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1 Introduction
The study of sigularities of caustics and wave fronts was the starting point of
the theory of Lagrangian and Legendrian singularities developed by several
mathematicans and phyists [1, 2, 3, 5, 6, 7, 9, 19, 20, 21] etc.

This is a survey on the theory of Lagrangian and Legendrian singulari-
ties. Especially, we consider a relationship between caustics and wave front
propagations, see [14]. This is also the announcement of results obtained in
[15]. Refer [14, 15] for detailed proofs.

In \S 2, we give a brief review on the theory of Lagrangian singularities.
We also give a brief review on the theory of big Legendrian submanifolds
in \S 3. The big wave front consists of a one-parameter family of wave fronts
which given by the projection of a big Legendrian submanifold of the contact
fibering onto the basis of this fibering. We define the $S.P^{+}$-Legendrian equiv-
alence among big Legendrian submanifold germs in \S 3. The $S.P^{+}$-Legendrian
equivalence has been introduced in [8, 21] which preserves both the diffeo-
morphism types of bifurcations for families of small fronts (i.e., wave front
propagations) and the caustics. We consider a special class of the big Leg-
endrian submanifold which is called a graphlike Legendrian unfolding in \S 4.
The graphlike Legendrian unfolding can be always induced by Lagrangian
submanifolds. Moreover, we modify the theory of graphlike Legendrian un-
foldings a little in \S 5. By definition, a Lagrangian equivalence preserves the
caustics. However, in general the converse does not hold even if Lagrangian
submanifold germs are Lagrange stable (cf. [1, 20]). We give a sufficient
condition that the converse hold in \S 6. As an application of these equiva-
lence relations and modified graphlike Legendrian unfoldings, we consider a
relationship between caustics of submanifolds and of the canal hypersurfaces
of the submanifolds in Euclidean space in \S 7.

We shall assume throughout the whole paper that all maps and manifolds
are $C^{\infty}$ unless the contrary is explicitly stated.

2 Lagrange submanifolds and caustics
We consider the cotangent bundle $\pi$ : $T^{*}\mathbb{R}^{n}arrow \mathbb{R}^{n}$ over $\mathbb{R}^{n}$ . Let $(x,p)=$
$(x_{1}, \ldots,x_{n},p_{1}, \ldots,p_{n})$ be the canonical coordinate on $T^{*}\mathbb{R}^{n}$ . Then the canon-
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ical symplectic structure on $T^{*}\mathbb{R}^{n}$ is given by the canonical two $fom\omega=$

$\sum_{i=1}^{n}dp_{i}\wedge dx_{i}$ . A submanifold $i$ : $L\subset T^{*}\mathbb{R}^{n}$ is a Lagrangian submanifold if
$\dim L=n$ and $i^{*}\omega=0$ . In this case, the critical value of $\pi\circ i$ is called the
caustic of $i$ : $L\subset T^{*}\mathbb{R}^{n}$ and it is denoted by $C_{L}$ . One of the main results in the
theory of Lagrangian singularities is the description of Lagrangian submani-
fold germs by using families of function germs. Let $F:(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$

be an n-parameter unfolding of function germs. We say that $F$ is a Morse
family of functions if the map germ

$\Delta F=(\frac{\partial F}{\partial q_{1}},$

$\ldots,$
$\frac{\partial F}{\partial q_{k}}):(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}^{k}, 0)$

is a non-singular, where $(q,x)=(q_{1}, \ldots,q_{k}, x_{1}, \ldots,x_{n})\in(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)$ .
In this case, we have a smooth n-dimensional submanifold germ $C(F)=$
$(\Delta F)^{-1}(0)\subset(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)$ and a map germ $L(F)$ : $(C(F), 0)arrow T^{*}\mathbb{R}^{n}$ de-
fined by

$L(F)(q,x)=(x,$ $\frac{\partial F}{\partial x_{1}}(q, x),$

$\ldots,$
$\frac{\partial F}{\partial x_{n}}(q, x))$ .

We can show that $L(F)(C(F))$ is a Lagrangian submanifold germ. Then we
have the following fundamental result ([1], page 300).

Proposition 2.1 All Lagrangian submanifold germs in $T^{*}\mathbb{R}^{n}$ are constructed
by the above method.

For an n-parameter unfolding of function germs $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ ,
we call

$C(F)= \{(q, x)\in(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)|\frac{\partial F}{\partial q_{1}}(q, x)=\cdots=\frac{\partial F}{\partial q_{k}}(q, x)=0\}$ ,

the catastrophe set of $F$ and

$\mathcal{B}_{F}=\{x\in(\mathbb{R}^{n}, 0)|$ there exist $q\in(\mathbb{R}^{k}, 0)$ such that $(q, x)\in C(F)$ ,

rank $( \frac{\partial^{2}F}{\partial q_{i}\partial q_{j}}(q, x))<k\}$

the bifurcation set of $F$ .
Let $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be a Morse family of functions. We call

