Algebraic types and the number of countable models

Institute of Mathematics University of Tsukuba Akito Tsuboi

1 Introduction

It is a long-standing conjecture that there is no stable theory with a finite number (> 1) of countable models. Tanović [2] proved that if a countable complete theory T with $I(\omega, T) = 3$ has infinitely many definable elements then T is unstable and has a dense definable ordering. In this note, we weaken the assumption of the result.

Definition 1 Let $\mathcal{F} = \{\varphi_i(x) : i \in I\}$ be a family of consistent formulas over \emptyset . We say that \mathcal{F} is a strongly orthogonal family if the following condition is satisfied:

(*) If each σ_i $(i \in I)$ is an elementary permutation of the domain $\varphi_i^{\mathcal{M}}$. Then $\bigcup_{i \in I} \sigma_i$ is an elementary mapping.

Example 2 For each $i \in I$, let $c_i \in dcl(\emptyset)$. Then $\{tp(c_i) : i \in I\}$ is a strongly orthogonal family.

Example 3 (A modification of Ehrenfeucht's example) Let $L = \{<, U_n\}_{n \in \omega}$. For each $n \in \omega$, let D_n be the convex set $(-\infty, n\sqrt{2})$ of \mathbb{Q} . Let T be the theory of $(\mathbb{Q}, <, D_n)_{n \in \omega}$, where the interpretation of U_n is D_n .

In T there is no definable element, since neither U_n nor $\neg U_n$ has end points. Even in a fixed sort of T^{eq} , we don't have infinitely many definable elements. Let $\varphi_n(x)$ be the formula $U_{n+1}(x) \wedge \neg U_n(x)$. Then the set $\mathcal{F} = \{\varphi_n(x) : n \in \omega\}$ forms a strongly orthogonal family.

Definition 4 Let \mathcal{F} be a pairwise inconsistent family of L-formulas with free variable x. We say that $p(x) \in S(\emptyset)$ is an \mathcal{F} -limit type if whenever $\varphi(x)$ is a member of p(x) then there are infinitely many formulas $\psi(x) \in \mathcal{F}$ with $\varphi(x) \wedge \psi(x)$ consistent.

Remark 5 Let $\mathcal{F} = \{\varphi_i(x) : i \in \omega\}$ be a set of pairwise inconsistent *L*-formulas.

- 1. An \mathcal{F} -limit type exists. An \mathcal{F} -limit type is a nonprincipal type.
- 2. Let p(x) be an \mathcal{F} -limit type. Then there is an infinite subset \mathcal{F}_0 of \mathcal{F} such that (1) p(x) is an \mathcal{F}_0 -limit type and (2) for every $\varphi(x) \in p(x)$, $\{q(x) \in \mathcal{F}_0 : \varphi(x) \notin q(x)\}$ is finite. Proof: Choose $\varphi_n(x)$ $(n \in \omega)$ such that p(x) is equivalent to $\{\varphi_n(x) : n \in \omega\}$ and that for every $n \in \omega$ $T \vdash \forall x(\varphi_{n+1}(x) \to \varphi_n(x))$. Let I be the set of all $n \in \omega$ such that $\varphi_n(x) \land \neg \varphi_{n+1}(x)$ belongs to some $q \in \mathcal{F}$. First we claim that I is an infinite set. Otherwise, there is $n^* \in \omega$ such that $I \subset \{0, ..., n^*-1\}$. For every $n \geq n^*$ and every $q \in \mathcal{F}$, we have $q(x) \vdash \varphi_n(x) \to \varphi_{n+1}(x)$. By the definition of \mathcal{F} -limit type, there are at least two types $q_0, q_1 \in \mathcal{F}$ such that $\varphi_{n^*}(x) \in q_k(x)$ (k = 0, 1). Then we have $q_0(x) \vdash p$ and $q_1(x) \vdash p$. A contradiction . Thus I is an infinite set and p(x) is equivalent to $\{\varphi_n(x) : n \in I\}$. For each $n \in I$, choose $q_n \in \mathcal{F}$ such that $\varphi_n(x) \land \neg \varphi_{n+1}(x) \in q_n(x)$. Then $\mathcal{F}_0 = \{q_n : n \in \omega\}$ has the required properties.

