On the Dade－Tasaka correspondence between blocks of finite groups
 渡辺アツミ（Atumi Watanabe）
 熊本大学大学院自然科学研究科
 Graduate School of Science and Technology，Department of Mathematics，Faculty of Science，Kumamoto University

1 Introduction

In this report we state a generalization of Tasaka＇s isotypy between blocks of finite groups obtained by the Dade character correspondence．Let p be a prime and $(\mathcal{K}, \mathcal{O}, k)$ be a p－modular system such that \mathcal{K} is a splitting filed for all finite groups which we consider in this talk．Let \mathcal{S} denote \mathcal{O} or k ．For a finite abelian group F ，we denote by \hat{F} the character group of F and by \hat{F}_{q} the subgroup of \hat{F} of order q for $q \in \pi(F)$ ，where $\pi(F)$ is the set of all primes dividing $|F|$ ．Let G be a finite group and N be a normal subgroup of G ．We denote by $\operatorname{Irr}(G)$ the set of ordinary irreducible characters of G and $\operatorname{Irr}^{G}(N)$ be the set of G－invariant irreducible characters of N ．For $\phi \in \operatorname{Irr}(N)$ ，we denote by $\operatorname{Irr}(G \mid \phi)$ the set of irreducible characters χ of G such that ϕ is a constituent of the restriction χ_{N} of χ to N ．

Hypothesis $1 G$ is a finite group which is a normal subgroup of a finite group E such that the factor group $F=E / G$ is a cyclic group of order $r . \lambda$ is a generator of \hat{F} ． $E_{0}=\{x \in E \mid \bar{x}$ is a generator of $F\}$ where $\bar{x}=x G$ ．E^{\prime} is a subgroup of E such that $E^{\prime} G=E, G^{\prime}=G \cap E^{\prime}$ and $E_{0}^{\prime}=E^{\prime} \cap E_{0}$ ．Moreover $\left(E_{0}^{\prime}\right)^{\tau} \cap E_{0}^{\prime}$ is the empty set，for all $\tau \in E-E^{\prime}$.

Under the above hypothesis，in［2］，E．C．Dade constructed a bijection between $\operatorname{Irr}^{E}(G)$ and $\operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right)$ which is a generalization of the cyclic case of the Glauberman correspondence （［3］or，［6］，Chap．13）．
Theorem 1 （［2］，Theorem 6．8，Theorem 6．9）Assume Hypothesis 1 and $|F| \neq 1$ ．For each prime $q \in \pi(F)$ ，we choose some non－trivial character $\lambda_{q} \in \hat{F}_{q}$ ．There is a bijection

$$
\rho\left(E, G, E^{\prime}, G^{\prime}\right): \operatorname{Irr}^{E}(G) \rightarrow \operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right)\left(\phi \mapsto \phi^{\prime}=\phi_{\left(G^{\prime}\right)}\right)
$$

which satisfies the following conditions．If r is odd，then there are a unique integer $\epsilon_{\phi}= \pm 1$ and a unique bijection $\psi \mapsto \psi_{\left(E^{\prime}\right)}$ of $\operatorname{Irr}(E \mid \phi)$ onto $\operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$ such that

$$
\begin{equation*}
\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \psi\right)_{E^{\prime}}=\epsilon_{\phi} \prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \psi_{\left(E^{\prime}\right)} \tag{1.1}
\end{equation*}
$$

for any $\psi \in \operatorname{Irr}(E \mid \phi)$ ．Ifr is even，and we choose $\epsilon_{\phi}= \pm 1$ arbitrarily，then there is a unique bijection $\psi \mapsto \psi_{\left(E^{\prime}\right)}$ of $\operatorname{Irr}(E \mid \phi)$ onto $\operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$ such that（1．1）holds for all $\psi \in \operatorname{Irr}(E \mid \phi)$ ． In both cases we have

$$
(\lambda \psi)_{\left(E^{\prime}\right)}=\lambda \psi_{\left(E^{\prime}\right)}
$$

for any $\lambda \in \hat{F}$ and and $\psi \in \operatorname{Irr}(E \mid \phi)$. Furthermore, the resulting bijection is independent of the choice of the non-trivial character $\lambda_{q} \in \hat{F}_{q}$, for any $q \in \pi(F)$.