$F$ a generating family of $L(F)$ . Let $\pi_{n}$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}^{n}, 0)$ be the
canonical projection, then we can easily show that the bifurcation set of $F$

is the critical value set of $\pi_{n}|_{C(F)}$ . Hence, the caustic of $L(F)$ coinsides with
the bifurcation set of $F$ , namely, $C_{C(F)}=\mathcal{B}_{F}$ .
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We now define an equivalence relation among Lagrangian submanifold
germs. Let $i:(L,x)\subset(T^{*}\mathbb{R}^{n},p)$ and $i’$ : $(L’,x’)\subset(T^{*}\mathbb{R}^{n},p’)$ be Lagrangian
submanifold germs. Then we say that $i$ and $i’$ are Lagrangian equivalent
if there exist a diffeomorphism germ $\sigma$ : $(L,x)arrow(L’, x’)$ , a symplectic
diffeomorphism germ $\hat{\tau}$ : $(T^{*}\mathbb{R}^{n},p)arrow(T^{*}\mathbb{R}^{n},p’)$ and a diffeomorphism germ
$\tau$ : $(\mathbb{R}^{n},\pi(p))arrow(\mathbb{R}^{n}, \pi(p’))$ such that $\hat{\tau}oi=i’o\sigma$ and $\pi 0\hat{\tau}=\tau 0\pi$, where
$\pi$ : $(T^{*}\mathbb{R}^{n},p)arrow(\mathbb{R}^{n}, \pi(p))$ is the canonical projection and a symplectic
diffeomorphism germ is a diffeomorphism germ which preserves symplectic
stmcture on $T^{*}\mathbb{R}^{n}$ . Then the caustic $C_{L}$ is diffeomorphic to the caustic $C_{L’}$

by the diffeomorphism germ $\tau$.
A Lagrangian submanifold germ into $T^{*}\mathbb{R}^{n}$ at a point is said to be La-

grange stable if for every map with the given germ there is a neighborhood
in the space of Lagrangian. immersions (in the Whitney $C^{\infty}$-topology) and
a neighborhood of the original point such that each Lagrangian immersion
belonging to the first neighborhood has in the second neighborhood a point
at which its germ is Lagrangian equivalent to the original germ.

We can interpret the Lagrangian equivalence by using the notion of gen-
erating families. Let $\mathcal{E}_{x}$ be the ring of function germs of $x=(x_{1}, \ldots,x_{n})$ vari-
ables at the origin. Let $F,$ $G:(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be function germs. We
say that $F$ and $G$ are $P-\mathcal{R}^{+}$-equivalent if there exist a diffeomorphism germ
$\Phi$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)$ of the form $\Phi(q, x)=(\phi_{1}(q, x), \phi_{2}(x))$ and
a function germ $h:(\mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ such that $G(q, x)=F(\Phi(q, x))+h(x)$ .
For any $F_{1}$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ and $F_{2}:(\mathbb{R}^{k’}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0),$ $F_{1}$ and $F_{2}$

are said to be stably $P-\mathcal{R}^{+}$-equivalent if they become $P-\mathcal{R}^{+}$-equivalent after
the addition to the arguments to $q_{i}$ of new arguments $q_{i}’$ and to the functions
$F_{i}$ of nondegenerate quadratic forms $Q_{i}$ in the new arguments, i.e., $F_{1}+Q_{1}$

and $F_{2}+Q_{2}$ are $P-\mathcal{R}^{+}$-equivalent.
Let $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be a function germ. We say that $F$ is a

$\mathcal{R}^{+}$-versal deformation of $f=F|_{\mathbb{R}^{k}\cross\{0\}}$ if

$\mathcal{E}_{q}=J_{f}+\langle\frac{\partial F}{\partial x_{1}}|\mathbb{R}^{k}\cross\{0\},$

$\ldots,$
$\frac{\partial F}{\partial x_{n}}|\mathbb{R}^{k}\cross\{0\}\rangle_{\mathbb{R}}+\langle 1\rangle_{R}$,

where
$J_{f}= \langle\frac{\partial f}{\partial q_{1}}(q),$

$\ldots,$
$\frac{\partial f}{\partial q_{k}}(q)\rangle_{\mathcal{E}_{q}}$

Then we have the following theorem:

Theorem 2.2 Let $F:(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ and $G:(\mathbb{R}^{k’}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$

be Morse families of functions. Then we have the following:
(1) $L(F)(C(F))$ and $L(G)(C(G))$ are Lagrangian equivalent if and only if $F$
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and $G$ are stably $P-\mathcal{R}^{+}$ -equivalent.
(2) $L(F)(C(F))$ is a Lagrange stable if and only if $F$ is a $\mathcal{R}^{+}$ -versal defor-
mation of $f$ .

For the proof of the above theorem, see [1, page 304 and 325]. The fol-
lowing proposition describes the well-known relationship between bifurcation
sets and equivalence among unfoldings of function germs:

Proposition 2.3 Let $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n},0)arrow(\mathbb{R}, 0)$ and $G$ : $(\mathbb{R}^{k’}\cross \mathbb{R}^{n}, 0)arrow$

$(\mathbb{R}, 0)$ be function gems. If $F$ and $G$ are stably $P-\mathcal{R}^{+}$-equivalent, then there
exists a diffeomorphism gem $\phi:(\mathbb{R}^{n},0)arrow(\mathbb{R}^{n}, 0)$ such that $\phi(\mathcal{B}_{F})=\mathcal{B}_{G}$ .

3 Big Legendrian submanifolds and wave front
propagations

In this section, we give a brief review on the theory of big Legendrian sub-
manifolds and wave front propagations.

We consider the projective cotangent bundle $\overline{\pi}$ : $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})arrow \mathbb{R}^{n}\cross \mathbb{R}$

over $\mathbb{R}^{n}\cross$ IRL Let $\Pi$ : $TPT$‘ $(\mathbb{R}^{n}\cross \mathbb{R})arrow PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ be the tangent bundle
over $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ and $\pi$ : $TPT^{*}(\mathbb{R}^{n}\cross \mathbb{R})arrow T(\mathbb{R}^{n}\cross \mathbb{R})$ the differential map
of $\overline{\pi}$ .

