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概要

ブラウン運動もホワイトノイズも、 よく知られていると思われている
が、 実際はまだ解明しなければならないことや未開発の分野が残されて
いる。 それらを調べるための一環として、 ここでは次の 2点をとりあげ
たい。

1 $)$ 無限次元回転群はホワイトノイズ測度を特徴づけるので、その
研究はホワイトノイズ解析に直結する。 この群の新たな部分群または部
分半群を探しだし、調和解析につなげることを試みる。半群はいわゆる
クラス II に属するが、 そこには新たな Duality がみられる。

同じく回転群に関連して派生する話題として次のことを扱う。

2 $)$ クラス I とクラス II の部分群の特性と関係について、
前者は有限元回転の極限 (広い意味で) としてみられるが、後者は本

質的に連続無限的で、前者から後者への移行には注意すべきことが多い。
いわば Digital から Analogue への移行である。 ランダムな場合であり、
analogue では変数として $B(t)$ を用いる。 それは長さ無限大のベクトル
であり、 その非線形関数の構成には「繰り込み」 が必要であり、微分作
用素の digital のときとは異質である。 その解析的、 かつ確率論的特長
に注目したい。 また量子ダイナミックスとの関連にも注意したい。 関連
する事項の詳細は別稿で扱う。

1 Introduction

We are in search of profound properties of Brown-
ian motion $B(t)$ and white noise $\dot{B}(t)$ that remain not
yet so much investigated. Indeed, there are many such
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subjects. Among others, invariance of the probabil-
ity distribution $\mu$ of white noise is now attractive for
us. For the study of the invariance in question, we can
provide a powerful tool from the theory of transforma-
tion group. That is the infinite dimensional rotation
group, in particular, the so-called class II subgroup. In
the course of this study, we have found a characteristic
property in line with duality. Further, we have found
some good connections with quantum dynamics; e.g.
conformal invariance of quantum fields.

2 Infinite dimensional rotation group
and the group $Diff_{+}(S^{1})/Rot(S^{1})$

We start with the general definition of the infinite
dimensional rotation group after H. Yoshizawa 1969.

Take a nuclear space $E$ and let $O(E)$ be a collection
of memebers $g$ such that

1 $)$ $g$ is a linear isomorphism of of $E$ ,

2 $)$ $g$ is orthogonal:

$\Vert g\xi\Vert=\Vert\xi\Vert$ .

For the present purpose we specify $E$ to be $D_{0}$ in
the sense of Gel‘fand:

$D_{0}= \{f:f(u)\in C^{\infty}, f(1/u)\frac{1}{|u|}\in C^{\infty}\}$ . (2.1)

We can establish an isomorphism

$D_{0}\cong D(S^{1})$ ,

where $D(S^{1})$ is the space of $C^{\infty}$-functions on the unit
circle $S^{1}$ . The actual isomorphism may be given by
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the mapping:

$\gamma$ : $\xi(\theta)arrow f(u)=(\gamma\xi)(u)=\xi(2\tan^{-1}u)\frac{\sqrt{2}}{\sqrt{1+u^{2}}}$ .

(2.2)
The topology of the space $D_{0}$ is introduced so as to be
isomorphic to $C^{\infty}(S^{1})$ . As a result the space $D_{0}$ is a
$\sigma$-Hilbert nuclear space.

To fix the idea, we shall take a nuclear space $E$ to
be either $D_{0}$ or $D_{00}$ which will be introduced in Section
4.

i $)$ Since $O(E)$ is very big (neither compact nor 10-
cally compact), we take subgroups that can be
managed. First the entire group is divided into
two parts: Class I and Class II.

The Class I involves members that can be deter-
mined by using a base (or coordinate vectors), say
$\{\xi_{n}\}$ of $E$ :

While any member of the class II should come from
a diffeomorphism of the parameter space $\overline{R}$ , the
one-point compactification of $R$ .

ii) We are interested in new subgroups in the class II
that are illustrated below.

As in [9], we can define the class II subgroups of $O(E)$ .

Definition 1. Let $g$ be a member of $O(E)$ defined in

the form
$(g\xi)(u)=\xi(f(u))\sqrt{|f’(u)|}$ , (2.3)

where $f$ is a diffeomorphism of $\overline{R}$ . If such $g$ belongs to
$O(E)$ , then, $g$ is said to be in the class II. If a subgroup
$G$ of $O(E)$ involves members in class II only, then $G$ is
a subgroup of class II.
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Proposition 2.1 A class $\Pi$ subgroup of $O(E)$ is iso-
morphic to some subgroup $G$ of $Diff_{+}(S^{1})/Rot(S^{1})$ .

