On the Dade -Tasaka correspondence between blocks of finite groups

渡辺アツミ (Atumi Watanabe)

熊本大学大学院自然科学研究科

Graduate School of Science and Technology, Department of Mathematics, Faculty of Science, Kumamoto University

1 Introduction

In this report we state a generalization of Tasaka's isotypy between blocks of finite groups obtained by the Dade character correspondence. Let p be a prime and $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system such that \mathcal{K} is a splitting filed for all finite groups which we consider in this talk. Let S denote \mathcal{O} or k. For a finite abelian group F, we denote by \hat{F} the character group of F and by \hat{F}_q the subgroup of \hat{F} of order q for $q \in \pi(F)$, where $\pi(F)$ is the set of all primes dividing |F|. Let G be a finite group and N be a normal subgroup of G. We denote by $\operatorname{Irr}(G)$ the set of ordinary irreducible characters of G and $\operatorname{Irr}^G(N)$ be the set of G-invariant irreducible characters of N. For $\phi \in \operatorname{Irr}(N)$, we denote by $\operatorname{Irr}(G|\phi)$ the set of irreducible characters χ of G such that ϕ is a constituent of the restriction χ_N of χ to N.

Hypothesis 1 G is a finite group which is a normal subgroup of a finite group E such that the factor group F = E/G is a cyclic group of order r. λ is a generator of \hat{F} . $E_0 = \{x \in E \mid \bar{x} \text{ is a generator of } F\}$ where $\bar{x} = xG$. E' is a subgroup of E such that $E'G = E, G' = G \cap E'$ and $E'_0 = E' \cap E_0$. Moreover $(E'_0)^{\tau} \cap E'_0$ is the empty set, for all $\tau \in E - E'$.

Under the above hypothesis, in [2], E.C. Dade constructed a bijection between $\operatorname{Irr}^{E}(G)$ and $\operatorname{Irr}^{E'}(G')$ which is a generalization of the cyclic case of the Glauberman correspondence ([3] or, [6], Chap.13).

Theorem 1 ([2], Theorem 6.8, Theorem 6.9) Assume Hypothesis 1 and $|F| \neq 1$. For each prime $q \in \pi(F)$, we choose some non-trivial character $\lambda_q \in \hat{F}_q$. There is a bijection

$$\rho(E,G,E',G'): \operatorname{Irr}^{E}(G) \to \operatorname{Irr}^{E'}(G') \ (\phi \mapsto \phi' = \phi_{(G')})$$

which satisfies the following conditions. If r is odd, then there are a unique integer $\epsilon_{\phi} = \pm 1$ and a unique bijection $\psi \mapsto \psi_{(E')}$ of $\operatorname{Irr}(E|\phi)$ onto $\operatorname{Irr}(E'|\phi')$ such that

(1.1)
$$\left(\prod_{q\in\pi(F)}(1-\lambda_q)\cdot\psi\right)_{E'}=\epsilon_{\phi}\prod_{q\in\pi(F)}(1-\lambda_q)\cdot\psi_{(E')}$$

for any $\psi \in \operatorname{Irr}(E|\phi)$. If r is even, and we choose $\epsilon_{\phi} = \pm 1$ arbitrarily, then there is a unique bijection $\psi \mapsto \psi_{(E')}$ of $\operatorname{Irr}(E|\phi)$ onto $\operatorname{Irr}(E'|\phi')$ such that (1.1) holds for all $\psi \in \operatorname{Irr}(E|\phi)$. In both cases we have

for any $\lambda \in \hat{F}$ and and $\psi \in \operatorname{Irr}(E|\phi)$. Furthermore, the resulting bijection is independent of the choice of the non-trivial character $\lambda_q \in \hat{F}_q$, for any $q \in \pi(F)$.

