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1 Introduction

In this report we state a generalization of Tasaka’s isotypy between blocks of finite
groups obtained by the Dade character correspondence. Let $p$ be a prime and $(\mathcal{K}, \mathcal{O}, k)$ be
a p-modular system such that $\mathcal{K}$ is a splitting filed for all finite groups which we consider
in this talk. Let $S$ denote $\mathcal{O}$ or $k$ . For a finite abelian group $F$ , we denote by $\hat{F}$ the
character group of $F$ and by $\hat{F}_{q}$ the subgroup of $\hat{F}$ of order $q$ for $q\in\pi(F)$ , where $\pi(F)$ is
the set of all primes dividing $|F|$ . Let $G$ be a finite group and $N$ be a normal subgroup
of $G$ . We denote by Irr $(G)$ the set of ordinary irreducible characters of $G$ and $Irr^{G}(N)$ be
the set of G-invariant irreducible characters of $N$ . For $\phi\in$ Irr $(N)$ , we denote by Irr $(G|\phi)$

the set of irreducible characters $\chi$ of $G$ such that $\phi$ is a constituent of the restriction $\chi_{N}$

of $\chi$ to $N$ .

Hypothesis 1 $G$ is a finite group which is a normal subgroup of a finite group $E$ such
that the factor group $F=E/G$ is a cyclic group of order $r$ . $\lambda$ is a generator of $\hat{F}$ .
$E_{0}=$ { $x\in E|\overline{x}$ is a generator of $F$} where $\overline{x}=xG$ . $E$‘ is a subgroup of $E$ such that
$E’G=E,$ $G^{f}=G\cap E’$ and $E_{0}^{f}=E’\cap E_{0}$ . Moreover $(E_{0}’)^{\tau}\cap E_{0}’$ is the empty set, for all
$\tau\in E-E^{f}$ .

Under the above hypothesis, in [2], E.C. Dade constructed a bijection between $Irr^{E}(G)$

and $Irr^{E}$
‘
$(G’)$ which is a generalization of the cyclic case of the Glauberman correspondence

([3] or, [6], Chap. 13).

Theorem 1 ([2], Theorem 6.8, Theorem 6.9) Assume Hypothesis 1 $and|F|\neq 1$ . For each
prime $q\in\pi(F)$ , we choose some non-trivial character $\lambda_{q}\in\hat{F}_{q}$ . There is a bijection

$\rho(E, G, E^{f}, G^{f})$ :Irr$E(G)arrow Irr^{E’}(G^{f})(\phi\mapsto\phi^{f}=\phi_{(G’)})$

which satisfies the following conditions. If $r$ is odd, then there are a unique integer $\epsilon_{\phi}=\pm 1$

and a unique bijection $\psi\mapsto\psi_{(E’)}$ of Irr $(E|\phi)$ onto Irr $(E^{f}|\phi’)$ such that

(1.1)
$( \prod_{q\in\pi(F)}(1-\lambda_{q})\cdot\psi)_{E},$ $= \epsilon_{\phi}\prod_{q\in\pi(F)}(1-\lambda_{q})\cdot\psi_{(E’)}$

,

for any $\psi\in$ Irr $(E|\phi)$ . If $r$ is even, and we choose $\epsilon_{\phi}=\pm 1$ arbitrarily, then there is a unique
bijection $\psi\mapsto\psi_{(E’)}$ of Irr $(E|\phi)$ onto Irr $(E’|\phi’)$ such that (1.1) holds for all $\psi\in$ Irr $(E|\phi)$ .
In both cases we have

$(\lambda\psi)_{(E’)}=\lambda\psi_{(E’)}$
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for any $\lambda\in\hat{F}$ and and $\psi\in$ Irr $(E|\phi)$ . Furthermore, the resulting bijection is independent
of the choice of the non-trivial character $\lambda_{q}\in\hat{F}_{q}$ , for any $q\in\pi(F)$ .

Assume Hypothesis 1. We call $\rho(E, G, E^{f}, G’)$ the Dade correspondence, where
$\rho(E, G, E^{f}, G^{f})$ denotes the identity map of $Irr^{E}(G)$ when $|F|=1$ . Following the notations
in [7], for $\phi^{f}\in Irr^{E’}(G)$ , we set $\phi_{(G)}’=\rho(E, G, E’, G^{f})^{-1}(\phi’)$ , and for $\psi’\in$ Irr $(E’|\phi’)$ , we

$se_{d_{(G’)^{isaconstituentof\phi_{G’}.Inparticularif\phi isthetrivia1characterofG,then}}}hencet\psi_{(E}^{f}=\psi if\psi^{f}=\psi_{(E’)}.From(1.l)\psi’aconstituentof(\lambda\psi_{(E)}^{f})_{E’}forsome\lambda\in\hat{F}$
,

$\phi_{(G’)}$ is the trivial character of $G^{f}$ .

