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ABSTRACT. We introduce new obstructions to the existence of fold maps with ori-
entable cokernel bundle by relating K-theory and the $\gamma$ operation of Grothendieck
[Ati61] to the h-principle of Ando [And04]. We compute these obstructions for
fold maps of the projective spaces.

1. INTRODUCTION

For $n>k\geq 0$ , let $M^{n}$ and $Q^{n-k}$ be a smooth closed n-dimensional and a
smooth $(n-k)$ -dimensional manifold, respectively. We call a smooth map from $M$

to $Q$ a corank 1 map if the rank of its differential is not less than $n-k-1$ at any
point of $\Lambda/I$ . For a corank 1 map $f:Marrow Q$ let $\Sigma$ denote the set of singular points
in $M$ .

A basic example of a corank 1 map is a smooth map $Marrow Q$ with only Morse
type singularities, that is a fold map. Note that the restriction $f|_{L}$ is an immersion
if $f$ is a fold map.

Ando’s h-priciple [And04] states that there exists a fold map $f:Marrow Q$ such
that the immerison $f|\Sigma$ is coorientable if and only if there exists a fiberwise epi-
morphism $TM\oplus\epsilon^{1}arrow TQ$ , also see [Sae92]. Note that in the case of even $k$ the
immersion flx is always coorientable.

We call a corank 1 map $f:Marrow Q$ tame if the l-dimensional cokernel bundle
coker $df|_{\Sigma}$ of the restriction $df|_{\Sigma}:T\Lambda/I|_{\Sigma}arrow f^{*}TQ$ is trivial. For example, every
fold map is tame for $k\equiv$ Omod2 [And04] and it is easy to construct not tame fold
maps for odd $k\leq n-3$ , even between orientable manifolds.

Ando’s h-priciple [And04] enables $11S$ to reduce the problem of the existence of
tame fold maps (and more generally tame corank 1 maps) to the existence of $n-k$
linearly independent sections of $TM\oplus\epsilon^{1}$ if $Q$ is stably parallelizable.

If such a partial fr\‘aming exists, then clearly the Stiefel-Whitney classes $\prime u$)$i(TM)$

vanish for $i\geq k+2$ . Hence we obtain the following easy

Proposition 1.1. Let $n+1=2^{D}m_{f}$ where $m>1$ is odd. There is no tame corank
1 map from $\mathbb{R}P^{n}$ to any stably parallelizable $Q^{n-k}$ if $2^{D}(m-1)\geq k+2$ .
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However, the tangential Stiefel-Whitney and Pontryagin classes of $\mathbb{R}P^{2^{n}-1}$ van-
ish, thus in order to obtain obstructions in this case, we need something else. By
applying K-theory and following [Ati61], we obtain

Proposition 1.2. If $M^{n}$ admits a tame comnk 1 map into a stably parallelizable
$Q^{n-k_{f}}$ then $\gamma^{i}([TM]-[\epsilon^{n}])=0$ for $i\geq k+2$ .

Here $\gamma$ denotes the $\gamma$ operation in real K-theory, see [Ati61]. Proposition 1.2
can be useful if the higher tangential Stiefel-Whitney and Pontryagin classes of $M$

vanish. For example, we obtain

Corollary 1.3. Let $n\geq 4,2^{n-1}-2^{R\circ g_{2}n\rceil}\geq k+2$ and $Q$ stably pamllelizable.
(1) $\mathbb{R}P^{2^{\mathfrak{n}}-1}$ admits no fold map into $Q^{2^{\mathfrak{n}}-1-k}$ if $k$ is even,
(2) $\mathbb{R}P^{2^{n}-1}$ admits no fold map with orientable singular set into $Q^{2^{n}-1-k}$ if $k$ is

odd.

However, by using much sophisticated and deeper results of Atiyah, Bott and
Shapiro [ABS64] and Steer [Ste67], which determine the geometric dimensions of
the tangent bundles of the projective spaces, we have the stronger

Proposition 1.4. There exists a tame comnk 1 map from the pmjective space $FP^{n}$

into an $(n-k)$ -dimensional stably pamllelizable manifold if and only if $(n+1)d(F)-$
$q(n+1, F)\leq k+1$ , where $d(F)$ denotes the dimension over $\mathbb{R}$ of the (skew) field
$F\in\{\mathbb{R},$ $\mathbb{C}$ , IE $\}$ and $q(n+1, F)$ denotes the Radon-Hurwitz number associated to $n+1$

and F.

2. RESULTS

Let $M^{n}$ and $Q^{n-k}$ be a closed n-manifold and an $(n-k)$ -manifold, respectively.
For a finite CW-complex $X,\tilde{K}_{\mathbb{R}}(X)$ and $K_{\mathbb{R}}(X)$ denote the reduced and umreduced
real K-rings of $X$ , respectively, with $\tilde{K}_{\mathbb{R}}(X)\subseteq K_{\mathbb{R}}(X)$ . Recall that for a finite CW-
complex $X$ the geometric dimension g.dim$(x)$ of an element $x\in\tilde{K}_{\mathbb{R}}(X)$ is the
least integer $k$ such that $x+k$ is a class of a genuine vector bumdle over $X$ (see e.g.
[Ati61] $)$ .