Assume Hypothesis 1. We call $\rho(E, G, E', G')$ the Dade correspondence, where $\rho(E, G, E', G')$ denotes the identity map of $\operatorname{Irr}^{E}(G)$ when |F| = 1. Following the notations in [7], for $\phi' \in \operatorname{Irr}^{E'}(G)$, we set $\phi'_{(G)} = \rho(E, G, E', G')^{-1}(\phi')$, and for $\psi' \in \operatorname{Irr}(E'|\phi')$, we set $\psi'_{(E)} = \psi$ if $\psi' = \psi_{(E')}$. From (1.1) ψ' is a constituent of $(\lambda \psi'_{(E)})_{E'}$ for some $\lambda \in \hat{F}$, hence $\phi_{(G')}$ is a constituent of $\phi_{G'}$. In particular if ϕ is the trivial character of G, then $\phi_{(G')}$ is the trivial character of G'.

The Generalized Glauberman case: Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $(|C_G(A)|, |A|) = 1$. We set $E = G \rtimes A$, $G' = C_G(A)$ and $E' = G' \times A \leq E$. By [2], Lemma 7.5, E, G, E' and G' satisfy Hypothesis 1. Moreover by [2], Proposition 7.8, if (|A|, |G|) = 1, then $\rho(E, G, E', G')$ coincides with the Glauberman correspondence.

Theorem 2 (Horimoto[4]) Assume the generalized Glauberman case. Suppose that $p \not| |A|$ and that a Sylow p-subgroup of G is contained in G'. Then there is an isotypy between b(G) and b(G') induced by the Dade correspondence where b(G) is the principal block of G.

Isotypy is a concept introduced in [1].

Hypothesis 2 Assume Hypothesis 1. (p,r) = 1. b is an E-invariant block of G covered by r distinct blocks of E.

Hypothesis 3 Assume Hypothesis 1. (p,r) = 1. b' is an E'-invariant block of G' covered by r distinct blocks of E'.

Theorem 3 (Tasaka [7], Theorem 5.5) Assume Hypotheses 2 and 3, and r is a prime power. Moreover assume some $\phi \in Irr(b)$, $\phi_{(G')} \in Irr(b')$. If r is odd, or r = 2, or b is the principal block of G, then there is an isotypy between b and b' induced by the Dade correspondence.

In this report we state that the arguments in [7] can be extended to the general case (see Theorem 8 below).

2 Dade correspondence and blocks

Let G be a finite group. We denote by $G_0(\mathcal{K}G)$ the Grothendieck group of the group algebra $\mathcal{K}G$. If L is a $\mathcal{K}G$ -module, then let [L] denote the element in $G_0(\mathcal{K}G)$ determined by the isomorphism class of L. For $\phi \in \operatorname{Irr}(G)$, we denote by $\check{\phi}$. For a block b of G, we denote by $\operatorname{Irr}(b)$ the set of irreducible characters belonging to b, and by $\mathcal{R}_{\mathcal{K}}(G, b)$ the additive group of generalized characters belonging to b. For other notations, see [5] and [8].

Note that under the Hypothesis 2, any irreducible character in Irr(b) is E- invariant.

Theorem 4 (see [7], Proposition 3.5)

(i) Assume Hypothesis 2. Then $\{\phi_{(G')} | \phi \in Irr(b)\}$ is contained in a block $b_{(G')}$ of G'.

(ii) Assume Hypothesis 3. Then $\{\phi'_{(G)} | \phi' \in \operatorname{Irr}(b')\}$ is contained in a block $b'_{(G)}$ of G.

Assume Hypothesis 2. We denote by \hat{b}_0 a block of E covering b. For each $\phi \in \operatorname{Irr}(b)$, we denote $\hat{\phi}$ by a unique extension of ϕ which belongs to \hat{b}_0 . For any $i \in \mathbb{Z}$, we denote by \hat{b}_i be the block of E which contains $\lambda^i \hat{\phi}$ where $\phi \in \operatorname{Irr}(b)$.

Proposition 1 (see [7], Proposition 3.5, (3)) Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$ using the notation in Theorem 4. Then there exists a block $(\hat{b}_0)_{(E')}$ of E' such that $\operatorname{Irr}((\hat{b}_0)_{(E')}) = \{(\hat{\phi})_{(E')} \mid \phi \in \operatorname{Irr}(b)\}$. If r is odd, then $(\hat{b}_0)_{(E')}$ is uniquely determined, and if r is even, we have exactly two choices for $(\hat{b}_0)_{(E')}$.

