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ABSTRACT. We characterize those smooth l-connected open 4-manifolds
with certain finite type properties which admit proper special generic maps
into 3-manifolds. As a corollary, we show that a smooth 4-manifold home-
omorphic to $R^{4}$ admits a proper special generic map into $R^{3}$ if and only
if it is diffeomorphic to $R^{4}$ . We also characterize those smooth 4-manifolds
homeomorphic to $L\cross R$ for some closed orientable 3-manifold $L$ which admit
proper special generic maps into $R^{3}$ .

1. INTRODUCTION

A special generic map $f$ : $Marrow N$ between smooth manifolds is a smooth
map with at most definite fold singularities, which have the normal form

(1.1) $(x_{1}, x_{2}, \ldots, x_{m})\mapsto(x_{1},x_{2}, \ldots, x_{n-1},x_{n}^{2}+x_{n+1}^{2}+\cdots+x_{m}^{2})$,

where $m=\dim M\geq\dim N=n$ . For some typical examples of special generic
maps, refer to Fig. 1. Note also that the map $R^{m}arrow R^{n}$ defined by (1.1) is itself
a proper special generic map, where a continuous map is proper if the inverse
image of a compact set is always compact. Submersions are also considered
special generic maps.

It has been known as the Reeb Theorem [19] that if a smooth connected
closed m-dimensional manifold admits a special generic map into $R$ , then it is
homeomorphic to the m-sphere $S^{m}$ . In [20, 21], the author has shown that a
smooth connected closed m-dimensional manifold $\Lambda/I$ admits a special generic
map into $R^{n}$ for every $n$ with $1\leq n\leq m$ if and only if $M$ is diffeomorphic to
the standard m-sphere $S^{m}$ . In [23, 24] Sakuma and the author found some pairs
of homeomorphic smooth closed 4-manifolds such that one of them admits a
special generic map into $R^{3}$ , while the other does not. These show that special
generic maps are sensitive to detecting distinct differentiable structures on a
given topological manifold.

On the other hand, it has been known that a smooth m-dimensional manifold
is homeomorphic to $R^{m}$ if and only if it is diffeomorphic to the standard $R^{m}$ ,
provided $m\neq 4$ (see [15, 26]), while for $m=4$ , there exist uncountably many
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FIGURE 1. Examples of special generic maps

distinct differentiable structures on $R^{4}$ (for example, see [4, 6, 8, 27]). In
fact, it is known that most open 4-manifolds admit infinitely (and very often,
uncountably) many distinct differentiable structures [1, 3, 5, 7].

In this paper, we characterize those smooth l-connected open 4-manifolds of
“finite type” which admit proper special generic maps into 3-manifolds, using
the solution to the Poincar\’e Conjecture in dimension three (see [16, 17, 18] or
[14], for example). Here, an open 4-manifold is of finite type if its homology is
finitely generated and it has only finitely many ends, whose associated funda-
mental groups are stable and finitely presentable. As a corollary, we show that
a smooth 4-manifold homeomorphic to $R^{4}$ is diffeomorphic to the standard $R^{4}$

if and only if it admits a proper special generic map into $R^{3}$ .
Furthermore, we show that if a smooth 4-manifold $M$ is homeomorphic to

$L\cross R$ for some connected closed orientable 3-manifold $L$ and if $M$ admits a
proper special generic map into $R^{3}$ , then $M$ is diffeomorphic to $L\cross R$ and the
3-manifold $L$ admits a special generic map into $R^{2}$ .

All these results claim that among the (uncountably or infinitely) many dis-
tinct differentiable structures on a certain open topological 4-manifold, there
is at most one smooth structure that allows the existence of a proper special
generic map into a 3-manifold.

Throughout the paper, manifolds and maps between them are differentiable
of class $C^{\infty}$ unless otherwise indicated. The symbol $\cong$ ” denotes a diffeo-
morphism between smooth manifolds or an appropriate isomorphism between
algebraic objects.

The author would like to express his sincere gratitude to Kazuhiro Sakuma
for stimulating discussions and invaluable comments.

2. PRELIMINARIES

Let $11S$ first recall the following notion of a Stein factorization, which will play
an important role in this paper.