For any $X\in TPT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ , there exists an element $\alpha\in T_{(x,t)}^{*}(\mathbb{R}^{n}\cross \mathbb{R})$

such that $\Pi(X)=[\alpha]$ . For an element $V\in T_{(x,t)}(\mathbb{R}^{n}\cross \mathbb{R})$ , the property
$\alpha(V)=0$ does not depend on the choice of representative of the class $[\alpha]$ .
Thus we can define the canonical contact structure on $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ by

$K=\{X\in TPT^{*}(\mathbb{R}^{n}\cross \mathbb{R})|\Pi(X)(d\overline{\pi}(X))=0\}$.

Because of the trivialization $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})\cong(\mathbb{R}^{n}\cross \mathbb{R})\cross P(\mathbb{R}^{n}\cross \mathbb{R})^{*}$ , we call

$((x_{1}, \ldots, x_{n}, t), [\xi_{1} :... :\xi_{n}:\tau])$

a homogeneous coordinate, where $[\xi_{1} : . . . : \xi_{n} : \tau]$ is the homogeneous
coordinate of the dual projective space $P(\mathbb{R}^{n}\cross \mathbb{R})^{*}$ It is easy to show
that $X\in If_{((x,t),[\xi:\tau])}$ if and only if $\sum_{1=1}^{n}\mu_{i}\xi_{i}+\lambda\tau=0$ , where $\Gamma\pi(X)=$

$\sum_{1=1}^{n}\mu_{i}(\partial/\partial x_{i})+\lambda(\partial/\partial t)$.
We remark that $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ is a fiberwise compactification of the 1-

jet space $J^{1}(\mathbb{R}^{n},\mathbb{R})$ as follows: We consider an affine open subset $U_{\tau}=$

$\{((x, t), [\xi : \tau])|\tau\neq 0\}$ of $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ . For any $((x, t), [\xi : \tau])\in U_{\tau}$ , we have

$((x, t), [\xi:\tau])=((x_{1}, \ldots,x_{n}, t), [-(\xi_{1}/\tau) :... :-(\xi_{n}/\tau):-1])$ ,
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so that we may adopt the corresponding affine coordinates

$(x_{1}, \ldots,x_{n}, t,p_{1}, \ldots,p_{n})$ ,

where $p_{i}=-\xi_{i}/\tau$ . On $U_{\tau}$ we can easily show that $\theta^{-1}(0)=K|U_{\tau}$ , where
$\theta=dt-\sum_{i=1}^{n}p_{i}dx_{i}$ . This means that $U_{\tau}$ may be identified with the l-jet space
$J^{1}(\mathbb{R}^{n}, \mathbb{R})$ . We call the above coordinate a system of canonical coordinates.
Throughout this paper, we use this identification so that we have $J^{1}(\mathbb{R}^{n},\mathbb{R})\subset$

$PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ .
A submanifol’d $i$ : $L\subset PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ is a Legendrian submanifold if

$\dim L=n$ and $di_{p}(T_{p}L)\subset K_{i(p)}$ for any $p\in L$ . We say that a point $p\in L$ is
a Legendrian singular point if rank $d(\overline{\pi}oi)_{p}<n$ .

For a Legendrian submanifold $i:L\subset PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),$ $\overline{\pi}\circ i(L)=W(L)$ is
called a big wave front. We have a family of small fronts:

$W_{t}(L)=\pi_{1}(\pi_{2}^{-1}(t)\cap W(L))$ $(t\in \mathbb{R})$ ,

where $\pi_{1}$ : $\mathbb{R}^{n}\cross \mathbb{R}arrow \mathbb{R}^{n}$ and $\pi_{2}:\mathbb{R}^{n}\cross \mathbb{R}arrow \mathbb{R}$ are the canonical projections
which gives $\pi_{1}(x, t)=x$ and $\pi_{2}(x, t)=t$ respectively. In this sense, we call
$L$ a big Legendrian submanifold. The discriminant of the family $W_{t}(L)$ is
defined as the image of singular points of $\pi_{1}|W(L)$ . In the general case, the
discriminant consists of three components: the caustics $C_{L}$ , the projection of
the set of singular points of $W(L)$ , the Maxwell stratum $M_{L}$ , the projection
of self intersection points of $W(L)$ ; and also of the envelope of the family of
small fronts $\Delta$ (for more detail, see [13, 21]).

For any Legendrian submanifold germ $i$ : $(L,p_{0})\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ ,
there exists a generating family of $i$ by the theory of Legendrian singularity.
Let $\mathcal{F}:(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ be a function germ such that $(\mathcal{F}, d_{2}\mathcal{F})$ :
$(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}\cross \mathbb{R}^{k}, 0)$ is a non-singular, where

$d_{2} \mathcal{F}(q,x, t)=(\frac{\partial \mathcal{F}}{\partial q_{1}}(q, x, t),$
$\ldots,$

$\frac{\partial \mathcal{F}}{\partial q_{k}}(q,x, t))$ .