Similarly to [And04], we have

Proposition 2.1. The following are equivalent:
(1) $M$ admits a tame comnk 1 map into $Q$ ,
(2) there is $a(fiben\dot{n}se$ epimorphism $TM\oplus\epsilon^{1}arrow TQ$ .
If $Q$ is stably pamllelizable, then (1) and (2) hold if and only if $g.dim([TM]-[\epsilon^{n}])\leq$

$k+1$ .

For a finite CW-complex $X$ , let $\lambda_{t}=\sum_{i=0}^{\infty}\lambda^{i}t^{i}$ , where $\lambda^{i}$ are the exterior power
operators (for details, see [Ati61]). Define $\gamma_{t}=\sum_{i=0}^{\infty}\gamma^{i}t^{i}$ to be the homomorphism
$\lambda_{t/1-t}$ of $K_{\mathbb{R}}(X)$ into the multiplicative group of formal power series in $t$ with
coefficients in $K_{\mathbb{R}}(X)$ and constant term 1. By the above proposition and [Ati61,
Proposition 2.3], we immediately have
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Corollary 2.2. 1 If $M$ admits a tame comnk 1 map into a stably pamllelizable $Q$ ,
then
(1) $w_{i}(TM)=0$ for $i\geq k+2$ ,
(2) $p_{i}(TM)=0$ for $2i>k+1$ ,
(3) $\gamma^{i}([TM]-[\epsilon^{n}])=0$ for $i\geq k+2$ .

Remark 2.3. Note that the conditions (1) and (2) may not give strong results in
general: for example, all the positive degree Stiefel-Whitney and Pontryagin classes
of $\mathbb{R}P^{2^{n}-1}$ vanish2, and if $k+1\geq n/2$ , then condition (2) is satisfied trivially for
any $M$ . In particular cases, though, condition (1) can still give strong results, e.g.
all Stiefel-Whitney classes of $\mathbb{R}P^{2^{\mathfrak{n}}-2}$ of degree $11p$ to $2^{n}-2$ are non-zero.

For an integer $s$ let $2^{R(s)}$ be the maximal power of 2 that divides $s$ , and define
$\kappa(n)=\max\{0<s<2^{n-1} : s-R(s)<2^{n-1}-n\}$ . By using Corollary 2.2 (3) and
following a similar argument to [Ati61], we obtain the following:

Proposition 2.4. For $n\geq 4,$ $\mathbb{R}P^{2^{n}-1}$ does not admit tame corank 1 map into any
stably pamllelizable $Q^{2^{n}-1-k}$ for $k\leq\kappa(n)-2$ .

Remark 2.5. Obviously $s_{0}=2^{n-1}-2^{\min\{r:r+2^{f}>n\}}$ satisfies $s_{0}+n-R(s_{0})<2^{n-1}$ ,
thus $s_{0}\leq\kappa,(n)$ and we obtain that $\mathbb{R}P^{2^{n}-1}$ admits no fold map with orientable sin-
gular set into $\mathbb{R}^{2^{n-1}+2^{1ni_{11}\{r:\tau+2^{f}>n\}}+j}$ for $n\geq 4$ and $j\geq 1$ . Also, since $\min\{r:r+2^{r}>$

$n\}\leq\lceil\log_{2}n\rceil$ , the same conclusion holds in the case of the target $\mathbb{R}^{2^{n-1}+2^{\lceil\log_{2}n\rceil}+j}$

for $n\geq 4$ and $j\geq 1$ . For example, there exists neither a fold map from $\mathbb{R}P^{31}$ to
$\mathbb{R}^{21+2j}$ for $0\leq j\leq 5$ nor a fold map with orientable singular set from $\mathbb{R}P^{31}$ to
$\mathbb{R}^{22+2j}$ for $0\leq j\leq 4$ .

Remark 2.6. However, we have stronger results about maps of the $pro$jective spaces
that follow immediately from Proposition 2.1 and [Ste67], which determines the
geometric dimensions of the tangent bundles of projective spaces in terms of Radon-
Hurwitz numbers.

Proof of Pmposition 2.1. (2) $\Rightarrow(1)$ : By [And04], if there is a $TM\oplus\epsilon^{1}arrow TQ$

epimorphism, then there is a fold map $Marrow Q$ with orientable singular set. (1)
$\Rightarrow(2)$ : Assume that we have a tame corank 1 map $f:Marrow Q$ . The bundle
coker $df|_{L}=(f^{*}TQ/f^{*}df(TM))|_{L}$ is considered as a subbundle of $f^{*}TQ$ and it is
trivial. Similarly to [And04, Proof of Lemma 3.1], let $L:\epsilon^{1}arrow TQ$ be an extension
of the bundle monomorphism coker $df|\Sigmaarrow f^{*}TQarrow TQ$ as a bundle homomor-
phism covering $f$ . Then $df+L$ is an epimorphism $TM\oplus\epsilon^{1}arrow TQ$ .