With the notation in the above proposition, we denote by $(\hat{b}_i)_{(E')}$ the block of E' containing $\lambda^i(\hat{\phi})_{(E')}$ ($\phi \in \operatorname{Irr}(b)$). Moreover, when r is even, we fix one of two $(\hat{b}_0)_{(E')}$.

3 Local structure

Lemma 1 ([7], Lemma 3.3)) Assume $p \nmid r$. For a block b of G, b satisfies Hypothesis 2 if and only if there exists $s \in E_0$ such that $\widehat{C(s)b}$ is invertible in Z(OEb).

Assume Hypothesis 2. By the above lemma and [7], Lemma 2.4, there exists an element $s \in E'_0$ such that $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$. Hence there exists a defect group D of b centralized by s, and hence contained in G'. Let $P \leq D$. Then by [7], Lemma 3.9, $C_E(P)$, $C_G(P)$, $C_{E'}(P)$ and $C_{G'}(P)$ satisfy Hypothesis 1. Here we note $F \cong C_E(P)/C_G(P)$. Let $e \in Bl(C_G(P), b)$. Then we see that $\operatorname{Br}_P^{OE}(\widehat{C(s)}b)e^* \in (Z(kC_E(P)e^*))^{\times}$. This implies that e is covered by r blocks of $C_E(P')$. Similarly assume Hypothesis 3. Let D' be a defect group of b' and $e' \in Bl(C_{G'}(P'), b')$ for a subgroup P' of D'. Then e' is covered by r blocks of $C_{E'}(P')$.

Theorem 5 (see [7], Proposition 3.11) Using the same notations as in Theorem 4 we have the following.

(i) Assume Hypothesis 2. Let D be a defect group of b obtained in the above and let $P \leq D$. Let $e \in Bl(C_G(P), b)$. Then $e_{(C_G'(P))} \in Bl(C_{G'}(P), b_{(G')})$. In particular, $b_{(G')}$ have a defect group containing D.

(ii) Assume Hypothesis 3. Let D' be a defect group of b' and let $P' \leq D'$. Let $e' \in Bl(C_{G'}(P'), b')$. Then $e'_{(C_G(P'))} \in Bl(C_G(P'), b'_{(G)})$. In particular, $b'_{(G)}$ have a defect group containing D'.

Assume Hypotheses 2 and 3, and $b' = b_{(G')}$. The Dade correspondence $\rho(E, G, E', G')$ gives a bijection between Irr(b) and Irr(b') by Theorem 4. By Theorem 5, b and b' have a common defect group D. Let (D, b_D) be a maximal b-Brauer pair. For $P \leq D$, let (P, b_P) be a b-Brauer pair contained in (D, b_D) . We set

$$(b_P)' = (b_P)_{(C_{G'}(P))}$$

By the above theorem $(b_P)'$ is associated with b' and $(D, (b_D)')$ is a maximal b'-Brauer pair. The following holds.

Theorem 6 (see [7], Theorem 5.2) Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$. Then the Brauer categories $\mathbf{B}_G(b)$ and $\mathbf{B}_{G'}(b')$ are equivalent.

4 Perfect isometry and isotypy

Assume Hypotheses 2 and 3, and $b' = b_{(G')}$ using the notations in Theorem 4. With the notations in the previous section, we put

$$b_i = \sum_{l=0}^{r-1} (\hat{b}_l)_{(E')} \hat{b}_{l+i} \quad (\forall i \in \mathbf{Z}).$$

