Algebraic types and the number of countable models

Institute of Mathematics
University of Tsukuba
Akito Tsuboi

1 Introduction

It is a long－standing conjecture that there is no stable theory with a finite number（ >1 ）of countable models．Tanović［2］proved that if a countable complete theory T with $I(\omega, T)=3$ has infinitely many definable elements then T is unstable and has a dense definable ordering．In this note，we weaken the assumption of the result．

Definition 1 Let $\mathcal{F}=\left\{\varphi_{i}(x): i \in I\right\}$ be a family of consistent formulas over \emptyset ．We say that \mathcal{F} is a strongly orthogonal family if the following condition is satisfied：
$\left.{ }^{*}\right)$ If each $\sigma_{i}(i \in I)$ is an elementary permutation of the domain $\varphi_{i}^{\mathcal{M}}$ ． Then $\bigcup_{i \in I} \sigma_{i}$ is an elementary mapping．

Example 2 For each $i \in I$ ，let $c_{i} \in \operatorname{dcl}(\emptyset)$ ．Then $\left\{\operatorname{tp}\left(c_{i}\right): i \in I\right\}$ is a strongly orthogonal family．

Example 3 （A modification of Ehrenfeucht＇s example）Let $L=\left\{<, U_{n}\right\}_{n \in \omega}$ ． For each $n \in \omega$ ，let D_{n} be the convex set $(-\infty, n \sqrt{2})$ of \mathbb{Q} ．Let T be the theory of $\left(\mathbb{Q},<, D_{n}\right)_{n \in \omega}$ ，where the interpretation of U_{n} is D_{n} ．

In T there is no definable element，since neither U_{n} nor $\neg U_{n}$ has end points．Even in a fixed sort of $T^{\text {eq }}$ ，we don＇t have infinitely many definable elements．Let $\varphi_{n}(x)$ be the formula $U_{n+1}(x) \wedge \neg U_{n}(x)$ ．Then the set $\mathcal{F}=$ $\left\{\varphi_{n}(x): n \in \omega\right\}$ forms a strongly orthogonal family．

Definition 4 Let \mathcal{F} be a pairwise inconsistent family of L-formulas with free variable x. We say that $p(x) \in \mathrm{S}(\emptyset)$ is an \mathcal{F}-limit type if whenever $\varphi(x)$ is a member of $p(x)$ then there are infinitely many formulas $\psi(x) \in \mathcal{F}$ with $\varphi(x) \wedge \psi(x)$ consistent.

Remark 5 Let $\mathcal{F}=\left\{\varphi_{i}(x): i \in \omega\right\}$ be a set of pairwise inconsistent L formulas.

1. An \mathcal{F}-limit type exists. An \mathcal{F}-limit type is a nonprincipal type.
2. Let $p(x)$ be an \mathcal{F}-limit type. Then there is an infinite subset \mathcal{F}_{0} of \mathcal{F} such that (1) $p(x)$ is an \mathcal{F}_{0}-limit type and (2) for every $\varphi(x) \in p(x)$, $\left\{q(x) \in \mathcal{F}_{0}: \varphi(x) \notin q(x)\right\}$ is finite. Proof: Choose $\varphi_{n}(x)(n \in \omega)$ such that $p(x)$ is equivalent to $\left\{\varphi_{n}(x): n \in \omega\right\}$ and that for every $n \in \omega$ $T \vdash \forall x\left(\varphi_{n+1}(x) \rightarrow \varphi_{n}(x)\right)$. Let I be the set of all $n \in \omega$ such that $\varphi_{n}(x) \wedge \neg \varphi_{n+1}(x)$ belongs to some $q \in \mathcal{F}$. First we claim that I is an infinite set. Otherwise, there is $n^{*} \in \omega$ such that $I \subset\left\{0, \ldots, n^{*}-1\right\}$. For every $n \geq n^{*}$ and every $q \in \mathcal{F}$, we have $q(x) \vdash \varphi_{n}(x) \rightarrow \varphi_{n+1}(x)$. By the definition of \mathcal{F}-limit type, there are at least two types $q_{0}, q_{1} \in \mathcal{F}$ such that $\varphi_{n^{*}}(x) \in q_{k}(x)(k=0,1)$. Then we have $q_{0}(x) \vdash p$ and $q_{1}(x) \vdash p$. A contradiction. Thus I is an infinite set and $p(x)$ is equivalent to $\left\{\varphi_{n}(x): n \in I\right\}$. For each $n \in I$, choose $q_{n} \in \mathcal{F}$ such that $\varphi_{n}(x) \wedge \neg \varphi_{n+1}(x) \in q_{n}(x)$. Then $\mathcal{F}_{0}=\left\{q_{n}: n \in \omega\right\}$ has the required properties.