Definition 2.1. Let $f$ : $Marrow N$ be a smooth map between smooth manifolds.
For two points $x,$ $x^{f}\in M$ , we define $x\sim fx’$ if $f(x)=f(x’)(=y)$ , and the
points $x$ and $x’$ belong to the same connected component of $f^{-1}(y)$ . We define
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FIGURE 2. Stein factorization

$W_{f}=M/\sim f$ to be the quotient space with respect to this equivalence relation,
and denote by $q_{f}$ : $Marrow W_{f}$ the quotient map. Then we see easily that there
exists a $1lniq\iota le$ continuous map $\overline{f}:W_{f}arrow N$ that makes the diagram

$M$ $arrow^{f}$ $N$

$q_{f^{\backslash _{\searrow}}}$ $\nearrow\overline{f}$

$W_{f}$

commutative. The above diagram is called the Stein factorization of $f$ (see
[13] $)$ . Refer to Fig. 2 for an example.

The Stein factorization is a very useful tool for studying topological properties
of special generic maps. In fact, we can prove the following, which is folklore
(for example, see [2, 20]).

Proposition 2.2. Let $f$ : $Marrow N$ be a proper special generic map between
smooth manifolds with $m=\dim M>\dim N=n$ . Then we have the following.

(1) The set of singular points $S(f)$ of $f$ is a regular submanifold of $M$ of
dimension $n-1$ , which is closed as a subset of $M$ .

(2) The quotient space $W_{f}$ has the structure of a smooth n-dimensional
manifold possibly with boundary such that $\overline{f}$ : $W_{f}arrow N\dot{u}s$ an immersion.

(3) The quotient map $q_{f}$ : $Marrow W_{f}$ restricted to $S(f)$ is a diffeomorphism
onto $\partial W_{f}$ .

(4) If $M$ is connected, then the quotient map $q_{f}$ restricted to $M\backslash S(f)$ is
a smooth fiber bundle over Int $W_{f}$ . Furthermore, if $S(f)\neq\emptyset_{f}$ then the
fiber is the standard $(m-n)$ -sphere $S^{m-n}$ .

See Fig. 3 for an illustrative explanation.
Using the above proposition, the author proved the following [20].

Theorem 2.3 (Disk bundle theorem). Let $f$ : $Marrow N$ be a proper spe-
cial generic map between smooth connected manifolds with $\dim M=m$ and
$\dim N=n$ . If $m-n=1,2,3$ and $S(f)\neq\cdot\emptyset$ , then $M$ is diffeomorphic to the
boundary of a $D^{m-n+1}$ -bundle over $W_{f}$ with $O(m-n+1)$ as structure group.
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FIGURE 3. Proposition 2.2

In the following, we recall several notions conceming ends of manifolds. For
details, the reader is referred to Siebenmann’s thesis. [25].

Definition 2.4. Let $X$ be a Hausdorff space. Consider a collection $\epsilon$ of subsets
of $X$ with the following properties.

(i) Each $G\in\epsilon$ is a connected open non-empty set with compact frontier
$\overline{G}-G$ ,

(ii) If $G,$ $G’\in\epsilon$ , then there exists $G^{u}\in\epsilon$ with $G”\subset G\cap G’$ ,
(iii)

$\bigcap_{G\in\epsilon}\overline{G}=\emptyset$
.

Adding to $\epsilon$ every connected open non-empty set $H\subset X$ with compact frontier
such that $G\subset H$ for some $G\in\epsilon$ , we produce a collection satisfying (i), (ii)
and (iii), which we call the end of $X$ determined by $\epsilon$ .

An end of a Hausdorff space $X$ is a collection $\epsilon$ of subsets of $X$ which is
maximal with respect to the properties (i), (ii) and (iii) above.

A neighborhood of an end $\epsilon$ is any set $N\subset X$ that contains some member of
$\epsilon$ . (See Fig. 4.)