Finally, if (1) or (2) holds and $Q$ is stably parallelizable, then by the above,
we have $TM\oplus\epsilon^{1}\oplus\epsilon^{N}\cong\zeta\oplus f^{*}TQ\oplus\epsilon^{N}\cong\zeta\oplus\epsilon^{N+n-k}$ for some $N\gg 0$ and a
$(k+1)$ -dimensional bundle $\zeta$ . Thus g.dim$([T\Lambda/I]-[\epsilon^{n}])\leq k+1$ .

lCompare with [$Ati61$ , Proposition 3.2].
$2We$ have $w(T\mathbb{R}P^{2’-1})=(1+x)^{2^{l*}}=1\in \mathbb{Z}_{2}[x]/x^{2^{*}\prime}=H^{2}(\mathbb{R}P^{2’.-1};\mathbb{Z}_{2})$ , where $x$ denotes the

generator of $H^{1}(\mathbb{R}P^{2’.-1};\mathbb{Z}_{2})$ . The natural homomorphism $H^{s}(\mathbb{R}P^{2’-1};\mathbb{Z})arrow H^{s}(\mathbb{R}P^{2^{l}-1};\mathbb{Z}_{2})$

is an isomorphism for all positive even $s$ . Our claim follows by applying the fact that $p_{i}\equiv w_{2i}^{2}$

$mod 2$ .
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If $Q$ is stably parallelizable and $g.dim([TM]-[\epsilon^{n}])\leq k+1$ , then $TM\oplus\epsilon^{N\underline{\simeq}}$

$\zeta^{k+1}\oplus\epsilon^{N+n-k-1}\cong\zeta^{k+1}\oplus TQ\oplus\epsilon^{N-1}$ for some $N\gg 0$ , and thus
$TM \oplus\epsilon^{1}\frac{\simeq}{\square }$

$\zeta^{k+1}\oplus TQ$ , which proves (2).

Proof of Pmposition 2.4. Let $\varphi(n)$ denote the cardinality of the set $\{0<s\leq n$ :
$s\equiv 0,1,2,4mod 8\}$ . By [Ati61, \S 5], $[T\mathbb{R}P^{n}]-[\epsilon^{n}]=(n+1)x$ and $\gamma^{i}([T\mathbb{R}P^{n}]-$

$[\epsilon^{n}])=2^{i-1}(\begin{array}{l}n+li\end{array})x,$ $i\geq 1$ , where $x$ denotes the generator of $\tilde{K}_{\mathbb{R}}(\mathbb{R}P^{n})=\mathbb{Z}_{2^{\varphi(n)}}$ .
Therefore $\gamma^{i}([T\mathbb{R}P^{n}]-[\epsilon^{n}])=0$ if and only if $2^{\varphi(n)}$ divides $2^{i-1}(\begin{array}{l}n+1i\end{array})$ . Let $r(n)$

denote the greatest integer $s$ for which $2^{s-1}(\begin{array}{l}n+1\epsilon\end{array})$ is not divisible by $2^{\varphi(n)}$ . Then
by Proposition 2.1 there is no tame corank 1 map of $\mathbb{R}P^{2^{\mathfrak{n}}-1}$ into $\mathbb{R}^{2^{\mathfrak{n}}-1-k}$ for
$k\leq r(2^{n}-1)-2$ . It is easy to see that $\varphi(2^{n}-1)=2^{n-1}-1$ if $n\geq 3$ . By a
classical result of E. Kummer, the highest power $c(s)$ of 2 which divides $(\begin{array}{l}2^{\mathfrak{n}}s\end{array})$ can
be obtained by counting the number of carries when $s$ and $2^{n}-s$ are added in base
2. For $s\leq 2^{n-1}-1$ , we claim that $c(s)=n-R(s)$ , where 2$R(s)$ is the maximal
power of 2 which divides $s$ . Indeed, $2^{n}-1-s$ is obtained by negating the binary
form of $s$ bitwise, hence $2^{n}-s$ is obtained by negating the binary form of $s$ bitwise
from the $(n-1)$ st to the $R(s)$ th binary position, where both of $s$ and $2^{n}-s$ have
the digit 1, and after that position both have digits $0$ . Therefore when we add $s$

and $2^{n}-s$ in ba.se 2, we have $n-R(s)$ carries. By the definition of $r(n)$ it follows
that $r(2^{n}-1)$ is the largest integer $s$ for which $s+n-R(s)<2^{n-1}$ . 口

When $n$ is not a power of 2, we have the following easy results for $\mathbb{R}P^{n-1}$ .
Proposition 2.7. Let $n=2^{D}m$ , where $m>1$ is odd. Then $(\begin{array}{l}n2^{D}\end{array})$ is odd. Hence
$w_{2^{D}(m-1)}(T\mathbb{R}P^{n-1})\neq 0$ .

Pmof. It is obvious from [Gla99], details are left to the reader. 口
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