In this case, we call $\mathcal{F}$ a big Morse family of hypersurfaces. Then $\Sigma_{s}(\mathcal{F})=$

$(\mathcal{F}, d_{2}\mathcal{F})^{-1}(0)$ is a smooth n-dimensional submanifold germ. Define

$\mathcal{L}_{\mathcal{F}}:(\Sigma_{*}(F), 0)arrow PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$

by
$\mathcal{L}_{\mathcal{F}}(q, x,t)=(x,t,$ $[ \frac{\partial \mathcal{F}}{\partial x}(q,x, t)$ : $\frac{\partial \mathcal{F}}{\partial t}(q,x, t)])$ ,

where

$[ \frac{\partial \mathcal{F}}{\partial x}(q, x, t):\frac{\partial \mathcal{F}}{\partial t}(q,x, t)]=[\frac{\partial \mathcal{F}}{\partial x_{1}}(q, x,t)$ :.. . $: \frac{\partial \mathcal{F}}{\partial x_{n}}(q, x, t):\frac{\partial \mathcal{F}}{\partial t}(q,x, t)]$ .
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It is easy to show that $\mathcal{L}_{\mathcal{F}}(\Sigma_{*}(\mathcal{F}))$ is a Legendrian submanifold germ. One
of main result in the theory of Legendrian singularity (cf. [1]), we can show
the following proposition:

Proposition 3.1 All big Legendrian submanifold gems are constructed by
the above method.

For a function germ $\mathcal{F}:(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ , we call

$D(\mathcal{F})=\{(x,t)\in(\mathbb{R}^{n}\cross \mathbb{R},0)|$ there exists $q\in(\mathbb{R}^{k}, 0)$

such that $(q,x, t)\in\Sigma_{*}(\mathcal{F})\}$ ,

the discrtminant set of $\mathcal{F}$ .
Let $\mathcal{F}:(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ be a big Morse family of hypersurfaces.

We call $\mathcal{F}$ a genemting family of $\mathcal{L}_{F}$ . In this case, the big wave front coincides
with the discriminant set of $\mathcal{F}$ , namely, $W(\mathcal{L}_{\mathcal{F}}(\Sigma_{*}(\mathcal{F})))=D(\mathcal{F})$ .

We now consider an equivalence relation among Legendrian submanifolds
which preserves both the qualitative pictures of bifurcations and the discrim-
inant of families of small fronts.

Let $i$ : $(L,p_{0})\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ and $i’$ : $(L’,p_{0}’)\subset(PT^{*}(\mathbb{R}^{n}\cross$

$\mathbb{R}),p_{0}’)$ be Legendrian submanifold germs. We say that $i$ and $i’$ are strictly
$pammet\dot{n}zed^{+}$ Legendrian equivalent (or, briefly S. $P^{+}$ -Legendnan equivalent)
if there exist diffeomorphism germs $\Phi$ : $(\mathbb{R}^{n}\cross \mathbb{R}, yr(p_{0}))arrow(\mathbb{R}^{n}\cross \mathbb{R},\overline{\pi}(p_{0}’))$

of the form $\Phi(x,t)=(\phi_{1}(x), t+\alpha(x))$ and $\Psi$ : $(L,p_{0})arrow(L’,p_{0}’)$ such that
$\hat{\Phi}oi=io\Psi$ , where $\hat{\Phi}$ : $(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})arrow(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0}’)$ is the unique
contact lift of $\Phi$ .

We also consider the notion of stability of Legendrian submanifold germs
with respect to $S.P^{+}$ -Legendrian equivalence is analogous to the stability
of Lagrangian submanifold germs with respect to Lagrangian equivalence in
section 2 (see, [1, Part III]).

We study the S. $P^{+}$ -Legendrian equivalence by using the notion of gener-
ating families of Legendrian submanifold germs.

Let $f,$ $g$ : $(\mathbb{R}^{k}\cross \mathbb{R}, 0)arrow(\mathbb{R}, 0)$ be function germs. We say that $f$ and $g$ are
S. $P-\mathcal{K}$-equivalent (or, strictly $P-\mathcal{K}$ -equivalent) if there exists a diffeomorphism
germ $\Phi$ : $(\mathbb{R}^{k}\cross \mathbb{R}, 0)arrow(\mathbb{R}^{k}\cross \mathbb{R}, 0)$ of the form $\Phi(q, t)=(\phi(q, t), t)$ such that
$\langle fo\Phi\rangle_{\mathcal{E}_{(q.t)}}=\langle g\rangle_{\mathcal{E}_{(q.t)}}$ .

Let $\mathcal{F},$ $\mathcal{G}$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ be function germs. We say
that $\mathcal{F}$ and $\mathcal{G}$ are $x-S.P^{+}-\mathcal{K}$ -equivalent if there exists a diffeomorphism germ
$\Phi$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)$ of the form $\Phi(q,x, t)=$

( $\phi(q, x, t),$ $\phi_{1}(x),$ $t+\alpha(x)\rangle$ such that $\langle \mathcal{F}\circ\Phi\rangle_{\mathcal{E}_{(q.r.\ell)}}=\langle \mathcal{G}\rangle_{\mathcal{E}_{(q.x,\ell)}}$. Let $\mathcal{F}:(\mathbb{R}^{k}\cross$

$(\mathbb{R}^{n}\cross \mathbb{R}),$ $0)arrow(\mathbb{R}, 0)$ and $\mathcal{G}$ : $(\mathbb{R}^{k’}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(N, 0)$ be function
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germs. We say that $\mathcal{F}$ and $\mathcal{G}$ are stably $x-S.P^{+}-\mathcal{K}$-equivalent if they become
$xarrow S.P^{+}-\mathcal{K}$-equivalent after the addition of non-degenerate quadratic forms in
additional variables $q’$ like stably $P-\mathcal{R}^{+}$-equivalence relations.