Assume Hypothesis 1 . We call $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ the Dade correspondence, where $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ denotes the identity map of $\operatorname{Irr}^{E}(G)$ when $|F|=1$. Following the notations in [7], for $\phi^{\prime} \in \operatorname{Irr}^{E^{\prime}}(G)$, we set $\phi_{(G)}^{\prime}=\rho\left(E, G, E^{\prime}, G^{\prime}\right)^{-1}\left(\phi^{\prime}\right)$, and for $\psi^{\prime} \in \operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$, we set $\psi_{(E)}^{\prime}=\psi$ if $\psi^{\prime}=\psi_{\left(E^{\prime}\right)}$. From (1.1) ψ^{\prime} is a constituent of $\left(\lambda \psi_{(E)}^{\prime}\right)_{E^{\prime}}$ for some $\lambda \in \hat{F}$, hence $\phi_{\left(G^{\prime}\right)}$ is a constituent of $\phi_{G^{\prime}}$. In particular if ϕ is the trivial character of G, then $\phi_{\left(G^{\prime}\right)}$ is the trivial character of G^{\prime}.

The Generalized Glauberman case: Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $\left(\left|C_{G}(A)\right|,|A|\right)=1$. We set $E=G \rtimes A$, $G^{\prime}=C_{G}(A)$ and $E^{\prime}=G^{\prime} \times A \leq E$. By [2], Lemma $7.5, E, G, E^{\prime}$ and G^{\prime} satisfy Hypothesis 1. Moreover by [2], Proposition 7.8, if $(|A|,|G|)=1$, then $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ coincides with the Glauberman correspondence.

Theorem 2 (Horimoto[4]) Assume the generalized Glauberman case. Suppose that $p \chi|A|$ and that a Sylow p-subgroup of G is contained in G^{\prime}. Then there is an isotypy between $b(G)$ and $b\left(G^{\prime}\right)$ induced by the Dade correspondence where $b(G)$ is the principal block of G.

Isotypy is a concept introduced in [1].
Hypothesis 2 Assume Hypothesis 1. $(p, r)=1 . b$ is an E-invariant block of G covered by r distinct blocks of E.

Hypothesis 3 Assume Hypothesis 1. $(p, r)=1 . b^{\prime}$ is an E^{\prime}-invariant block of G^{\prime} covered by r distinct blocks of E^{\prime}.

Theorem 3 (Tasaka [7], Theorem 5.5) Assume Hypotheses 2 and 3, and r is a prime power. Moreover assume some $\phi \in \operatorname{Irr}(b), \phi_{\left(G^{\prime}\right)} \in \operatorname{Irr}\left(b^{\prime}\right)$. If r is odd, or $r=2$, or b is the principal block of G, then there is an isotypy between b and b^{\prime} induced by the Dade correspondence.

In this report we state that the arguments in [7] can be extended to the general case (see Theorem 8 below).

2 Dade correspondence and blocks

Let G be a finite group. We denote by $G_{0}(\mathcal{K} G)$ the Grothendieck group of the group algebra $\mathcal{K} G$. If L is a $\mathcal{K} G$-module, then let $[L]$ denote the element in $G_{0}(\mathcal{K} G)$ determined by the isomorphism class of L. For $\phi \in \operatorname{Irr}(G)$, we denote by $\dot{\phi}$. For a block b of G, we denote by $\operatorname{Irr}(b)$ the set of irreducible characters belonging to b, and by $\mathcal{R}_{\mathcal{K}}(G, b)$ the additive group of generalized characters belonging to b. For other notations, see [5] and [8].

Note that under the Hypothesis 2, any irreducible character in $\operatorname{Irr}(b)$ is E - invariant.