In this paper, T is a countable complete theory formulated in the language L. Since we are interested in theories with a finite number of countable models, throughout we assume that T is a small theory (i.e. $S(\emptyset)$ is countable). In section 1, we discuss the case where T has a strongly orthogonal infinite family. We show that if T has three countable models then T must be unstable. In section 2, we discuss the case where T has a strongly orthogonal infinite family of algebraic formulas, and show that if T has three countable models then T has the strict order property (and in fact it has a dense tree). Lemmas 9 and 10 can be proved in a similar way as corresponding lemmas in [2].

2 Strongly Orthogonal Family of Isolated Types

In this section, we show the following:

Proposition 6 Let T be a theory with three countable models. Suppose that there is a strongly orthogonal infinite family of L-formulas. Then T is unstable.

T is a stable theory with $I(\omega, T) = 3$. We fix a strongly orthogonal infinite family $\mathcal{F} = \{\varphi_i(x) : i \in \omega\}$. Using the fact that T is small, we may assume that each $\varphi_i(x)$ generates a principal type $p_i(x)$. We fix an \mathcal{F} -limit type $p^*(x)$. Our aim is to derive a contradiction from these assumptions.

Lemma 7 Let q(x) be a principal type. Then there are only finitely many types $p_i(y) \in \mathcal{F}$ such that q and p_i are not weakly orthogonal.

Proof: Suppose otherwise and for simplicity we assume that no $p_i(x)$ is weakly orthogonal to q. For each i choose a formula $\theta_i(x,y)$ witnessing that q(x) and $p_i(y)$ are not weakly orthogonal. Then, by the assumption that q_i is an isolated type, $E_i(u,v) = \forall y [p_i(y) \to (\theta_i(u,y) \leftrightarrow \theta_i(v,y))]$ is a \emptyset -definable equivalence relation on $q^{\mathcal{M}}$. Moreover E_i has at least two equivalence classes.

Claim A Let $a \models q$. For any i, the class a_{E_i} is $p_i^{\mathcal{M}}$ -definable.

Let $r = \operatorname{tp}_{\theta_i}(a/p_i^{\mathcal{M}})$. By the stability, r is a definable type. So there is a finite tuple d from $p_i^{\mathcal{M}}$ and a formula $\delta(y, z)$ such that for any $b \models p_i^{\mathcal{M}}$,

$$\theta_i(x, b) \in r \iff \delta(b, d) \text{ holds.}$$

Let $\varphi(x, d)$ be the L(d)-formula

$$\forall y (p_i(y) \to (\delta(y, d) \leftrightarrow \theta_i(x, y))).$$

Clearly $\varphi(x,d)$ defines the set $E_i(x,a)$. (End of Proof of Claim A)

Let $\{a_i : i \in \omega\}$ be a set of realizations of q.

Claim B $\{E_i(x, a_i) : i \in \omega\}$ is consistent.

By claim A, the class a_{0E_i} is $p_i^{\mathcal{M}}$ -definable. Choose elements $b_{i1}, ..., b_{ik_i} \in p_i^{\mathcal{M}}$ and a formula $\varphi_i(x, b_{i1}, ..., b_{ik_i})$ equivalent to $E_i(x, a_0)$. Choose an automorphism σ_i that maps a_0 to a_i . Let τ_i be the restriction of σ_i to the domain $p_i^{\mathcal{M}}$. Then by the strong orthogonality we see that $\bigcup_{i \in \omega} \tau_i$ is an elementary mapping. Since $\{E_i(x, a_0) : i \in \omega\}$ is consistent, $\{\varphi_i(x, \tau_i b_{i1}, ..., \tau_i b_{ik_i}) : i \in \omega\}$ is also consistent. So $\{E_i(x, \sigma_i(a_0)) : i \in \omega\}$ is consistent.