The notion of $S.P^{+}-\mathcal{K}$-versal deformation plays an important role for our
purpose. We define the extended tangent spaoe of $f:(\mathbb{R}^{k}\cross \mathbb{R}, 0)arrow(\mathbb{R}, 0)$

relative to $S.P^{+}-\mathcal{K}$ by

$T_{e}(S.P^{+}- \mathcal{K})(f)=\langle\frac{\partial f}{\partial q_{1}},$

$\ldots,$
$\frac{\partial f}{\partial q_{k}},$

$f \rangle_{\mathcal{E}_{(q,)}}+\langle\frac{\partial f}{\partial t}\rangle_{\mathbb{R}}$

Then we say that $\mathcal{F}$ is $S.P^{+}-\mathcal{K}$-versal deformation of $f=\mathcal{F}|_{\mathbb{R}^{k}x\{0\}xR}$ if it
satisfies

$\mathcal{E}_{(q,t)}=T_{e}(S.P^{+}-\mathcal{K})(f)+\langle\frac{\partial \mathcal{F}}{\partial x_{1}}|\mathbb{R}^{k}\cross\{0\}\cross \mathbb{R},$

$\ldots,$
$\frac{\partial \mathcal{F}}{\partial x_{n}}|\mathbb{R}^{k}\cross\{0\}\cross \mathbb{R}\rangle_{\mathbb{R}}$

Theorem 3.2 Let $\mathcal{F}$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ and $\mathcal{G}$ : $(\mathbb{R}^{k’}\cross(\mathbb{R}^{n}\cross$

$\mathbb{R}),$ $0)arrow(\mathbb{R}, 0)$ be big Morse families of hypersurfaces. Then
(1) $\mathcal{L}_{\mathcal{F}}(C(\mathcal{F}))$ and $\mathcal{L}_{\mathcal{G}}(C(\mathcal{G}))$ are $S.P^{+}$ -Legendrlan equivalent if and only if

$\mathcal{F}$ and $\mathcal{G}$ are stably $x-S.P^{+}-\mathcal{K}$ -equivalent.
(2) $\mathcal{L}_{\mathcal{F}}(C(\mathcal{F}))$ is $S.P^{+}$ -Legendre stable if and only if $\mathcal{F}$ is a $S.P^{+}-\mathcal{K}$-versal
deformation of $f=\mathcal{F}|_{\mathbb{R}^{k}x\{0\}\cross \mathbb{R}}$ .

Since the big Legendrian submanifold germ $i:(L,p_{0})\subset(PT"(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$

is uniquely determined on the regular part of the big wave front $W(L)$ , we
have the following simple but significant property of Legendrian submanifold
germs:

Proposition 3.3 Let $i$ : $(L,p_{0})\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ and $i’$ : $(L’,p_{0})\subset$

$(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ be big Legendrian submanifold germs such that regular
sets of $\overline{\pi}oi,\overline{\pi}oi’$ are dense respectively. Then $(L,p_{0})=(L’,p_{0})$ if and only
if $(W(L),\overline{\pi}(p_{0}))=(W(L’),\overline{\pi}(p_{0}))$ .

This result has been firstly pointed out by Zakalyukin [20]. Also see
[16]. The assumption in the above proposition is a generic condition for
$i,$ $i’$ . Specially, if $i$ and $i’$ are S. $P^{+}$-Legendre stable, then these satisfy the
assumption. Conceming the discriminant and the bifurcation of small fronts,
we define the following equivalence relation among big wave front germs. Let
$i:(L,p_{0})\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ and $i’$ : $(L’,p_{0}’)\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0}’)$ be big
Legendrian submanifold germs. We say that $W(L)$ and $W(L’)$ are $S.P^{+}-$

diffeomorphic if there exists a diffeomorphism germ $\Phi$ : $(\mathbb{R}^{n}\cross \mathbb{R},\overline{\pi}(p_{0}))arrow$

$(\mathbb{R}^{n}\cross \mathbb{R},\overline{\pi}(p_{0}’))$ of the form $\Phi(x, t)=(\phi_{1}(x), t+\alpha(x))$ such that $\Phi(W(L))=$
$W(L’)$ . Remark that the $SP^{+}$-diffeomorphism among big wave front germs
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preserves both the diffeomorphism types of bifurcations for families of small
fronts and caustics [13, 21].

By proposition 3.3, we have the following proposition.

Proposition 3.4 Let $i$ : $(L,p_{0})\subset(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0})$ and $i’$ : $(L’,p_{0}’)\subset$

$(PT^{*}(\mathbb{R}^{n}\cross \mathbb{R}),p_{0}’)$ be big Legendrian submanifold gems such that regular sets
$ofroi,\overline{\pi}oi’$ are dense respectively. Then $i$ and $i’$ are $S.P^{+}$ -Legendrian equiva-
lent if and only if $(W(L),\overline{\pi}(p_{0}))$ and $(W(L’),\overline{\pi}(p_{0}’))$ are $S.P^{+}$ -diffeomorphic.