In this paper, T is a countable complete theory formulated in the language L. Since we are interested in theories with a finite number of countable models, throughout we assume that T is a small theory (i.e. $S(\emptyset)$ is countable). In section 1 , we discuss the case where T has a strongly orthogonal infinite family. We show that if T has three countable models then T must be unstable. In section 2 , we discuss the case where T has a strongly orthogonal infinite family of algebraic formulas, and show that if T has three countable models then T has the strict order property (and in fact it has a dense tree). Lemmas 9 and 10 can be proved in a similar way as corresponding lemmas in [2].

2 Strongly Orthogonal Family of Isolated Types

In this section, we show the following:
Proposition 6 Let T be a theory with three countable models. Suppose that there is a strongly orthogonal infinite family of L-formulas. Then T is unstable.
T is a stable theory with $I(\omega, T)=3$. We fix a strongly orthogonal infinite family $\mathcal{F}=\left\{\varphi_{i}(x): i \in \omega\right\}$. Using the fact that T is small, we may assume that each $\varphi_{i}(x)$ generates a principal type $p_{i}(x)$. We fix an \mathcal{F}-limit type $p^{*}(x)$. Our aim is to derive a contradiction from these assumptions.

Lemma 7 Let $q(x)$ be a principal type. Then there are only finitely many types $p_{i}(y) \in \mathcal{F}$ such that q and p_{i} are not weakly orthogonal.

Proof: \quad Suppose otherwise and for simplicity we assume that no $p_{i}(x)$ is weakly orthogonal to q. For each i choose a formula $\theta_{i}(x, y)$ witnessing that $q(x)$ and $p_{i}(y)$ are not weakly orthogonal. Then, by the assumption that q_{i} is an isolated type, $E_{i}(u, v)=\forall y\left[p_{i}(y) \rightarrow\left(\theta_{i}(u, y) \leftrightarrow \theta_{i}(v, y)\right)\right]$ is a \emptyset-definable equivalence relation on $q^{\mathcal{M}}$. Moreover E_{i} has at least two equivalence classes.

Claim A Let $a \models q$. For any i, the class $a_{E_{i}}$ is $p_{i}^{\mathcal{M}}$-definable.
Let $r=\operatorname{tp}_{\theta_{i}}\left(a / p_{i}^{\mathcal{M}}\right)$. By the stability, r is a definable type. So there is a finite tuple d from $p_{i}^{\mathcal{M}}$ and a formula $\delta(y, z)$ such that for any $b \models p_{i}^{\mathcal{M}}$,

$$
\theta_{i}(x, b) \in r \Longleftrightarrow \delta(b, d) \text { holds. }
$$

Let $\varphi(x, d)$ be the $L(d)$-formula

$$
\forall y\left(p_{i}(y) \rightarrow\left(\delta(y, d) \leftrightarrow \theta_{i}(x, y)\right)\right)
$$

Clearly $\varphi(x, d)$ defines the set $E_{i}(x, a)$. (End of Proof of Claim A)
Let $\left\{a_{i}: i \in \omega\right\}$ be a set of realizations of q.
Claim B $\left\{E_{i}\left(x, a_{i}\right): i \in \omega\right\}$ is consistent.

By claim A, the class $a_{0 E_{i}}$ is $p_{i}^{\mathcal{M}}$-definable. Choose elements $b_{i 1}, \ldots, b_{i k_{i}} \in p_{i}^{\mathcal{M}}$ and a formula $\varphi_{i}\left(x, b_{i 1}, \ldots, b_{i k_{i}}\right)$ equivalent to $E_{i}\left(x, a_{0}\right)$. Choose an automorphism σ_{i} that maps a_{0} to a_{i}. Let τ_{i} be the restriction of σ_{i} to the domain $p_{i}^{\mathcal{M}}$. Then by the strong orthogonality we see that $\bigcup_{i \in \omega} \tau_{i}$ is an elementary mapping. Since $\left\{E_{i}\left(x, a_{0}\right): i \in \omega\right\}$ is consistent, $\left\{\varphi_{i}\left(x, \tau_{i} b_{i 1}, \ldots, \tau_{i} b_{i k_{i}}\right): i \in \omega\right\}$ is also consistent. So $\left\{E_{i}\left(x, \sigma_{i}\left(a_{0}\right)\right): i \in \omega\right\}$ is consistent.

From Claim A, we also know the following.
Claim C For each $\eta \in 2^{\omega}, q(x) \cup q(y) \cup\left\{E_{i}(x, y): i<n, \eta(i)=1\right\} \cup$ $\left\{\neg E_{i}(x, y): i<n, \eta(i)=0\right\}$ is consistent.
From Claim B, we have continuum many complete types over \emptyset. But this is impossible, since $I(\omega, T)<\omega$.

