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On the duality arising from the Class II
subgroups of the Infinite Dimensional Rotation

Group.
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1 Introduction

We are in search of profound properties of Brown-
ian motion B(t) and white noise B(t) that remain not
yet so much investigated. Indeed, there are many such



subjects. Among others, invariance of the probabil-
ity distribution p of white noise is now attractive for
us. For the study of the invariance in question, we can
provide a powerful tool from the theory of transforma-
tion group. That is the infinite dimensional rotation
group, in particular, the so-called class II subgroup. In
the course of this study, we have found a characteristic
property in line with duality. Further, we have found
some good connections with quantum dynamics; e.g.
conformal invariance of quantum fields.

2 Infinite dimensional rotation group

and the group Dif f,(S')/Rot(S?)

We start with the general definition of the infinite
dimensional rotation group after H. Yoshizawa 1969.

Take a nuclear space E and let O(E) be a collection
of memebers g such that

1) g is a linear isomorphism of of F,

2) g is orthogonal:

lg€ll = lIEll-

For the present purpose we specify E to be Dy in
the sense of Gel’fand:

Do={f: f(u) € C=, f(1/u) € C=}.  (2.1)

|u|
We can establish an isomorphism
Dy = D(SY),

where D(S") is the space of C*°-functions on the unit
circle S'. The actual isomorphism may be given by
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the mapping:

V2

V1+u?
(2.2)

The topology of the space Dy is introduced so as to be

v:€(0) = fu) = (v€)(u) = {(2tan™" u)

isomorphic to C*(S!). As a result the space Dy is a
o-Hilbert nuclear space.

To fix the idea, we shall take a nuclear space E to
be either Dy or Dyy which will be introduced in Section
4.

i) Since O(FE) is very big (neither compact nor lo-
cally compact), we take subgroups that can be
managed. First the entire group is divided into
two parts: Class I and Class II.

The Class I involves members that can be deter-
mined by using a base (or coordinate vectors), say

{&.} of E:

While any member of the class IT should come from
a diffeomorphism of the parameter space R, the
one-point compactification of R.

ii) We are interested in new subgroups in the class II
that are illustrated below.

As in [9], we can define the class II subgroups of O(E).

Definition 1. Let g be a member of O(E) defined in
the form

(98)(u) = &(f () VIS (w)], (2-3)

where f is a diffeomorphism of R. If such g belongs to
O(E), then, g is said to be in the class II. If a subgroup
G of O(E) involves members in class II only, then G is
a subgroup of class II.
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Proposition 2.1 A class II subgroup of O(FE) is iso-
morphic to some subgroup G of Dif f(S')/Rot(S!).

Proof. Compare the norm, For E = Dy a member of
O(E) preserves the L2-norm, Use the transformation
~. Then, we can see that for f = ¢

| swrdu= [ g(6yas

holds. Hence a member g € Dif f(S?) corresponds to
a member of O(FE) only when g preserves the L2(S?)-

norrim.

Take a class II subgroup U of O(F) such that
U= Diff(sh)nV,
where V is the unit ball of L%(S?,d#),

Definition 2.2 A one parameter subgroup g;,t € R?,
of U is called a whisker if it is expressed in the form

(96)(€) () = &(he(u))/ |t ()] (2.4)

where P;(u) = f71(f(u)+1t), and if g is continuous in
t.

The collection of whiskers is denoted by W.

Some more details regarding the whiskers shall be
discussed in Section 3. The next subject to be re-

minded is the adjoint, denoted by g*, of g € O(E).

The collection O*(E*) of the adjoint operators g*
forms a group which is isomorphic to O(E). The signif-
icance of the group O*(E*) is that every g* in O*(E*)
keeps the white noise measure p to be invariant:

gu=p. (2.5)

From this equality, starts the characterization of u by
using the rotation group.
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One might think that O(E) is a limit of the finite
dimensional rotation groups SO(n) as n — oo, but not
quite. The limit can occupy a very minor part of O(F)
: of course it is almost impossible to measure the size
of the limit occupied in the entire group O(FE). Set

G = ind.lim,G,,

where G,, =2 SO(n). The G, is in class 1.