4 Graphlike Legendrian unfoldings
A big Legendrian submanifold $i:L\subset PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ is a graphlike Legendrian
unfolding if $L\subset J^{1}(\mathbb{R}^{n}, \mathbb{R})$ . We use notations in section 3. Since $L$ is a big
Legendrian submanifold in $PT^{*}(\mathbb{R}^{n}\cross \mathbb{R})$ , it has a generating family at least
locally. In this case, it has a special form as follows: Let $\mathcal{F}$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross$

R$)$ , $0)arrow(\mathbb{R}, 0)$ be a big Morse family of hypersurfaces. We say that $\mathcal{F}$ is
a gmphlike Morse family of hypersurfaces if $(\partial \mathcal{F}/\partial t)(O)\neq 0$ . It is easy to
show that the corresponding big Legendrian submanifold germ is a graphlike
Legendrian unfolding. Of course, all graphlike Legendrian unfolding germs
can be constructed by the above way. We say that $\mathcal{F}$ is a graphlike genemting
family of $\mathcal{L}_{\mathcal{F}}(\Sigma_{*}(\mathcal{F}))$ .

We remark that the notion of graphlike Legendrian unfoldings and cor-
responding generating families have been introduced in [8] to describe the
perestroikas of wave fronts given as the level surfaces of the solution for the
eikonal equation given by a general Hamiltonian function. In this case, there
is an additional condition, that is, $\mathcal{F}:(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ is a genemt-
ing family if $\mathcal{F}$ satisfies the conditions $(\partial \mathcal{F}/\partial t)(0)\neq 0$ and $(\mathcal{F}, d_{2}\mathcal{F})|_{R^{k}x\mathbb{R}x\{0\}}$

is a submersion germ, where

$d_{2} \mathcal{F}(q, x, t)=(\frac{\partial \mathcal{F}}{\partial q_{1}}(q, x, t),$
$\ldots,$

$\frac{\partial \mathcal{F}}{\partial q_{k}}(q, x, t))$ .

We call such a generating family $\mathcal{F}$ a non-degenemte gmphlike genemting
family and corresponding graphlike Legendrian unfolding a non-degenarate
graphlike Legendrian unfolding. The second condition is equivalent to the
condition that $\pi_{2}0\overline{\pi}oi$ is a submersion at any point $p\in L$ . Our situa-
tion is dropping the second condition. We can reduce more strict form of
graphlike generating families as follows: Let $\mathcal{F}$ be a graphlike Morse fam-
ily of hypersurfaces. By the implicit function theorem, there exists a Morse
family of functions $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ such that $\langle \mathcal{F}(q, x, t)\rangle_{\mathcal{E}_{(q.z.\ell)}}=$
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$\langle F(q,x)-t\rangle_{\mathcal{E}_{(q,x.t)}}$ . Therefore $F(q,x)-t$ is a graphlike generating family of
$\mathcal{L}_{\mathcal{F}}(\Sigma_{*}(\mathcal{F}))$ . In this case,

$\Sigma_{*}(\mathcal{F})=\{(q,x, F(q, x))\in(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)|(q,x)\in C(F)\}$

and $\mathcal{L}_{\mathcal{F}}$ : $(\Sigma_{*}(\mathcal{F}), 0)arrow J^{1}(\mathbb{R}^{n},\mathbb{R})$ is given by

$\mathcal{L}_{\mathcal{F}}(q,x, F(q,x))=(L(F)(q, x), F(q,x))\in J^{1}(\mathbb{R}^{n}, \mathbb{R})\equiv T^{*}\mathbb{R}^{n}\cross \mathbb{R}$ .

Define a map $L_{F}:(C(F), 0)arrow J^{1}(\mathbb{R}^{n}, \mathbb{R})$ by

$\sim Ft^{1}(q,x)=(x,$ $F(q,x),$ $\frac{\partial F}{\partial x_{1}}(q,x),$

$\ldots,$
$\frac{\partial F}{\partial x_{n}}(q,x))$ ,

then we have $\sim Ft^{1}(C(F))=\mathcal{L}_{\mathcal{F}}(\Sigma_{*}(\mathcal{F}))$ . We call $W(L_{F})=\overline{\pi}(t^{1}\sim F(C(F)))$ the
graphlike wave fronts of the graphlike Legendrian unfolding $\sim t_{F}^{\backslash }$ . We simply
call $F$ a genemting family of the graphlike Legendrian unfolding $\sim Ff^{1}$ .

For any Morse family of functions $F$, we denote that $\overline{F}(q, x, t)=F(q, x)-$

$t$ . Since $\overline{F}$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ is a big Morse family, we can
use all the definitions of equivalence relations in section 3. Moreover, we
can translate the propositions and theorems into corresponding assertions in
terms of graphlike Legendrian unfoldings.

5 Modified Graphlike Legendrian unfoldings
Let $F:(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be a Morse family of functions. We consider the
following graphlike generating family $\mathcal{F}$ : $(\mathbb{R}^{k}\cross(\mathbb{R}^{n}\cross \mathbb{R}), 0)arrow(\mathbb{R}, 0)$ given
by $\mathcal{F}(q, x, t)=F(q, x)-\varphi(t)$ , where $\varphi$ : $(\mathbb{R}, 0)arrow(\mathbb{R}, 0)$ is a diffeomorphism
germ. We denote $\varphi^{-1}oF(q,x)$ by $F_{\varphi}(q, x)$ . Since the definition of a graphlike
generating family, $\overline{F}_{\varphi}(q, x, t)=F_{\varphi}(q, x)-t$ is same as $\mathcal{F}(q, x,t)$ . We call $\overline{F}_{\varphi}$ a
modified graphlike Legendrian unfolding of $\overline{F}$ and $\varphi$ . We clarify relationships
between the functions $F$ and $F_{\varphi}$ . By a direct caluculation, we have the
following proposition.