Lemma 8 Let q be a principal type. Then q and p^{*} are weakly orthogonal.
Proof: Suppose otherwise and choose a formula $\theta(x, y)$ such that both $p^{*}(x) \cup q(y) \cup\{\theta(x, y)\}$ and $p^{*}(x) \cup q(y) \cup\{\neg \theta(x, y)\}$ are consistent. Let $\chi(y) \in q(y)$ be a formula isolating q. Then the formula

$$
\exists y_{0} \exists y_{1}\left[\chi\left(y_{0}\right) \wedge \chi\left(y_{1}\right) \wedge \theta\left(x, y_{0}\right) \wedge \neg \theta\left(x, y_{1}\right)\right]
$$

belongs to $p^{*}(x)$. Since p^{*} is an \mathcal{F}-limit type, this formula belongs to infinitely many p_{i} 's. Among such p_{i} 's, by the previous lemma, there is p_{i} such that p_{i} and q are weakly orthogonal. Then we can choose $a \vDash p_{i}$ and b_{0}, b_{1} such that

$$
\left.\mathcal{M} \vDash \chi\left(b_{0}\right) \wedge \chi\left(b_{1}\right) \wedge \theta\left(a, b_{0}\right) \wedge \neg \theta\left(a, b_{1}\right)\right]
$$

Since $\chi(y)$ isolates $q(y)$, we have $\operatorname{tp}\left(b_{j}\right)=q(j=0,1)$. Thus we have two distinct extensions $\operatorname{tp}\left(a b_{0}\right)$ and $\operatorname{tp}\left(a b_{1}\right)$ of $p_{i}(x) \cup q(y)$. This contradicts the weak orthogonality of p_{i} and q.

Lemma 9 Let $r(x) \in S(\emptyset)$ be a type with $C B(r)=1$. Let $b \vDash r$ and $a_{0}, a_{1} \models p^{*}$. Suppose that $\operatorname{tp}\left(a_{1} / a_{0}\right)$ is semi-isolated and that $\operatorname{tp}\left(b / a_{0}\right)$ is not semi-isolated. Then $\operatorname{tp}\left(a_{0} b\right)=\operatorname{tp}\left(a_{1} b\right)$.

Proof: Let $\chi(y)$ be a formula isolating $r(y)$ among the types with $C B-$ rank ≥ 1. By way of contradiction, we assume that the lemma is not true. Choose a formula $\theta(x, y)$ such that $\mathcal{M} \vDash \theta\left(a_{0}, b\right) \wedge \neg \theta\left(a_{1}, b\right) \wedge \chi(b)$. Choose a formula $\psi\left(z, a_{0}\right)$ witnessing the semi-isolation of $\operatorname{tp}\left(a_{1} / a_{0}\right)$. Then we have $\mathcal{M} \models \exists z\left[\theta\left(a_{0}, b\right) \wedge \neg \theta(z, b) \wedge \chi(b) \wedge \psi\left(z, a_{0}\right)\right]$. Since $\operatorname{tp}\left(b / a_{0}\right)$ is not semiisolated, we can choose b^{\prime} and a_{1}^{\prime} with the following properties:

1. $\mathcal{M} \vDash \theta\left(a_{0}, b^{\prime}\right) \wedge \neg \theta\left(a_{1}^{\prime}, b^{\prime}\right) \wedge \chi\left(b^{\prime}\right) \wedge \psi\left(a_{1}^{\prime}, a_{0}\right)$.
2. $\operatorname{tp}\left(b^{\prime}\right) \neq \operatorname{tp}(b)$, $\operatorname{so} \operatorname{tp}\left(b^{\prime}\right)$ is a principal type.

By our choice of $\psi\left(z, a_{0}\right), a_{1}^{\prime}$ realizes the type p^{*}. So $\operatorname{tp}\left(a_{0} b^{\prime}\right)$ and $\operatorname{tp}\left(a_{1}^{\prime} b^{\prime}\right)$ are two distinct extensions of $p^{*}(x) \cup \operatorname{tp}\left(b^{\prime}\right)$, contradicting lemma 8.