In what follows we shall discuss particularly sub-
groups belonging to the class II, in particular W.

3 Whiskers

Subgroups in the Class I have, so far, been rather
well- investigated. We shall, therefore, study the Class
I1,

First we shall have a brief review of the known re-
sults so that we can find some hints to find new good
subgroups of O(FE).

Each member of the class W, say {g;,t : real},
should be defined by a system of parameterized dif-
feomorphisms {¢;(u)} of R = RU co. Namely, as in
(2.4).

We are interested in a subgroup that is consisting of
whiskers and that can be made to be a local Lie group
embedded in O(E). In what follows the basic nuclear
space is specified to D, defined before (also see [3]).

More practically, we restrict our attention to the
case where g;,t € R has the (infinitesimal) generator

_dy
o = dtgt t=0
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Note that, by the assumptions of the group property
and continuity, a family {v;(u),t € R} is such that
4 (u) is measurable in (¢,u) and satisfies

¢t'¢t = ¢t+s
Yo(u)

u.

Following J. Aczél [1], we have an expression for
Yi(u):

Ye(u) = f(f 7 (u) +1) (3.1)

where f is continuous and strictly monotone. Its (in-

finitesimal) generator «, if f is differentiable, can now
be expressed in the form

o= a(u)gd& + —;—a’(u), (3.2)
where
a(u) = f'(f71(w). (3.3)

See e.g.[3], [4]-

We have already established the results that there
exists a three dimensional subgroup of class II with
significant probabilistic meanings. The group consists
of three whiskers, the generators of which are expressed

by a(u) = 1,a(u) = u,a(u) = u?, respectively.
Namely, we show a list:
d
§ = —
du’
T = u—d~ + !
- du 2’
K = ’U,Qi +u
B du

One of the interesting interpretations may be said
that they are put together to describe the projective
invariance of Brownian motion.
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Those generators form a base of a three dimensional
Lie algebra under the Lie product.

The algebra given above is isomorphic to sl(2, R).
This fact can easily be seen by the commutation rela-
tions:

[7,8] = —s
[1,6] = K
[k,s] =27

There is a remark that the shift with generator s
is sitting as a key member of the generators. It corre-
sponds to the flow of Brownian motion, significance of
which is quite clear.

Also, one can take 7 to be another key generator.
The 7 describes the Ornstein-Uhlenbeck Brownian mo-
tion which is stationary Gaussian and simple Markov.

An interesting remark is that the above three gen-
erators span a vector space isomorphic to so(2, 1).

Let g; be the adjoint operator to g;. Then, the
system {g;} again forms a one-parameter group of
(the white noise measure) preserving transformations
g;i. The system is a flow on the white noise space

(B, ).

We are now in a position to have general relation-
ships among the generators of the form (3.2) with the
expression (3.3).

Introduce the notation
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where a(u) is assumed to be C; class. The collection
of such «, is denoted by D. Then, we have

Triviality It holds that, with the notation {a,b} =
ab/ — a'b, for any o, and oy

[aaa ab] = Q{a,b}»

[0, ] = —[aw, @,

where [-, ] is the Lie product.

Proposition 3.1 The collection D forms a base of a
Lie algebra, which is denoted by A. There is no iden-
tity.

It is interesting to find a subalgebra which is expected
to have some interesting probabilistic property. Set-
ting o = au-1,p € Z, in particular, we shall discuss
some more details in the next section.

4 Half whiskers
The results of this section mostly come from [13].

We are now in search of new whiskers that show
some significant probabilistic properties hopefully like
the three whiskers in the last section under somewhat
general setup. There a whisker may be changed to a
half-whisker under mild restrictions.

First we recall the notes [11] p. 60, Section O 1,
where a new class of whiskers has been proposed, in
reality, most of the members are half whiskers. Let us
repeat the proposal.

du
is suggested to be investigated, where p is not neces-

uP, u >0, (4.1)

sarily be integer. (The power p + 1 was written as «



n [11], but to avoid notational confusion, we write p
instead of a.)

Since fractional power p is involved, we tacitly as-
sume that u is non-negative, We, therefore,take a white
noise with time-parameter [0, 00). The basic nuclear
space E is chosen to be Dy, which is isomorphic to Dy,
eventually isomorphic to C*°(S?).