Definition 2.5. Let $\epsilon$ be an end of a topological manifold $X$ . The fundamental
group $\pi_{1}$ is stable at $\epsilon$ if there exists a sequence of path connected neighborhoods
of $\epsilon,$

$X_{1}\supset X_{2}\supset\cdots$ , with $\cap\overline{X}_{i}=\emptyset$ such that (with $ba_{\iota}se$ points and base paths
chosen) the sequence

$\pi_{1}(X_{1})arrow^{f_{1}}\pi_{1}(X_{2})arrow^{f_{2}}$ . . .

induced by the inclusions induces isomorphisms
${\rm Im}(f_{1})arrow^{\simeq\underline}{\rm Im}(f_{2})arrow^{\simeq\underline}$ .. .

The following lemma is proved in [25].
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FIGURE 4. Ends of a manifold

Lemma 2.6. If $\pi_{1}$ is stable at $\epsilon$ and $Y_{1}\supset Y_{2}\supset\cdots$ is any path connected
sequence of neighborhoods of $\epsilon$ such $that\cap\overline{Y}_{i}=\emptyset_{f}$ then for any choice of base
points and base paths, the inverse sequence

$\mathcal{G}$ : $\pi_{1}(Y_{1})arrow^{g_{1}}\pi_{1}(Y_{2})arrow^{g_{2}}$ . ..

induced by the inclusions is stable, $i.e$ . there exis $f_{\wedge}s$ a subsequence

$\pi_{1}(Y_{i_{1}})arrow^{h_{1}}\pi_{1}(Y_{i_{2}})arrow^{h_{2}}$ . . .

inducing isomorphisms

${\rm Im}(h_{1})arrow^{\simeq\underline}{\rm Im}(h_{2})arrow^{\simeq\underline}$ . . . ,

$\tau i)here$ each $h_{j}$ is a suitable composition of $g_{i}s$ .

Definition 2.7. When $\pi_{1}$ is stable at an end $\epsilon$ , we define $\pi_{1}(\epsilon)$ to be the
projective limit $\lim_{arrow}\mathcal{G}$ for some fixed system $\mathcal{G}$ as above. According to [25],
$\pi_{1}(\epsilon)$ is well defined $11p$ to isomorphism.

Let us introduce the following definition.

Definition 2.8. An open manifold $M$ is of finite type if

(i) $M$ has finitely many ends,
(ii) for each end $\epsilon,$ $\pi_{1}$ is stable at $\epsilon$ with $\pi_{1}(\epsilon)$ being finitely presentable,

and
(iii) $H_{*}(M;Z_{2})$ is finitely generated.

We will need the following result due to Husch-Price [11, 12].

Lemma 2.9 (Husch-Price, 1970). Let $W$ be an open orientable 3-manifold
of finite type. Then there exists a compact orientable 3-manifold $\overline{W}$ and an

–

embedding $h:Warrow W$ such that $h$ (Int $W$ ) $=$ Int $W$ .
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3. OPEN 4-MANIFOLDS THAT ADMIT SPECIAL GENERIC MAPS

In the following, a manifold is open if it has no boundary and each of its
component is non-compact, while a manifold is closed if it has no boundary
and is compact.

Theorem 3.1. Let $M$ be a smooth l-connected open 4-manifold of finite type.
Then there exists a proper special generic map $f$ : $Marrow N$ into a smooth 3-
manifold $N$ with $S(f)\neq\emptyset$ if and only if $M$ is diffeomorphic to the connected
sum of a finite number of copies of the following 4-manifolds:

(1) $R_{f}^{4}$

(2) the interior of the boundary connected sum of a finite number of copies
of $S^{2}\cross D^{2}$ ,

(3) the total space of a 2-plane bundle over $S^{2}$ ,
(4) the total space of an $S^{2}$ -bundle over $S^{2}$ ,

where at least one manifold of the form (1), (2) or (3) should appear in the
connected sum.