The Generalized Glauberman case: Let $G$ and $A$ be finite groups such that $A$ is
cyclic, $A$ acts on $G$ via automorphism and that $(|C_{G}(A)|, |A|)=1$ . We set $E=GxA$,
$G^{f}=C_{G}(A)$ and $E’=G’\cross A\leq E$ . By [2], Lemma 7.5, $E,$ $G,$ $E^{f}$ and $G$‘ satisfy Hypothesis
1. Moreover by [2], Proposition 7.8, if $(|A|, |G|)=1$ , then $\rho(E, G, E^{f}, G’)$ coincides with
the Glauberman correspondence.

Theorem 2 (Horimoto[4]) Assume the generalized Glauberman case. Suppose that $p\parallel|A|$

and that a Sylow p-subgroup of $G$ is contained in $G^{f}$ . Then there is an isotypy between
$b(G)$ and $b(G^{f})$ induced by the Dade correspondence where $b(G)$ is the principal block of
$G$ .

Isotypy is a concept introduced in [1].

Hypothesis 2 Assume Hypothesis 1. $(p, r)=1$ . $b$ is an E-invariant block of $G$ covered
by $r$ distinct blocks of $E$ .

Hypothesis 3 Assume Hypothesis 1. $(p, r)=1$ . $b^{f}$ is an $E’$ -invariant block of $G$‘ covered
by $r$ distinct blocks of $E^{f}$ .

Theorem 3 (Tasaka [7], Theorem 5.5) Assume Hypotheses 2 and 3, and $r$ is a prime
power. Moreover assume some $\phi\in$ Irr $(b),$ $\phi_{(G’)}\in$ Irr $(b^{f})$ . If $r$ is odd, or $r=2$ , or $b$ is
the principal block of $G$ , then there is an isotypy between $b$ and $b^{f}$ induced by the Dade
correspondence.

In this report we state that the arguments in [7] can be extended to the general case
(see Theorem 8 below).

2 Dade correspondence and blocks

Let $G$ be a finite group. We denote by $G_{0}(\mathcal{K}G)$ the Grothendieck group of the group
algebra $\mathcal{K}G$ . If $L$ is a $\mathcal{K}G$-module, then let $[L]$ denote the element in $G_{0}(\mathcal{K}G)$ determined
by the isomorphism class of $L$ . For $\phi\in$ Irr$(G)$ , we denote by $\check{\phi}$ . For a block $b$ of $G$ ,
we denote by Irr $(b)$ the set of irreducible characters belonging to $b$ , and by $\mathcal{R}_{\mathcal{K}}(G, b)$ the
additive group of generalized characters belonging to $b$ . For other notations, see [5] and
[8].

Note that under the Hypothesis 2, any irreducible character in Irr $(b)$ is E- invariant.
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Theorem 4 (see [7], Proposition 3.5)
(i) Assume Hypothesis 2. Then $\{\phi_{(G’)}|\phi\in$ Irr $(b)\}$ is contained in a block $b_{(G’)}$ of $G^{f}$ .
(ii) Assume Hypothesis 3. Then $\{\phi_{(G)}^{f}|\phi^{f}\in$ Irr $(b^{f})\}$ is contained in a block $b_{(G)}^{f}$ of $G$ .

Assume Hypothesis 2. We denote by $\hat{b}_{0}$ a block of $E$ covering $b$ . For each $\phi\in$ Irr $(b)$ ,
we denote $\hat{\phi}$ by a unique extension of $\phi$ which belongs to $\hat{b}_{0}$ . For any $i\in Z$ , we denote by
$\hat{b}_{i}$ be the block of $E$ which contains $\lambda^{i}\hat{\phi}$ where $\phi\in$ Irr $(b)$ .
Proposition 1 (see [7], Proposition 3.5, (3)) Assume Hypotheses 2 and 3, and assume
$b^{f}=b_{(G’)}$ using the notation in Theorem 4. Then there exists a block $(\hat{b}_{0})_{(E’)}$ of $E$‘ such
that Irr $((\hat{b}_{0})_{(E’)})=\{(\hat{\phi})_{(E’)}|\phi\in$ Irr $(b)\}$ . If $r$ is odd, then $(\hat{b}_{0})_{(E’)}$ is uniquely determined,
and if $r$ is even, we have exactly two choices for $(\hat{b}_{0})_{(E’)}$ .