Proof. Compare the norm, For $E=D_{0}$ a member of
$O(E)$ preserves the $L^{2}$-norm, Use the transformation
$\gamma$ . Then, we can see that for $f=\gamma\xi$

$\int_{-\infty}^{\infty}f(u)^{2}du=\int_{-\pi}^{\pi}\xi(\theta)^{2}d\theta$

holds. Hence a member $g\in Diff(S^{1})$ corresponds to
a member of $O(E)$ only when $g$ preserves the $L^{2}(S^{1})-$

norm.

Take a class II subgroup $U$ of $O(E)$ such that

$U\cong Diff(S^{1})\cap V$,

where $V$ is the unit ball of $L^{2}(S^{1}, d\theta)$ ,

Definition 2.2 $A$ one parameter subgroup $g_{t},$
$t\in R^{1}$ ,

of $U$ is called $a$ whisker if it is expressed in the $fom$

$(g_{t})(\xi)(u)=\xi(\psi_{t}(u))\sqrt{|\psi_{t}’(u)|}$ (2.4)

where $\psi_{t}(u)=f^{-1}(f(u)+t)$ , and if $g_{t}$ is continuous in
$t$ .

The collection of whiskers is denoted by $W$ .

Some more details regarding the whiskers shall be
discussed in Section 3. The next subject to be re-

minded is the adjoint, denoted by $g^{*}$ , of $g\in O(E)$ .

The collection $O^{*}(E^{*})$ of the adjoint operators $g^{*}$

forms a group which is isomorphic to $O(E)$ . The signif-
icance of the group $O^{*}(E^{*})$ is that every $g^{*}$ in $O^{*}(E^{*})$

keeps the white noise measure $\mu$ to be invariant:

$g^{*}\mu=\mu$ . (2.5)

From this equality, starts the characterization of $\mu$ by
using the rotation group.
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One might think that $O(E)$ is a limit of the finite
dimensional rotation groups $SO(n)$ as $narrow\infty$ , but not
quite. The limit can occupy a very minor part of $O(E)$

: of course it is almost impossible to measure the size
of the limit occupied in the entire group $O(E)$ . Set

$G_{\infty}=ind. \lim_{n}G_{n}$ ,

where $G_{n}\cong SO(n)$ . The $G_{\infty}$ is in class I.

In what follows we shall discuss particularly sub-
groups belonging to the class II, in particular $W$ .

3 Whiskers

Subgroups in the Class I have, so far, been rather
well- investigated. We shall, therefore, study the Class
II,

First we shall have a brief review of the known re-
sults so that we can find some hints to find new good
subgroups of $O(E)$ .

Each member of the class $W$ , say { $g_{t},$
$t$ : real},

should be defined by a system of parameterized dif-
feomorphisms $\{\psi_{t}(u)\}$ of $\overline{R}=R\cup\infty$ . Namely, as in
(2.4).

We are interested in a subgroup that is consisting of
whiskers and that can be made to be a local Lie group
embedded in $O(E)$ . In what follows the basic nuclear
space is specified to $D_{0}$ defined before (also see [3]).

More practically, we restrict our attention to the
case where $g_{t},$ $t\in R$ has the (infinitesimal) generator

$\alpha=\frac{d}{dt}g_{t}|_{t=0}$
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Note that, by the assumptions of the group property
and continuity, a family $\{\psi_{t}(u), t\in R\}$ is such that
$\psi_{t}(u)$ is measurable in $(t, u)$ and satisfies

$\psi_{t}\cdot\psi_{t}$ $=$ $\psi_{t+s}$

$\psi_{0}(u)$ $=$ $u$ .

Following J. Acz\’el [1], we have an expression for
$\psi_{t}(u)$ :

$\psi_{t}(u)=f(f^{-1}(u)+t)$ (3.1)

where $f$ is continuous and strictly monotone. Its (in-
finitesimal) generator $\alpha$ , if $f$ is differentiable, can now
be expressed in the form

$\alpha=a(u)\frac{d}{du}+\frac{1}{2}a’(u)$ , (3.2)

where
$a(u)=f’(f^{-1}(u))$ . (3.3)

See eg.[3], [4].

We have already established the results that there
exists a three dimensional subgroup of class II with
significant probabilistic meanings. The group consists
of three whiskers, the generators ofwhich are expressed
by $a(u)=1,$ $a(u)=u,$ $a(u)=u^{2}$ , respectively.

Namely, we show a list:

$s$ $=$ $\frac{d}{du}$ ,

$\tau$

$=u^{\underline{d}}+^{\underline{1}}$

$du$ 2’
$\kappa$ $=u^{2} \frac{d}{du}+u$

One of the interesting interpretations may be said
that they are put together to describe the projective
invariance of Brownian motion.
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Those generators form a base of a three dimensional
Lie algebra under the Lie product.

