives no
change of the predator frequencies in the subsequent predation period. Thus, we have

$p_{k+1}^{0}$ $=p_{k}^{0*}+(1-\sigma^{+})p_{k}^{+*}+(1-\sigma^{-})p_{k}^{-*}$ ;

$p_{k+1}^{+*}$ $=\sigma^{+}p_{k}^{+*}$ ;

$p_{k+1}^{-*}$ $=\sigma^{-}p_{k}^{-*}$ .

Therefore, the predator frequencies geometrically approach $(1, 0,0)$ day by day after the extinction of the
mimic and the model populations, because of the predator $s$ losing the search image.

Now, suppose that the mimic population persists till the $k$ th predation period. Then, from the above
arguments, we have $(p_{k}^{0}(0),p_{k}^{+}(0), p_{k}^{-}(0))=(1-\sigma^{-}, 0, \sigma^{-})$ for $k>1$ . Further, from (2) and (5), we find
that

$\frac{d}{dp_{k}^{0}(t)}[\frac{p_{k}^{+}(t)}{\{p_{k}^{0}(t)\}^{\alpha}}]=-\frac{u_{n}}{1+u_{n}}\frac{1}{\{p_{k}^{0}(t)\}^{\alpha}}$ ,

where $\alpha_{\mathfrak{n}}$ $:=1/\{c^{+}(1+u_{n})\}$ . Hence, we can obtain the following relation between $p_{k}^{0}(t)$ and $p_{k}^{+}(t)$ in the
$k$ th predation period:

$p_{k}^{+}(t)=\{\begin{array}{ll}-(1-c^{+})p_{k}^{0}(t)\log\frac{p_{k}^{0}(t)}{p_{k}^{0}(0)} if \alpha_{n}=1;\frac{1}{\alpha_{n}-1}\frac{u_{n}}{1+u_{n}}p_{k}^{0}(t)[1-\{\frac{p_{k}^{0}(t)}{p_{k}^{0}(0)}\}^{\alpha_{\mathfrak{n}}-1}] if \alpha_{n}\neq 1.\end{array}$

Making use of this equation with $p_{k}^{+}(t)=1-p_{k}^{-}(t)-p_{k}^{0}(t)$ and $p_{k}^{+}=1-p_{k}^{-}"$ $-p_{k}^{0*}$ , we can easily prove
that the equilibrium state $E_{0}$ in (7) uniquely exists with $0<p_{k}^{0}<1,0<p_{k}^{+*}<1$ and $0<p_{k}^{-*}<1$ .

From these arguments and (7), we can get the following result:
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(a) (b)

Figure 3: A numerical example of the seasonal dynamics governed by (2) with the equilibrium state approximation
(8). Solid curves show the daily dynamics, and dashed curves do the interval between subsequent predation
periods. (a) $(m_{1}(0), x_{1}(0))=$ (52.4469, 26.2234); (b) $(m_{1}(0), x_{1}(0))=$ (26.2234, 13.1117). Commonly, $T=50$,
$\tau=2.0,$ $c^{+}=0.1,$ $\sigma^{+}=0.5,$ $\sigma^{-}=0.1,$ $P=1.0,$ $rr\iota_{c}=45.i$ . The mimic and the model populations persist
through the predation sea.son in (a), while they go extinct on a day of it in (b).

The mimi$c$ and the model populations persist in the $k$ th predation penod if and only if$m_{k}(0)>$

$(1 -\sigma^{-})P$ for $k>1$ and $m_{1}(0)>P.$ Then, $(p_{k}^{0*},p_{k}^{+*},p_{k}^{-*})=(0,0,1)$ and $m_{k}^{*}=m_{k}(0)-$

$(1 -\sigma^{-})P$ . for $k>1$ and $mi=m_{1}(0)$ –P. If and only if $m_{k}(0)\leq(1-\sigma^{-})P$ for some
$k>1$ or $m_{1}(0)\leq P$ , the mimic and the model populations go extinct in the $k$ th or the first
predation period, and then the system approaches the equilibrium state $E_{0}$ with $0<p_{k}^{0*}<1$ ,
$0<p_{k}^{+*}<1$ and $0<p_{k}^{-*}<1$ .

As for a special case without the model population, when the system contains the mimic and the
predator, we can easily shown that the mimic population goes extinct on the first day of predation season
with the equilibnum state approximation without the model population.