Proposition 5.1 Let $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be a function gem and
$\varphi$ : $(\mathbb{R}, 0)arrow(\mathbb{R}, 0)$ be a diffeomorphism germ. Then we have

(1) $C(F)=C(F_{\varphi})$ ,
(2) $\mathcal{B}_{F}=B_{F_{\rho}}\{$

’

(3) $F$ is a Morse family of functions if and only if $F_{\varphi}$ is a Morse family
of functions.
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Suppose that $F$ is a Morse family of functions and $\varphi:(\mathbb{R}, 0)arrow(\mathbb{R}, 0)$ is
a diffeomorphism germ. Then we can construct two Lagrangian submanifold
germs $L(F)(C(F))$ and $L(F_{\varphi})(C(F_{\varphi}))$ by proposition 5.1. It is easy to see
that the caustic $C_{C(F)}$ of $L(F)(C(F))$ coinsides with the caustic $C_{C(F_{\varphi})}$ of
$L(F_{\varphi})(C(F_{\varphi}))$ . We call $L(F_{\varphi})(C(F_{\varphi}))$ an induced Lagmngian submanifold
gem of $F$ and $\varphi$ .

We also give a relationship between the functions $F$ and $F_{\varphi}$ with respect
to versality (cf. [4, 17, 18]).

Theorem 5.2 Let $F$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}0)$ be a function gem and $\varphi$ :
$(\mathbb{R}, 0)arrow(\mathbb{R}, 0)$ be a diffeomorphism gem. $F$ is a $\mathcal{R}^{+}$ -versal unfolding of
$f=F|_{\mathbb{R}^{k}x\{0\}}$ if and only if $F_{\varphi}$ is a $\mathcal{R}^{+}$ -versal unfolding of $f_{\varphi}=F_{\varphi}|_{\mathbb{R}^{k}x\{0\}}$ .

6 Relationship between equivalence relations
We consider a relationship of the equivalence relations between Lagrangian
submanifold germs and induced graphlike Legendrian unfoldings, that is, be-
tween Morse families of functions and big Morse families of graphlike Legen-
drian unfoldings. As a consequence, we give a relationship between caustics
and graphlike wave fronts.

Proposition 6.1 Let $F,$ $G$ : $(\mathbb{R}^{k}\cross \mathbb{R}^{n}, 0)arrow(\mathbb{R}, 0)$ be Morse families of
functions. If Lagmngian submanifold germs $L(F)(C(F))$ and $L(G)(C(G))$
are Lagmngian equivalent, then the induced gmphlike Legendrian unfoldings
$L_{F}(C(F))$ $and\sim\{’ G(C(G))$ are $S.P^{+}-Legendan$ equivalent.

The above proposition asserts that the Lagrangian equivalence is stronger
than the $S.P^{+}$ -Legendrian equivalence. The $S.P^{+}$-Legendrian equivalence
relation among graphlike Legendrian unfoldings preserves both the diffeo-
morphism types of bifurcations for families of small fronts and caustics. On
the other hand, if we observe the real caustics of rays, we cannot observe the
structure of wave front propagations. In this sense, there are hidden structure
behind the picture of real caustics. By the above proposition, the Lagrangian
equivalence preserve not only the diffeomorphism type of caustics, but also
the hidden geometric structure of wave front propagations.

Conversely we have the following theorem [14].

Theorem 6.2 Suppose that $L(F)(C(F))$ and $L(G)(C(G))$ are Lagmnge sta-
$ble$ . Then Lagmngian submanifold germs $L(F)(C(F))$ and $L(G)(C(G))$ are
Lagmngian equivalent if and only if graphlike wave fronts $W(\circ)$ and $W(_{\sim G}t^{1})$

are $S.P^{+}$ -diffeomorphic.
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7Caustics of submanifolds in Euclidean space
As an application of the previous sections, we give a relationship between
caustics of a submanifold and of the canal hypersurface of the submanifold
in Euclidean space.

Let $x:Uarrow \mathbb{R}^{n}$ be an embedding, where $U$ is an open subset in $\mathbb{R}^{r}$ . We
denote the codimension of $U$ in $\mathbb{R}^{n}$ by $s(=n-r)$ . In order to consider the
caustics (evolutes), we use the distance squared function germ of $x$ ,

$D:(U\cross \mathbb{R}^{n}, (u_{0}, v_{0}))arrow \mathbb{K}_{\vdash};D(u, v)=||x(u)-v||^{2}$ ,

where $\mathscr{K}$ is the set of positive real numbers. We consider the case when $v$

does not belong to the image of $x$ , so that we adopt $\mathscr{K}$ here. We can show
that the distance squared function germ of $x$ is a Morse family of functions,
and hence we have a Lagrangian submanifold germ $L(D)(C(D))$ .

We now consider a diffeomorphism germ $\varphi$ : $(\mathbb{R}_{+},t_{0})arrow(\mathscr{K}, t_{1})$ which is
given by $\varphi(t)=t^{2}$ . We consider a modified graphlike Legendrian unfolding
of $\overline{D}$ and $\varphi$ ;

$\overline{D}_{\varphi}:(U\cross \mathbb{R}^{n}\cross \mathscr{K}, (u_{0}, v_{0}, t_{0}))arrow(\mathscr{K}, 0)$ .
Remark that we will consider $t_{0}=t_{0}’+\alpha$ later, since we consider a relation-
ship between caustics of a submanifold and of a canal hypersurface of the
submanifold.