The algebra given above is isomorphic to $sl(2, R)$ .
This fact can easily be seen by the commutation rela-
tions:

$[\tau, s]=-s$

$[\tau, \kappa]=\kappa$

$[\kappa, s]=2\tau$

There is a remark that the shift with generator $s$

is sitting as a key member of the generators. It corre-
sponds to the flow of Brownian motion, significance of
which is quite clear.

Also, one can take $\tau$ to be another key generator.
The $\tau$ describes the Ornstein-Uhlenbeck Brownian mo-
tion which is stationary Gaussian and simple Markov.

An interesting remark is that the above three gen-
erators span a vector space isomorphic to so$(2,1)$ .

Let $g_{t}^{*}$ be the adjoint operator to $g_{t}$ . Then, the
system $\{g_{t}^{*}\}$ again forms a one-parameter group of $\mu$

(the white noise measure) preserving transformations
$g_{t}^{*}$ . The system is a flow on the white noise space
$(E^{*}, \mu)$ .

We are now in a position to have general relation-
ships among the generators of the form (3.2) with the
expression (3.3).

Introduce the notation

$\alpha_{a}=a(u)\frac{d}{du}+\frac{1}{2}a’(u)$ ,
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where $a(u)$ is assumed to be $C_{1}$ class. The collection
of such $\alpha_{a}$ is denoted by D. Then, we have

Triviality It holds that, with the notation $\{a, b\}=$

$ab’-a’b$ , for any $\alpha_{a}$ and $\alpha_{b}$

$[\alpha_{a}, \alpha_{b}]=\alpha_{\{a,b\}}$ ,

$[\alpha_{a}, \alpha_{b}]=-[\alpha_{b}, \alpha_{a}]$ ,

where $[\cdot,$ $\cdot]$ is the Lie product.

Proposition 3.1 The collection $D$ foms a base of a
Lie algebm, which is denoted by A. There is no iden-
tity.

It is interesting to find a subalgebra which is expected
to have some interesting probabilistic property. Set-
ting $\alpha^{p}=\alpha_{u^{p-1}},p\in Z$ , in particular, we shall discuss
some more details in the next section.

4 Half whiskers

The results of this section mostly come from [13].

We are now in search of new whiskers that show
some significant probabilistic properties hopefully like
the three whiskers in the last section under somewhat
general setup. There a whisker may be changed to a
half-whisker under mild restrictions.

First we recall the notes [11] p. 60, Section $O_{\infty}1$ ,
where a new class of whiskers has been proposed, in
reality, most of the members are half whiskers. Let us
repeat the proposal.

$\alpha^{p}=u^{p+1}\frac{d}{du}+\frac{p+1}{2}u^{p},$ $u\geq 0$ , (4.1)

is suggested to be investigated, where $p$ is not neces-
sarily be integer. (The power $p+1$ was written as $\alpha$
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in [11], but to avoid notational confusion, we write $p$

instead of $\alpha.$ )

Since fractional power $p$ is involved, we tacitly as-
sume that $u$ is non-negative, We, therefore,take a white
noise with time-parameter $[0, \infty)$ . The basic nuclear
space $E$ is chosen to be $D_{00}$ which is isomorphic to $D_{0}$ ,

eventually isomorphic to $C^{\infty}(S^{1})$ .

We are now ready to state a partial answer.

As was remarked in the last section, the power 1 is
the key number and, in fact, it is exceptional. In this
case the variable $u$ runs through $R$ , that is, corresponds
to a whisker with generator $\tau$ . In what follows, we
exclude the case $p=0$ .

We remind the relationship between $f$ and $a(u)$ that

appears in the expressions of $\psi_{t}(u)$ and $\alpha$ , respectively.
The related formulas are the same as in the case where
$u$ runs through $R$ .

Assuming differentiability of $f$ we have the formula
(3.8). For $a(u)=u^{p}$ , the corresponding $f(u)$ is deter-

mined. Namely,

$u^{p}=f^{f}(f^{-1}(u))$ .

An additional requirement for $f$ is concerned with the

domain of $f$ , namely $f$ should be a map from the entire
$[0.\infty)$ onto itself. Hence, we have

$f(u)=c_{p}u^{\frac{1}{1-p}}$ , (4.2)

where $c_{p}=(1-p)^{1/(1-p)}$ .