Seasonal dynamics
Let us consider the case that the mimic and the model populations persist till the $k$ th predation period
$(k>1)$ . Then, from the above arguments with the equilibrium state approximation, we have the following
daily recurrence relation about the initial model population size:

$m_{j+1}(0)=m_{j}(0)-\{1-p_{j}^{-}(0)\}P$ (9)
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for $j=1,2,$ $\ldots,$ $k-1$ . Since $p_{1}^{-}(0)=0$ and $p_{j}^{-}(0)=\sigma^{-}$ for $j>1$ , this recurrence relation gives the
following general form of $m_{j}(0)$ :

$m_{j}(0)$ $=$ $m_{1}(0)-\{1+C-2)(1-\sigma^{-})\}P$ for $j=2,3,$ $\ldots,$
$k$ . (10)

As a consequence, since the necessary and sufficient condition that the mimic and the model populations
persist in the $T$ th predation period ($=$ the last predation period in the predation season) is given by
$m_{T}(0)>(1-\sigma^{-})P$ from the result in the previous section, we have the following result about the seasonal
dynamics:

The mimic and the model populations persest through the $n$ th predatior} season if and only if
$m_{1}(0)=M_{n,0}>m_{c}:=\{1+(T-1)(1-\sigma^{-})\}P$. (11)

Othemrise, the mimic and the model populations simultaneously go extinct in the $k_{c}$ th day $0\int$

the $n$ th predation season, where the day $k_{\epsilon}$ the extinction occurs is determined by

$k_{e}= \min\{j|j\geq\frac{M_{n,0}/P-1}{1-\sigma^{-}}+1,1\leq j\leq T\}$ . (12)

In the case that the mimic and the model populations persist through the $n$ th predation season, the
mimic population size $m_{T}$ at the end of the predation season is given by

$m_{\dot{T}}$ $=$ $m_{T}(0)-(1-\sigma^{-})P=m_{1}(0)-\{1+(T-1)(1-\sigma^{-})\}P$

$=$ $M_{\mathfrak{n},0}-m_{c}$ . (13)

As a consequence, the extinction of only one of mimic and model never occurs in the seasonal dynamics
of our model with the equilibrium state approximation, while it is likely that both of them go extinct in it.
A numerical example of the seasonal dynamics governed by (2) with the equilibrium state approximation
(8) is given in Fig. 3.

Annual dynamics

From (4) with the equilibrium state approximation (8), the model and the mimic populations at the
beginning of $n+1$ th predation season, $M_{n+1,0}$ and $X_{n+1,0}$ , are now given by the following reproduction
functions:

$M_{n+1,0}$ $= \frac{r_{M}m_{\dot{T}}}{1+\beta_{M}m_{T}}$ ;
(14)

$X_{n+1,0}$ $= \frac{r_{X}x_{T}^{*}}{1+\beta_{X}x_{T}^{*}}$ ,

where

$x_{T}^{*}=u_{n}m_{T}^{*}= \frac{x_{1}(0)}{m_{1}(0)}m_{T}^{*}=\frac{X_{n,0}}{M_{n,0}}m_{J’}^{*}$,

from (5). Then, from (7), (11), (13) and (14), we have the following difference equations to determine
the annual dynamics in terms of the model and the mimic population sizes at the beginning of predation
season:

$M_{n+1.0}$ $= \frac{r_{M}[M_{\mathfrak{n},0}-m_{c}]_{+}}{1+\beta_{M}[M_{n,0}-m_{c}]_{+}}$;

(15)

$X_{n+1,0}$ $= \frac{r_{X}[M_{n,0}-m_{c}]_{+}X_{n,0}}{M_{\iota,0}+\beta_{X}[M_{\iota,0}-m_{c}]_{+}X,,0}$ ,

where the symbol $[$ $]_{+}$ is defined by

$[x]_{+}:=\{\begin{array}{l}x for x>0;0 for x\leq 0.\end{array}$
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We note that the annual dynamics of model population is independent of that of mimic population, while
the latter depends on the former.

Analyzing the first equation of (15), we can obtain the following result about the persistence of model
population:

If and only if the following conditions are satisfied, the model population persists in any
predation season, and $M_{n,0}arrow M^{*}=m_{c}+\lambda+=(r_{M}-1-m_{c}/\lambda_{+})/\beta_{M}$ as $narrow\infty$ :

$r_{M}$ $\geq$ $(1+\sqrt{\beta_{M}m_{c}})$

.
; (16)

$M_{1,0}$ $\geq$ $m_{c}+\lambda_{-}=(r_{M}-1-m_{c}/\lambda_{-})/\beta_{M}$ , (17)

where

$\lambda\pm=\frac{1}{2\beta_{M}}[r_{M}-(1+\beta_{M}m_{c})\pm\sqrt{\{r_{M}-(1+\sqrt{\beta_{M}m_{c}})^{2}\}\{r_{M}-(1-\sqrt{\beta_{M}m_{c}})^{2}\}}]$ . (18)

Othemrise, the model population goes extinct in the $n_{e}$ th predation season with $M_{n_{*},0}\leq m_{c}$ ,
where

$n_{\epsilon}$. $=1+[ \frac{\log(\frac{1-[M_{n,O}-m_{c}]_{+}/\lambda+}{1-[M_{n,O}-m1+/\lambda-})}{\log(\frac{1+\beta_{M}\lambda_{+}}{1+\beta_{M}\lambda_{-}})}I\cdot$ (19)