Theorem 4 (see [7], Proposition 3.5)
(i) Assume Hypothesis 2. Then $\left\{\phi_{\left(G^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}$ is contained in a block $b_{\left(G^{\prime}\right)}$ of G^{\prime}.
(ii) Assume Hypothesis 3. Then $\left\{\phi_{(G)}^{\prime} \mid \phi^{\prime} \in \operatorname{Irr}\left(b^{\prime}\right)\right\}$ is contained in a block $b_{(G)}^{\prime}$ of G.

Assume Hypothesis 2. We denote by \hat{b}_{0} a block of E covering b. For each $\phi \in \operatorname{Irr}(b)$, we denote $\hat{\phi}$ by a unique extension of ϕ which belongs to \hat{b}_{0}. For any $i \in \mathbf{Z}$, we denote by \hat{b}_{i} be the block of E which contains $\lambda^{i} \hat{\phi}$ where $\phi \in \operatorname{Irr}(b)$.
Proposition 1 (see [7], Proposition 3.5, (3)) Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$ using the notation in Theorem 4. Then there exists a block $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ of E^{\prime} such that $\operatorname{Irr}\left(\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}\right)=\left\{(\hat{\phi})_{\left(E^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}$. If r is odd, then $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ is uniquely determined, and if r is even, we have exactly two choices for $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$.

With the notation in the above proposition, we denote by $\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)}$ the block of E^{\prime} containing $\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)}(\phi \in \operatorname{Irr}(b))$. Moreover, when r is even, we fix one of two $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$.

3 Local structure

Lemma 1 ([7], Lemma 3.3)) Assume $p \nmid r$. For a block b of G, b satisfies Hypothesis 2 if and only if there exists $s \in E_{0}$ such that $\widehat{C(s)} b$ is invertible in $Z(\mathcal{O E b})$.

Assume Hypothesis 2. By the above lemma and [7], Lemma 2.4, there exists an element $s \in E_{0}^{\prime}$ such that $\widehat{C(s)} b \in Z(\mathcal{O} E b)^{\times}$. Hence there exists a defect group D of b centralized by s, and hence contained in G^{\prime}. Let $P \leq D$. Then by [7], Lemma 3.9, $C_{E}(P)$, $C_{G}(P), C_{E^{\prime}}(P)$ and $C_{G^{\prime}}(P)$ satisfy Hypothesis 1 . Here we note $F \cong C_{E}(P) / C_{G}(P)$. Let $e \in B l\left(C_{G}(P), b\right)$. Then we see that $\operatorname{Br}_{P}^{\mathcal{O} E}(\widehat{C(s)} b) e^{*} \in\left(Z\left(k C_{E}(P) e^{*}\right)\right)^{\times}$. This implies that e is covered by r blocks of $C_{E}\left(P^{\prime}\right)$. Similarly assume Hypothesis 3 . Let D^{\prime} be a defect group of b^{\prime} and $e^{\prime} \in \mathrm{Bl}\left(C_{G^{\prime}}\left(P^{\prime}\right), b^{\prime}\right)$ for a subgroup P^{\prime} of D^{\prime}. Then e^{\prime} is covered by r blocks of $C_{E^{\prime}}\left(P^{\prime}\right)$.
Theorem 5 (see [7], Proposition 3.11) Using the same notations as in Theorem 4 we have the following.
(i) Assume Hypothesis 2. Let D be a defect group of b obtained in the above and let $P \leq D$. Let $e \in \operatorname{Bl}\left(C_{G}(P), b\right)$. Then $e_{\left(C_{G^{\prime}}(P)\right)} \in \operatorname{Bl}\left(C_{G^{\prime}}(P), b_{\left(G^{\prime}\right)}\right)$. In particular, $b_{\left(G^{\prime}\right)}$ have a defect group containing D.
(ii) Assume Hypothesis 3. Let D^{\prime} be a defect group of b^{\prime} and let $P^{\prime} \leq D^{\prime}$. Let $e^{\prime} \in$ $\mathrm{Bl}\left(C_{G^{\prime}}\left(P^{\prime}\right), b^{\prime}\right)$. Then $e_{\left(C_{G}\left(P^{\prime}\right)\right)}^{\prime} \in \mathrm{Bl}\left(C_{G}\left(P^{\prime}\right), b_{(G)}^{\prime}\right)$. In particular, $b_{(G)}^{\prime}$ have a defect group containing D^{\prime}.