We, therefore, have

$f^{-1}(u)=(1-p)^{-1}u^{1-p}$ . (4.3)
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We are ready to define a transformation $g_{t}^{p}$ acting on
$D_{00}$ by

$(g_{t} \xi)(u)=\xi(c_{p}(\frac{u^{1-p}}{1-p}+t)^{1/(1-p)})\sqrt{\frac{c_{p}}{1-p}(\frac{u^{1-p}}{1-p}+t)^{p/(1-p)}u^{-p}}$.

(4.4)

Note that $f$ is always positive and maps $(0, \infty)$ onto
itself in the ordinary order in the case $p<1$ ; while in
the case $p>1$ the mapping is in the reciprocal order.

The exceptional case $p=1$ is refered to the litera-
ture [4]. It has been well defined.

Then, we claim, still assuming $p\neq 1$ , the following
theorem.

Theorem 4.1 i) $g_{t}^{p}$ is a member of $O(D_{00})$ for every
$t>0$ .

ii) The collection $\{g_{t}^{p}, t\geq 0\}$ foms a continuous semi-
gmup with the product $g_{t}^{p}\cdot g_{s}^{p}=g_{t+s}^{p}$ for $t,$ $s\geq 0$ .

iii) The genemtor of $g_{t}^{p}$ is $\alpha^{p}$ given by (4 $\cdot$ 1) up to con-
stant.

Proof. Assertion i) comes from the structure of $D_{00}$ .

Assertions ii) and iii) can be proved by actual elemen-
tary computations.

Definition A continuous semi-group $g_{t},$ $t\geq 0$ , each
member of which comes from $\psi_{t}(u)$ is called a half
whisker.

Theorem 4.2 The collection of half whiskers $g_{t}^{p},$ $t\geq$

$0,p\in R$ , generates a local Lie semi-group $G_{L}$ :

$G_{L}=$ generated by $\{g_{t_{1}}^{p_{1}}\cdots \mathscr{N}_{t_{n}}^{n}\}$
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The definition of a local Lie group is found, e.g. in
W. Miller, Jr. [11]. A semi-group is defined similarly.

5 Lie algebra and duality

The collection $\{\alpha^{p};p\in R\}$ generates a vector space
$g_{L}$ , where the Lie product $[\cdot,$ $\cdot]$ is introduced.

Proposition 5.1 The vector space $g_{L}$ forms a Lie al-
gebm with the usual Lie prodect.

Note that the exceptional power 1 is now included.
With this understanding, we have

Theorem 5.2 The space $g_{L}$ is a Lie algebm pamm-
eterized by $p\in R.$ It is associated with the local Lie
semi-group $G_{L}$ .

Proof. We have

$[ \alpha^{p}, \alpha^{q}]=(q-p)u^{p+q+1}\frac{d}{du}+\frac{1}{2}(q-p)(p+q-1)u^{p+q}$.
(5.1)

The result is $(q-p)\alpha^{p+q}$ . This proves the theorem.

In fact, we have an infinite dimensional Lie algebra,
the base of which consists of one-parameter system of
generators of half whiskers.

[Note] If $g_{L}$ is slightly modified to $g_{L}’=\{\frac{1}{p}\alpha^{p}\}$ , then
the exceptional member $\alpha^{0}(=\tau)$ plays the role of the
identity:

$[\alpha^{p}, \alpha^{0}]=\alpha^{p}$ .

In addition, $\alpha^{0}$ can be the generator of a whisker and
it plays really a central role.

157



Duality.

With respect to $\alpha^{0}$ we can see a duality

$\alpha^{p}\Leftrightarrow\alpha^{-p}$

For every $p$ , the $(g_{t}^{p})^{*}$ is a semigroup of $\mu$-measure pre-
serving transformations. We may, therefore, define a
Gaussian process $X^{p}(t)$ in such a manner that

$X^{p}(t)=\langle(g_{t}^{p})^{*}x,$ $\xi\rangle$ ,

where $x\in E^{*}(\mu)$ .

We have much freedom to choose $\xi$ , in fact, we may
choose the indicator function $\chi_{[0,1]}(u)$ .

By a simple computation we can see that for $p<$

$1,0<h<1$

$E(X^{p}(t+h)$ , Xp(t) $)=\gamma$ (ん),

holds, that is a function only of $h$ .

6 Concluding remarks.

1. We shall propose a more general theory, where
it is possible to propose many kinds of half whiskers.
Namely, we may consider general infinitesimal genera-
tors, where the functions $a(u)$ in (3.8) or $f$ in (3.6) are
restricted so as to define subgroups of $O(D_{00})$ .

2. As is easily seen, the algebra $g_{L}$ is perfect. that is

$[g_{L}, g_{L}]=g_{L}$ ,

that is, the derived algebra coincides with itself. Hence
there exists the universal central extension. It is our
hope that we can follow the line of studying the Vira-
soro algebra.
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