The symbol $[x$ I means the smallest integer not less than $x$ .
As for the mimic population governed by the second difference equation of (15), here let us consider it

with $M_{n,0}\equiv M^{*}=m_{c}+\lambda+$ for any $n$ . This is because the model population dynamics is independent of
the mimic one. Besides, as we have already seen, if the model population goes extinct, then so does the
mimic population. Further, we can prove that, even if the mimicry is absent, the seasonal and the annual
dynamics for the model population is the same as shown above. So we now focus the mimic population
dynamics when the model populat,ion has reached it, $s$ equilibrium state according to the annual dynamics
governed by the first difference equation of (15). Hence, instead of the second difference equation of (15),
let us consider here the following annual dynamics of mimic population:

$X_{n+1,0}= \frac{r_{X}X_{n,0}}{1+m_{c}/\lambda_{+}+\beta_{X}X_{n,0}}$ . (20)

$\mathbb{R}om$ this difference equation, we obtain the following result about the persistence of mimic population:

If and only if the following condition is satisfied when the model population persists at its
equilibnum state, the mimic population persists in any predation season:

$r_{X}>1+ \frac{m_{c}}{\lambda_{+}}=r_{M}-\beta_{M}M^{*}$ , (21)

and then

$X_{n,0} arrow X^{*}=\frac{1}{\beta_{X}}\{r_{X}-(1+\frac{m_{c}}{\lambda+})\}=\frac{\beta_{M}}{\beta_{X}}M^{*}+\frac{?^{\backslash }x-r_{M}}{\beta_{X}}$ (22)

as $narrow\infty$ . Otherwise, the mimic population goes extinct, that is, $X_{n,0}arrow 0$ as $narrow\infty$ for
any $X_{1,0}>0$ .

Differently from the case of model population, there is no condition for the initial value $X_{1,0}$ about the
mimic population persistence.

We note that, in this result, unless the condition (21) is satisfied, the mimic population tends to go
extinct, though its extinction never occurs at any finite time as long as the model population persists.
As already seen in the seasonal dynamics, the mimic population goes extinct in a predation season only
when so does the model population. Thus, the mimic’s extinction in the above result means the tendency
for the mimic population to go extinct. In such case, the mimic population size decreases not only day
by day in the predation season but also year by year, independently of the temporal variation of model
population size.
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(a) (b) (c)

Figure 4: m.-dependence of equilibrium population sizes at the beginning of predation season, that is, for the
annual dynamics of (2) and (14) with the equilibrium state approximation (8). (a) $rx=1.2;(b)rx=1.5;(c)$
$r_{X}=2.5$ . Commonly, $r_{M}=2.0$ . In caee of (a), the mimic population is extinct for a range of $m_{c}$ in which the
model population is persistent. In cases of (b) and (c), the mimic population is persistent as long as the model
population is.

Equilibrium population size ratio
In the case when the model population is persistent under those conditions (16) and (17), then, from (5),
we can show that the ratio of their population sizes approaches a constant at any moment in the daily
dynamics of any predation season:

$\frac{X_{n,0}}{M_{n,0}}=\frac{x_{k}(t)}{m_{k}(t)}=u_{n}arrow\frac{X}{M^{*}}=\frac{\beta_{M}}{\beta_{X}}\cdot\frac{[r_{X}-1-m_{c}/\lambda_{+}]_{+}}{r_{M}-1-m_{c}/\lambda_{+}}$ (23)

as $narrow\infty$ , where $[$ $]_{+}$ is defined as before. Numerical examples of $m_{c}$-dependence of the equilibrium
population size ratio are given in Fig. 4.

We can easily find that $m_{c}/\lambda_{+}$ is monotonically increasing and $m_{c}+\lambda_{+}$ is monotonically decreasing
in terms of $m_{c}$ . Since $m_{r}$, defined in (11) is monotonically decreasing between its minimum $P$ and
maximum $TP$ in terms of $\sigma^{-}$ , the results of our analysis indicate that the persistence of model and
mimic population depends on the predator $s$ ability of repulsive search image formation. Moreover, it is
likely that the predator‘s ability of repulsive search image formation could determine the population size
ratio between the mimic and the model populations.

4 Concluding Remarks
As the predator‘s ability of repulsive search image formation is better, it is more likely for the model
population to persist, and the equilibri.um model population size gets larger. This is because the better
ability of repulsive search image formation indicates to repel the predator from the model population
so as to make the predation praesure weaker for it. This feature according to the predator‘s ability of
repulsive search image formation can be adopted to the persistence and the equilibrium size of mimic
population, too. At the same time, this result implies that the equilibrium population size ratio between
the model and the mimic is affected by the predator’s ability of repulsive search image formation.

Beyond these results in the population dynamical nature, we could extend our result to some discus-
sions on the evolution or the invasion of mimicry from the viewpoint of coexistence of the mimic and the
model populations. Iiurther, we could discuss the possible coevolutionary relation between the predator
and the model/mimic species. We separately show these discussions elsewhere.
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