Then $(b_i)^2 = b_i$ and $b_i \in (\mathcal{O}Gbb')^{E'}$ for each *i*. For each prime $q \in \pi(F)$, let $\lambda_q \in \hat{F}_q$ be a non-trivial character as in Theorem 1. Set $l = |\pi(F)|$. Moreover we set for $t \ (1 \le t \le l)$ distinct primes $q_1, q_2, \cdots, q_t \in \pi(F)$

$$\lambda_{q_1}\cdots\lambda_{q_t}=\lambda^{m_{\{q_1,\cdots,q_t\}}} \ (m_{\{q_1,\cdots,q_t\}}\in\mathbf{Z})$$

where λ is a generator of \hat{F} . Then we have

$$\prod_{q \in \pi(F)} (1 - \lambda_q) = 1 + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \cdots, q_t\} \subseteq \pi(F)} \lambda^{m_{\{q_1, \cdots, q_t\}}}$$

where $\{q_1, \dots, q_t\}$ runs over the set of *t*-element subsets of $\pi(F)$.

Proposition 2 (see [7], Proposition 4.4) With the above notations we have

$$\begin{bmatrix} b_0 \mathcal{K}G \end{bmatrix} + \sum_{t=1}^{l} (-1)^t \sum_{\{q_1, \cdots, q_t\} \subseteq \pi(F)} \begin{bmatrix} b_{m_{\{q_1, \cdots, q_t\}}} \mathcal{K}G \end{bmatrix}$$
$$= \sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi} \begin{bmatrix} L_{\phi_{(G')}} \otimes_{\mathcal{K}} L_{\phi} \end{bmatrix}$$

in $G_0(\mathcal{K}(G' \times G))$.

From the above proposition and [1], Proposition 1.2, we have the following.

Theorem 7 (see [7], Theorem 4.5) Assume Hypotheses 2 and 3, and that $b' = b_{(G')}$. Set $\mu = \sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi} \phi_{(G')} \phi$. Then μ induces a perfect isometry $R_{\mu} : \mathcal{R}_{\mathcal{K}}(G, b) \to \mathcal{R}_{\mathcal{K}}(G', b')$ which satisfies $R_{\mu}(\phi) = \epsilon_{\phi} \phi_{(G')}$.

Let D be a common defect group of b and b'. For $P \leq D$, \mathbb{R}^P be the perfect isometry between $\mathcal{R}_{\mathcal{K}}(C_G(P), b_P)$ and $\mathcal{R}_{\mathcal{K}}(C_{G'}(P), (b_P)_{(C_{G'}(P))})$ obtained by the Dade correspondence.

Theorem 8 (see [7], Theorem 5.5) Assume Hypotheses 2 and 3, and assume $b' = b_{(G')}$. Then b and b' are isotypic with the local system $(\mathbb{R}^P)_{\{P(cyclic) \leq D\}}$.

Example Suppose p = 5. Let $G = Sz(2^{2n+1})$, the Suzuki group, $A = \langle \sigma \rangle$ where σ is the Frobenius automorphism of G with respect to $GF(2^{2n+1})/GF(2)$. Set $G' = Sz(2) = C_G(A)$, $E = G \rtimes A$, $E' = G' \times A$. Suppose that $5 \not/ 2n+1$. Then (2n+1, |G'|) = 1. Moreover a Sylow 5-subgroup of G has order 5. By the above theorem, the Dade correspondence gives an isotypy between b(G) and b(G'). Moreover, if $5 \mid (2^{2n+1} + 2^{n+1} + 1)$, then b(G) and b(G') are splendidly Morita equivalent.

References

- M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181-182(1990), 61-92.
- [2] E.C. Dade, A new approach to Glauberman's correspondence, J. Algebra, **270**(2003), 583-628.
- [3] G. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math., **20**(1968), 1465-1488.
- [4] H. Horimoto, The Glauberman-Dade correspondence and perfect isometries for principal blocks, preprint.
- [5] H. Nagao and Y. Tsushima, "Representations of Finite Groups", Academic Press, Boston, 1989.
- [6] I.M. Isaacs, "Character Theory of Finite Groups" Academic Press, New York, 1976.
- [7] F. Tasaka, On the isotypy induced by the Glauberman-Dade correspondence between blocks of finite groups, J. Algebra, **319**(2008), 2451-2470.
- [8] J. Thévenaz, "G-algebras and Modular Representation Theory", Oxford University Press, New York, 1995.