With the notation in the above proposition, we denote by $(\hat{b}_{i})_{(E^{f})}$ the block of $E’$

containing $\lambda^{i}(\hat{\phi})_{(E’)}(\phi\in$ Irr $(b))$ . Moreover, when $r$ is even, we fix one of two $(\hat{b}_{0})_{(E’)}$ .

3 Local structure

Lemma 1 ([7], Lemma 3.3) $)$ Assume $p\parallel r$ . For a block $b$ of $G,$ $b$ satisfies Hypothesis 2 if
and only if there exists $s\in E_{0}$ such that $C(s)b$ is invertible in $Z(\mathcal{O}Eb)$ .

Assume Hypothesis 2. $\underline{By}$ the above lemma and [7], Lemma 2.4, there exists an
element $s\in E\text{\’{o}}$ such that $C(s)b\in Z(\mathcal{O}Eb)^{\cross}$ . Hence there exists a defect group $D$ of $b$

centralized by $s$ , and hence contained in $G^{f}$ . Let $P\leq D$ . Then by [7], Lemma 3.9, $C_{E}(P)$ ,
$C_{G}(P),$ $C_{E’}(P)$ and $C_{G’}(P)$ satisfy Hypothesis 1. Here we note $F\cong C_{E}(P)/C_{G}(P)$ . Let
$e\in Bl(C_{G}(P), b)$ . Then we see that $Br_{P}^{\mathcal{O}E}(\overline{C(s)}b)e^{*}\in(Z(kC_{E}(P)e^{*}))^{\cross}$ . This implies that
$e$ is covered by $r$ blocks of $C_{E}(P’)$ . Similarly assume Hypothesis 3. Let $D$ ‘ be a defect
group of $b$‘ and $e^{f}\in$ Bl $(C_{G’} (P‘), b^{f})$ for a subgroup $P^{f}$ of $D^{f}$ . Then $e$

‘ is covered by $r$ blocks
of $C_{E’}(P^{f})$ .

Theorem 5 (see [7], Proposition 3.11) Using the same notations as in Theorem 4 we
have the following.

(i) Assume Hypothesis 2. Let $D$ be a defect group of $b$ obtained in the above and let
$P\leq D.$ Let $e\in$ Bl $(C_{G}(P), b)$ . Then $e_{(C_{G},(P))}\in$ Bl $(C_{G’}(P), b_{(G’)})$ . In particular, $b_{(G’)}$

have a defect group containing $D$ .
(ii) Assume Hypothesis 3. Let $D^{f}$ be a defect group of $b^{f}$ and let $P‘\leq D^{f}$ . Let $e’\in$

Bl $(C_{G’}(P’), b^{f})$ . Then $e_{(C_{G}(P))}^{f}\in$ Bl $(C_{G}(P‘), b_{(G)}’)$ . In particular, $b_{(G)}’$ have a defect group
containing $D^{f}$ .

Assume Hypotheses 2 and 3, and $b^{f}=b_{(G’)}$ . The Dade correspondence $\rho(E, G, E^{f}, G^{f})$

gives a bijection between Irr $(b)$ and Irr $(b^{f})$ by Theorem 4. By Theorem 5, $b$ and $b^{f}$ have a
common defect group $D$ . Let $(D, b_{D})$ be a maximal b-Brauer pair. For $P\leq D$ , let $(P, b_{P})$

be a b-Brauer pair contained in $(D, b_{D})$ . We set

$(b_{P})^{f}=(b_{P})_{(C_{G’}(P))}$ .

By the above theorem $(b_{P})’$ is associated with $b’$ and $(D, (b_{D})’)$ is a maximal b’-Brauer
pair. The following holds.