Sketch of proof. Let $f$ : $Marrow N$ be a proper special generic map into a
3-manifold $N$ . Then we can prove that the quotient space $W_{f}$ in the Stein
factorization of $f$ is an open 3-manifold of finite type. Since $M$ is l-connected,
so is $W_{f}$ . By the solution to the Poincar\’e Conjecture together with the Husch–
Price Lemma (Lemma 2.9), we see that $W_{f}\cong D^{3}\backslash F$ or $\mathfrak{h}^{k}(S^{2}\cross[0,1])\backslash F$ , where
$F$ is a compact surface (possibly with boumdary) contained in the boundary.
On the other hand, $M$ is diffeomorphic to the boundary of a $D^{2}$-bundle over
$W_{f}$ by the Disk bundle theorem, Theorem 2.3. Then we easily get the desired
conclusion.

Conversely, it is easy to construct explicitly a proper special generic map into
a 3-manifold for each 4-manifold in the list. $\square$

Remark 3.2. Every 4-manifold as in Theorem 3.1 admits infinitely many (or un-
countably many) distinct smooth structures. Theorem 3.1 implies that among
them there is exactly one structure that allows the existence of a proper special
generic map into a 3-manifold.

In particular, we have the following.

Corollary 3.3. Let $M$ be a smooth 4-manifold homeomorphic to $R^{4}$ . Then
there exisbs a proper special generic map $f$ : $Marrow R^{3}$ if and only if $M$ is
diffeomorphic to the standard $R^{4}$ .

We also have the followingl.

Theorem 3.4. Let $L$ be a smooth connected closed orientable 3-manifold. $A$

smooth 4-manifold $M$ homeomorp $hic$ to $L\cross R$ admits a proper special generic

map into $R^{3}$ if and only if $M$ is diffeomorphic to $L\cross R$ and $L$ is a smooth
closed 3-manifold that admits a special generic map into $R^{2}$ .

lTheorem 3.4 was first conjectured by Kazuhiro Sakuma to whom the author would like
to express his sincere gratitude.
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Sketch of proof. Suppose $M$ is homeomorphic to $L\cross R$ and let $f$ : $Marrow N$

be a proper special generic map into a 3-manifold $N$ . Then one can show that
$W_{f}$ is of finite type and has exactly two ends $F_{i}\cross[0, \infty),$ $i=1,2$ , for some
surfaces $F_{i}$ . Furthermore, the inclusions $F_{i}\cross\{0\}arrow W_{f}$ induce isomorphisms
of fundamental groups. By the standard theory of -manifolds together with
the solution to the Poincar\’e Conjecture and the Husch-Price Lemma, we see
that $W_{f}\cong(F_{1}\cross R)\#(\#^{k}D^{3})$ (for example, see [10]). Since $M$ is homeomorphic
to $L\cross R$ , we see that $W_{f}\cong F_{1}\cross$ R. Therefore, $M$ is diffeomorphic to $L’\cross R$

for some 3-manifold $L’$ . Note that $\pi_{1}(L’)\cong\pi_{1}(L)$ is free. Therefore, $L’\cong L\cong$

$\#^{\ell}(S^{1}\cross S^{2})$ , and hence there exists a special generic map $g:Larrow R^{2}$ by a result
of Burlet-de Rham [2].

Conversely, if $L$ admits a special generic map $g:Larrow R^{2}$ , then
$g\cross id_{R}:L\cross Rarrow R^{2}\cross R$

is a proper special generic map, where $id_{R}$ denotes the identity map of R. $\square$

Conjecture 3.5. Let $M$ be a topologica14-manifold. Then there exists at most
one smooth structure on $M$ that allows the existence of a proper special generic
map into $R^{3}$ .
Remark 3.6. In the above conjecture, the propemess of the special generic map
is essential. Let $f$ : $Marrow N$ be a special generic map of an open 4-manifold and
assume that $M$‘ is homeomorphic to $M$ . Then there exists a “formal solution“
over $M$‘ on thejet level for the open differential relation corresponding to special
generic maps. Therefore, $M’$ admits a special generic map by the Gromov h-
principle for open manifolds [9]. Note that even if $f$ is proper, the reslllting
special generic map on $\Lambda/I’$ may not be proper.

Compare this with the following: if a smooth 4-manifold $M$ is homeomorphic
to $R^{4}$ , then there exists a proper special generic map $g$ : $Marrow R^{4}$ . In the
equidimensional case, the $C^{0}$ dense h-principle holds and the properness can be
preserved (see [9]).
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