By a straightforward calculation, we have the following proposition.

Proposition 7.1 $\overline{D}_{\varphi}(u, v,t)=(\partial\overline{D}_{\varphi}/\partial u_{i})(u, v, t)=0,$ $(i=1, \ldots, r)$ if and
only if there exist real numbers $\lambda_{1},$

$\cdots,$
$\lambda_{s}$ such that $v=x(u)-\lambda_{1}n_{1}(u)-$

. . . $-\lambda_{s}n_{s}(u)$ and $t=\sqrt{\lambda_{1}^{2}++\lambda_{s}^{2}}$.
On the other hand, a canal hypersurface $y:U\cross S^{s-1}arrow \mathbb{R}^{n}$ of $x$ : $Uarrow \mathbb{R}^{n}$

is defined by

$y(u, \mu_{1}, \ldots, \mu_{s})=x(u)+\alpha\cdot\sum_{i=1}^{s}\mu_{i}n_{i}(u)$,

where $\{x_{u_{1}}, \ldots, x_{u_{r}}, n_{1}, \ldots, n_{s}\}$ is a frame field of $\mathbb{R}^{n}$ along $x(U)$ . Remark
that there exists a positive real number $A$ such that $y$ is a regular hypersur-
face for $0<\alpha<A$ . We write that $e(u, \mu)=\sum_{i=1}^{s}\mu_{i}n_{i}(u)$ . Then the normal
of the canal hypersurface at $y(u, \mu)$ is given by $e(u, \mu)$ .

We also consider the distance squared function germ of $y$ ,

15 $:(U\cross S^{s-1}\cross \mathbb{R}^{n}, (u_{0}, \mu_{0}, w_{0}))arrow \mathbb{R}_{+};\tilde{D}(u, \mu, w)=||y(u, \mu)-w||^{2}$ .

We have already shown that the distance squared function germ of hyper-
surfaces is a Morse family of functions in [14]. We also have a Lagrangian
submanifold germ $L(\tilde{D})(C(\tilde{D}))$ .
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Let $\psi$ : $(\mathscr{T};t_{0})arrow(\mathbb{R}, t_{1})$ be a diffeomorphism germ which is given by
$\psi(t)=t^{2}$ . We also consider a modified graphlike Legendrian unfolding of $\tilde{D}$

and $\psi$ ;
$\overline{\tilde{D}}_{\psi}$ : $(U\cross S^{s-1}\cross \mathbb{R}^{n}\cross \mathbb{R}_{+}, (u_{0},\mu_{0}, w_{0}, t_{0}’))arrow(\mathbb{R}_{\star}, 0)$ .

Also by a straightforward calculation, we have the following proposition.

Proposition 7.2 $\overline{\tilde{D}}_{\psi}(u, \mu, w, \theta)=(\partial\overline{\tilde{D}}_{\psi}/\partial u_{i})(u, \mu, w, \theta)=(\partial\overline{\tilde{D}}_{\psi}/\partial\mu_{j})(u,$
$\mu$ ,

$w,$ $t)=0,$ $(i=1, \ldots,r,j=1, \ldots, s-1)$ if and only if there exists a real num-
$ber$ $a$ such that $w=x(u)+(\alpha-a)e(u, \mu)$ and $t’=\sqrt{a^{2}}$ .
Here we take a local coordinate $(\mu_{1}, \ldots,\mu_{s-1})$ of $S^{s-1}$ . We may suppose that
$\alpha-a\geq\alpha$, i. e., $a\leq 0$ .

Proposition 7.3 Under the above notations, graphlike wave front gems
$W(\overline{D}_{\varphi})$ and $W(\tilde{D}_{\psi})$ are $S.P^{+}$ -diffeomorphism.

Then we can show the following theorems [15].

Theorem 7.4 Caustics $C_{C(D)}$ coinsides with $C_{C(\tilde{D})}$ .

Theorem 7.5 If $L(D)(C(D))$ and $L(\tilde{D})(C(\tilde{D}))$ are Lagmnge stable, then
the induced Lagmngian submanifold gems of $D$ and $\varphi$ , and of $\tilde{D}$ and $\psi$ are
Lagrangian equivalent, so that caustics $C_{C(D)}$ and $C_{C(\tilde{D})}$ are diffeomorphic.

Remark 7.6 For a curve in $\mathbb{R}^{3}$ , under the condition that its curveture dose
not vanish, caustics of the curve and of a canal surface of the curve in $\mathbb{R}^{3}$

are the same by a direct caluculation. However, it is very hard to caluculate
directly for the case of higher codimensional submanifolds.

Remark 7.7 The analogous results to the above theorems are approved in
various situations. For example, submanifolds in Euclidean sphere and sub-
manifolds in hyperbolic space or de-Sitter space in Minkowski space. In the
case of Euclidean sphere, we may consider a height function as a Morse family
of functions. In [11, 12, 13], we consider caustics (evolutes) of hypersurface in
hyperbolic or de-Sitter space by using timelike or spacelike height functions.
We can apply the method in this paper to such situations. For submanifolds
in Euclidean sphere, we may take the local diffeomorphism germ $\varphi(t)=cost$ .
Besides, for submanifolds in hyperbolic space or de-Sitter space in Minkowski
space, we may take the local diffeomorphism germs $\varphi(t)=\cosh t$ or $\sinh t$ .

Remark 7.8 We can consider relationship between contact with submani-
folds and contact with canal hypersurfaces, for instance, see in [10, 13, 14].
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