Theorem 6 (see [7], Theorem 5.2) Assume Hypotheses 2 and $3_{f}$ and assume $b^{f}=b_{(G’)}$ .
Then the Brauer categories $B_{G}(b)$ and $B_{G’}(b’)$ are equivalent.
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4 Perfect isometry and isotypy

Assume Hypotheses 2 and 3, and $b’=b_{(G’)}$ using the notations in Theorem 4. With
the notations in the previous section, we put

$b_{i}= \sum_{l=0}^{r-1}(\hat{b}_{l})_{(E’)}\hat{b}_{l+i}(\forall i\in Z)$ .

Then $(b_{i})^{2}=b_{i}$ and $b_{i}\in(\mathcal{O}Gbb^{f})^{E’}$ for each $i$ . For each prime $q\in\pi(F)$ , let $\lambda_{q}\in\hat{F}_{q}$ be a
non-trivial character as in Theorem 1. Set $l=|\pi(F)|$ . Moreover we set for $t(1\leq t\leq l)$

distinct primes $q_{1},$ $q_{2},$ $\cdots,$ $q_{t}\in\pi(F)$

$\lambda_{q_{1}}\cdots\lambda_{q_{t}}=\lambda^{m_{\{q\cdots,q\}}}1,t$ $(m_{\{q_{1}q_{t}\}}\in Z)$

where $\lambda$ is a generator of $\hat{F}$ . Then we have

$\prod_{q\in\pi(F)}(1-\lambda_{q})=1+\sum_{t=1}^{l}(-1)^{t}\sum_{\{q_{1},\cdots,q_{t}\}\subseteq\pi(F)}\lambda^{m_{\{q_{1\prime}\cdots,q\}}}t$

where $\{q_{1}, \cdots, q_{t}\}$ runs over the set of t-element subsets of $\pi(F)$ .

Proposition 2 (see [7], Proposition 4.4) With the above notations we have
$l$

$[b_{0} \mathcal{K}G]+\sum(-1)^{t}$ $\sum$ $[b_{m_{\{q_{1}\ldots.,q\iota\}}}\mathcal{K}G]$

$t=1$ $\{q_{1},\cdots,q_{t}\}\subseteq\pi(F)$

$=$ $\sum$ $\epsilon_{\phi}[L_{\phi_{(G’)}}\otimes_{\mathcal{K}}L_{\phi^{-}}]$

$\phi\in$ Irr$(b)$

in $G_{0}(\mathcal{K}(G^{f}\cross G))$ .

From the above proposition and [1], Proposition 1.2, we have the following.

Theorem 7 (see [7], Theorem 4.5) Assume Hypotheses 2 and 3, and that $b’=b_{(G’)}$ . Set
$\mu=\sum_{\phi\in Irr(b)}\epsilon_{\phi}\phi_{(G’)}\phi$ . Then $\mu$ induces a perfect isometry $R_{\mu}$ : $\mathcal{R}_{\mathcal{K}}(G, b)arrow \mathcal{R}_{\mathcal{K}}(G^{f}, b’)$

which satisfies $R_{\mu}(\phi)=\epsilon_{\phi}\phi_{(G’)}$ .

Let $D$ be a common defect group of $b$ and $b$‘. For $P\leq D,$ $R^{P}$ be the perfect isometry
between $\mathcal{R}_{\mathcal{K}}(C_{G}(P), b_{P})$ and $\mathcal{R}_{\mathcal{K}}(C_{G’}(P), (b_{P})_{(C_{G},(P))})$ obtained by the Dade correspon-
dence.

Theorem 8 (see [7], Theorem 5.5) Assume Hypotheses 2 and 3, and assume $b^{f}=b_{(G’)}$ .
Then $b$ and $b^{f}$ are isotypic with the local system $(R^{P})_{\{P(cyclic)\leq D\}}$ .

Example Suppose $p=5$ . Let $G=Sz(2^{2n+1})$ , the Suzuki group, $A=\langle\sigma\rangle$ where $\sigma$ is
the Frobenius automorphism of $G$ with respect to GF $(2^{2n+1})/$GF(2). Set $G’=Sz(2)=$
$C_{G}(A),$ $E=G_{\aleph}A,$ $E^{f}=G^{f}\cross A$ . Suppose that $5\parallel 2n+1$ . Then $(2n+1, |G^{f}|)=1$ . Moreover
a Sylow 5-subgroup of $G$ has order 5. By the above theorem, the Dade correspondence
gives an isotypy between $b(G)$ and $b(G^{f})$ . Moreover, if 5 $|(2^{2n+1}+2^{n+1}+1)$ , then $b(G)$

and $b(G’)$ are splendidly Morita equivalent.
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