We are now ready to state a partial answer.

As was remarked in the last section, the power 1 is
the key number and, in fact, it is exceptional. In this
case the variable u runs through R, that is, corresponds
to a whisker with generator 7. In what follows, we
exclude the case p = 0.

We remind the relationship between f and a(u) that
appears in the expressions of ¢;(u) and «, respectively.
The related formulas are the same as in the case where

u runs through R.

Assuming differentiability of f we have the formula
(3.8). For a(u) = uP, the corresponding f(u) is deter-
mined. Namely,

w = f'(f7(w).

An additional requirement for f is concerned with the
domain of f, namely f should be a map from the entire
[0.00) onto itself. Hence, we have

f(u) = u, (4.2)
where ¢, = (1 — p)/(-P),
We, therefore, have

FHu) = (1—p)tulP. (4.3)
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We are ready to define a transformation g} acting on
Dqo by

u P 1-p
(9)) = E(eo e 10 L2 (2 4 pla-mce,
(4.4)

Note that f is always positive and maps (0, c0) onto
itself in the ordinary order in the case p < 1; while in
the case p > 1 the mapping is in the reciprocal order .

The exceptional case p = 1 is refered to the litera-
ture [4]. It has been well defined.

Then, we claim, still assuming p # 1, the following
theorem.

Theorem 4.1 i) g¥ is a member of O(Dyy) for every
t>0.

i) The collection {g?,t > 0} forms a continuous semi-
group with the product gt - g° = gt fort,s > 0.

ii) The generator of g¥ is o given by (4.1) up to con-
stant.

Proof. Assertion i) comes from the structure of Dyy.

Assertions ii) and iii) can be proved by actual elemen-

tary computations.

Definition A continuous semi-group g;,t > 0, each
member of which comes from ;(u) is called a half
whisker.

Theorem 4.2 The collection of half whiskers gf,t >
0,p € R, generates a local Lie semi-group G :

G = generated by {¢f! ---gi"}



The definition of a local Lie group is found, e.g. in
W. Miller, Jr. [11]. A semi-group is defined similarly.

5 Lie algebra and duality

The collection {o®;p € R} generates a vector space
g1, where the Lie product [, -] is introduced.

Proposition 5.1 The vector space g, forms a Lie al-
gebra with the usual Lie prodect.

Note that the exceptional power 1 is now included.
With this understanding, we have

Theorem 5.2 The space g;, is a Lie algebra param-
eterized by p € R. It is associated with the local Lie
semi-group G,.

Proof. We have

d 1
(07,0 = (¢ = p)u™ " =+ (g = p)(p + ¢ — D™,
(5.1)
The result is (¢ — p)aP™®. This proves the theorem.

In fact, we have an infinite dimensional Lie algebra,
the base of which consists of one-parameter system of
generators of half whiskers.

[Note] If gy is slightly modified to g’ = {%a”}, then
the exceptional member a°(= 7) plays the role of the
identity:

[of, "] = o?.

0

In addition, o can be the generator of a whisker and

it plays really a central role.
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Duality.
With respect to a® we can see a duality
of <= a"
For every p, the (gf)* is a semigroup of y-measure pre-

serving transformations. We may, therefore, define a
Gaussian process X?(t) in such a manner that

XP(t) = ((g7)"z,§),
where x € E*(u).

We have much freedom to choose &, in fact, we may
choose the indicator function xjo 1) (u).

By a simple computation we can see that for p <
1,0<h<1

E(X?(t+ h), X?(t)) = v(h),

holds, that is a function only of h.

6 Concluding remarks.

1. We shall propose a more general theory, where
it is possible to propose many kinds of half whiskers.
Namely, we may consider general infinitesimal genera-
tors, where the functions a(u) in (3.8) or f in (3.6) are
restricted so as to define subgroups of O(Dyy).

2. As is easily seen, the algebra g, is perfect. that is

[gL.8L] = 8L,

that is, the derived algebra coincides with itself. Hence
there exists the universal central extension. It is our
hope that we can follow the line of studying the Vira-
soro algebra.
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