Lemma 10 Let $r=\operatorname{tp}(b)$ be a type of $C B-r a n k 1$. Let a be a realization of p^{*} such that $\operatorname{tp}(a / b)$ is isolated while $\operatorname{tp}(b / a)$ is not semi-isolated. Let $\psi\left(x, x^{\prime}\right)$ be the formula

$$
\forall y\left[\chi(y) \rightarrow\left(\theta(x, y) \rightarrow \theta\left(x^{\prime}, y\right)\right)\right]
$$

where $\theta(x, b)$ is a formula isolating $\operatorname{tp}(a / b)$, and $\chi(y)$ is a formula isolating r among the types with $C B$-rank ≥ 1. Then, for any $a^{\prime} \vDash p^{*}$, the following are equivalent:

1. $\operatorname{tp}\left(a^{\prime} / a\right)$ is semi-isolated;
2. $\mathcal{M} \vDash \psi\left(a, a^{\prime}\right)$.

Proof: $\quad 1 \Rightarrow 2$: Assume 1 . Let b^{\prime} be any element satisfying $\chi(y)$. First suppose that $\operatorname{tp}\left(b^{\prime}\right)$ is principal. Then $\operatorname{tp}\left(b^{\prime}\right)$ and p^{*} are weakly orthogonal by lemma 8 , so we have the equivalence of $\theta\left(a, b^{\prime}\right)$ and $\theta\left(a^{\prime}, b^{\prime}\right)$. Next suppose that $\operatorname{tp}\left(b^{\prime}\right)$ is nonprincipal and that $\theta\left(a, b^{\prime}\right)$ holds. Now b^{\prime} realizes $r=\operatorname{tp}(b)$. So we have $\operatorname{tp}\left(a b^{\prime}\right)=\operatorname{tp}(a b)$, as $\theta(x, b)$ isolates the type $\operatorname{tp}(b / a)$. In particular, $\operatorname{tp}\left(b^{\prime} / a\right)$ is not semi-isolated.
$2 \Rightarrow 1$: Assume 2. Notice that b satisfies $\chi(y) \wedge \theta(a, y)$. So, by 2 , we have $\mathcal{M} \models \theta\left(a^{\prime}, b\right)$. From this and the fact that $\theta(x, b)$ isolates $\operatorname{tp}(a / b)$, we have $\operatorname{tp}\left(a^{\prime}\right)=\operatorname{tp}(a)=p^{*}$. Thus, $\operatorname{tp}\left(a^{\prime} / a\right)$ is a semi-isolated type.

Proof of Proposition 6: Since T has exactly three countable models, for any two nonalgebraic types $q_{i}(i=1,2)$ there are $a_{i} \models q_{i}(i=1,2)$ such that $\operatorname{tp}\left(a_{1} / a_{2}\right)$ is isolated while $\operatorname{tp}\left(a_{2} / a_{1}\right)$ is not semi-isolated. This can be shown using the fact that if $I(\omega, T)=3$ then every type is a powerful type (see [1]). So the assumption of the last lemma 10 is fulfilled. Thus the semi-isolation is definable on $p^{* \mathcal{M}}$. Since the semi-isolation relation is an infinite order, we get a contradiction. So we have shown that T is unstable.

3 Strongly Orthogonal Family of Algebraic Types

Proposition 11 Let T be a theory with $I(\omega, T)=3$. Suppose that there is a strongly orthogonal infinite family of algebraic types. Then T has the strict order property.

We fix a strongly orthogonal infinite family $\mathcal{F}=\left\{p_{i}(x): i \in \omega\right\}$, where each $p_{i}(x)$ is an algebraic type.

In section 2 lemma 7, by assuming the stability we proved the weak orthogonality of p_{i} and q. However if each p_{i} is an algebraic type, we can prove the same result without assuming the stability.

So let us recall the proof there. We assumed that each p_{i} and q are not weakly orthogonal. For each i, we defined an equivalence relation $E_{i}(u, v)=\bigwedge_{d \equiv p_{i}}\left(\theta_{i}(u, d) \leftrightarrow \theta_{i}(v, d)\right)$, where $\theta_{i}(u, v)$ is a witness of the non-weak-orthogonality. It is a \emptyset-definable equivalence relation on $q^{\mathcal{M}}$, having at least two equivalence classes. The main task was to show that each class is $p_{i}^{\mathcal{M}}$-definable. We used the stability at this point. But, if q_{i} is an algebraic type, the stability assumption is not necessary. The rest can be proven similarly. So we can show that T has the strict order property. The existence of a dense tree can be proved using the argument in [3].

References

[1] M. Benda, Remarks on countable models, fund. Math.,81 (1974) , no. 2, 107-119.
[2] Predrag Tanović, Theories with constants and three countable models. Arch. Math. Logic 46 (2007), no. 5-6, 517-527.
[3] Koichiro Ikeda, Anand Pillay and Akito Tsuboi, On theories having three countable models. Math. Logic Quart. 44 (1998), no. 2, 161-166.

```
Akito Tsuboi
e-mail: tsuboi@math.tsukuba.ac.jp
```