From Claim A, we also know the following.

Claim C For each $\eta \in 2^{\omega}$, $q(x) \cup q(y) \cup \{E_i(x,y) : i < n, \eta(i) = 1\} \cup \{\neg E_i(x,y) : i < n, \eta(i) = 0\}$ is consistent.

From Claim B, we have continuum many complete types over \emptyset . But this is impossible, since $I(\omega, T) < \omega$.

Lemma 8 Let q be a principal type. Then q and p^* are weakly orthogonal.

Proof: Suppose otherwise and choose a formula $\theta(x,y)$ such that both $p^*(x) \cup q(y) \cup \{\theta(x,y)\}$ and $p^*(x) \cup q(y) \cup \{\neg \theta(x,y)\}$ are consistent. Let $\chi(y) \in q(y)$ be a formula isolating q. Then the formula

$$\exists y_0 \exists y_1 [\chi(y_0) \land \chi(y_1) \land \theta(x, y_0) \land \neg \theta(x, y_1)]$$

belongs to $p^*(x)$. Since p^* is an \mathcal{F} -limit type, this formula belongs to infinitely many p_i 's. Among such p_i 's, by the previous lemma, there is p_i such that p_i and q are weakly orthogonal. Then we can choose $a \models p_i$ and b_0, b_1 such that

$$\mathcal{M} \models \chi(b_0) \land \chi(b_1) \land \theta(a, b_0) \land \neg \theta(a, b_1)].$$

Since $\chi(y)$ isolates q(y), we have $\operatorname{tp}(b_j) = q$ (j = 0, 1). Thus we have two distinct extensions $\operatorname{tp}(ab_0)$ and $\operatorname{tp}(ab_1)$ of $p_i(x) \cup q(y)$. This contradicts the weak orthogonality of p_i and q.

Lemma 9 Let $r(x) \in S(\emptyset)$ be a type with CB(r) = 1. Let $b \models r$ and $a_0, a_1 \models p^*$. Suppose that $tp(a_1/a_0)$ is semi-isolated and that $tp(b/a_0)$ is not semi-isolated. Then $tp(a_0b) = tp(a_1b)$.

Proof: Let $\chi(y)$ be a formula isolating r(y) among the types with CB-rank ≥ 1 . By way of contradiction, we assume that the lemma is not true. Choose a formula $\theta(x,y)$ such that $\mathcal{M} \models \theta(a_0,b) \land \neg \theta(a_1,b) \land \chi(b)$. Choose a formula $\psi(z,a_0)$ witnessing the semi-isolation of $\operatorname{tp}(a_1/a_0)$. Then we have $\mathcal{M} \models \exists z [\theta(a_0,b) \land \neg \theta(z,b) \land \chi(b) \land \psi(z,a_0)]$. Since $\operatorname{tp}(b/a_0)$ is not semi-isolated, we can choose b' and a'_1 with the following properties:

- 1. $\mathcal{M} \models \theta(a_0, b') \land \neg \theta(a'_1, b') \land \chi(b') \land \psi(a'_1, a_0)$.
- 2. $tp(b') \neq tp(b)$, so tp(b') is a principal type.

By our choice of $\psi(z, a_0)$, a_1' realizes the type p^* . So $\operatorname{tp}(a_0b')$ and $\operatorname{tp}(a_1'b')$ are two distinct extensions of $p^*(x) \cup \operatorname{tp}(b')$, contradicting lemma 8.

Lemma 10 Let $r = \operatorname{tp}(b)$ be a type of CB-rank 1. Let a be a realization of p^* such that $\operatorname{tp}(a/b)$ is isolated while $\operatorname{tp}(b/a)$ is not semi-isolated. Let $\psi(x, x')$ be the formula

$$\forall y[\chi(y) \to (\theta(x,y) \to \theta(x',y))],$$

where $\theta(x,b)$ is a formula isolating $\operatorname{tp}(a/b)$, and $\chi(y)$ is a formula isolating r among the types with CB-rank ≥ 1 . Then, for any $a' \models p^*$, the following are equivalent:

- 1. tp(a'/a) is semi-isolated;
- 2. $\mathcal{M} \models \psi(a, a')$.

Proof: $1 \Rightarrow 2$: Assume 1. Let b' be any element satisfying $\chi(y)$. First suppose that $\operatorname{tp}(b')$ is principal. Then $\operatorname{tp}(b')$ and p^* are weakly orthogonal by lemma 8, so we have the equivalence of $\theta(a,b')$ and $\theta(a',b')$. Next suppose that $\operatorname{tp}(b')$ is nonprincipal and that $\theta(a,b')$ holds. Now b' realizes $r=\operatorname{tp}(b)$. So we have $\operatorname{tp}(ab')=\operatorname{tp}(ab)$, as $\theta(x,b)$ isolates the type $\operatorname{tp}(b/a)$. In particular, $\operatorname{tp}(b'/a)$ is not semi-isolated.

 $2 \Rightarrow 1$: Assume 2. Notice that b satisfies $\chi(y) \land \theta(a, y)$. So, by 2, we have $\mathcal{M} \models \theta(a', b)$. From this and the fact that $\theta(x, b)$ isolates $\operatorname{tp}(a/b)$, we have $\operatorname{tp}(a') = \operatorname{tp}(a) = p^*$. Thus, $\operatorname{tp}(a'/a)$ is a semi-isolated type.

Proof of Proposition 6: Since T has exactly three countable models, for any two nonalgebraic types q_i (i = 1, 2) there are $a_i \models q_i$ (i = 1, 2) such that $\operatorname{tp}(a_1/a_2)$ is isolated while $\operatorname{tp}(a_2/a_1)$ is not semi-isolated. This can be shown using the fact that if $I(\omega, T) = 3$ then every type is a powerful type (see [1]). So the assumption of the last lemma 10 is fulfilled. Thus the semi-isolation is definable on $p^{*\mathcal{M}}$. Since the semi-isolation relation is an infinite order, we get a contradiction. So we have shown that T is unstable.

3 Strongly Orthogonal Family of Algebraic Types

Proposition 11 Let T be a theory with $I(\omega, T) = 3$. Suppose that there is a strongly orthogonal infinite family of algebraic types. Then T has the strict order property.

We fix a strongly orthogonal infinite family $\mathcal{F} = \{p_i(x) : i \in \omega\}$, where each $p_i(x)$ is an algebraic type.

In section 2 lemma 7, by assuming the stability we proved the weak orthogonality of p_i and q. However if each p_i is an algebraic type, we can prove the same result without assuming the stability.

So let us recall the proof there. We assumed that each p_i and q are not weakly orthogonal. For each i, we defined an equivalence relation $E_i(u,v) = \bigwedge_{d \models p_i} (\theta_i(u,d) \leftrightarrow \theta_i(v,d))$, where $\theta_i(u,v)$ is a witness of the non-weak-orthogonality. It is a \emptyset -definable equivalence relation on $q^{\mathcal{M}}$, having at least two equivalence classes. The main task was to show that each class is $p_i^{\mathcal{M}}$ -definable. We used the stability at this point. But, if q_i is an algebraic type, the stability assumption is not necessary. The rest can be proven similarly. So we can show that T has the strict order property. The existence of a dense tree can be proved using the argument in [3].

References

- [1] M. Benda, Remarks on countable models, fund. Math.,81 (1974), no. 2, 107–119.
- [2] Predrag Tanović, Theories with constants and three countable models. Arch. Math. Logic 46 (2007), no. 5-6, 517–527.
- [3] Koichiro Ikeda, Anand Pillay and Akito Tsuboi, On theories having three countable models. Math. Logic Quart. 44 (1998), no. 2, 161–166.

Akito Tsuboi e-mail: tsuboi@math.tsukuba.ac.jp