Assume Hypotheses 2 and 3 , and $b^{\prime}=b_{\left(G^{\prime}\right)}$. The Dade correspondence $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ gives a bijection between $\operatorname{Irr}(b)$ and $\operatorname{Irr}\left(b^{\prime}\right)$ by Theorem 4. By Theorem $5, b$ and b^{\prime} have a common defect group D. Let $\left(D, b_{D}\right)$ be a maximal b-Brauer pair. For $P \leq D$, let $\left(P, b_{P}\right)$ be a b-Brauer pair contained in $\left(D, b_{D}\right)$. We set

$$
\left(b_{P}\right)^{\prime}=\left(b_{P}\right)_{\left(C_{G^{\prime}}(P)\right)}
$$

By the above theorem $\left(b_{P}\right)^{\prime}$ is associated with b^{\prime} and $\left(D,\left(b_{D}\right)^{\prime}\right)$ is a maximal b^{\prime}-Brauer pair. The following holds.
Theorem 6 (see [7], Theorem 5.2) Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$. Then the Brauer categories $\mathbf{B}_{G}(b)$ and $\mathbf{B}_{G^{\prime}}\left(b^{\prime}\right)$ are equivalent.

4 Perfect isometry and isotypy

Assume Hypotheses 2 and 3 , and $b^{\prime}=b_{\left(G^{\prime}\right)}$ using the notations in Theorem 4. With the notations in the previous section, we put

$$
b_{i}=\sum_{l=0}^{r-1}\left(\hat{b}_{l}\right)_{\left(E^{\prime}\right)} \hat{b}_{l+i} \quad(\forall i \in \mathbf{Z})
$$

Then $\left(b_{i}\right)^{2}=b_{i}$ and $b_{i} \in\left(\mathcal{O} G b b^{\prime}\right)^{E^{\prime}}$ for each i. For each prime $q \in \pi(F)$, let $\lambda_{q} \in \hat{F}_{q}$ be a non-trivial character as in Theorem 1. Set $l=|\pi(F)|$. Moreover we set for $t(1 \leq t \leq l)$ distinct primes $q_{1}, q_{2}, \cdots, q_{t} \in \pi(F)$

$$
\lambda_{q_{1}} \cdots \lambda_{q_{t}}=\lambda^{\left.m_{\left\{q_{1}\right.}, \cdots, q_{t}\right\}} \quad\left(m_{\left\{q_{1}, \cdots, q_{t}\right\}} \in \mathbf{Z}\right)
$$

where λ is a generator of \hat{F}. Then we have

$$
\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right)=1+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \cdots, q_{t}\right\} \subseteq \pi(F)} \lambda^{\left.m_{\left\{q_{1}, \cdots, q_{t}\right\}}\right\}}
$$

where $\left\{q_{1}, \cdots, q_{t}\right\}$ runs over the set of t-element subsets of $\pi(F)$.
Proposition 2 (see [7], Proposition 4.4) With the above notations we have

$$
\begin{aligned}
{\left[b_{0} \mathcal{K} G\right]+} & \sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \cdots, q_{t}\right\} \subseteq \pi(F)}\left[b_{\left.m_{\left\{q_{1}, \cdots, q_{t}\right\}} \mathcal{K} G\right]}\right. \\
& =\sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi}\left[L_{\phi\left(G^{\prime}\right)} \otimes_{\mathcal{K}} L_{\dot{\phi}}\right]
\end{aligned}
$$

in $G_{0}\left(\mathcal{K}\left(G^{\prime} \times G\right)\right)$.
From the above proposition and [1], Proposition 1.2, we have the following.

Theorem 7 (see [7], Theorem 4.5) Assume Hypotheses 2 and 3, and that $b^{\prime}=b_{\left(G^{\prime}\right)}$. Set $\mu=\sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi} \phi_{\left(G^{\prime}\right)} \phi$. Then μ induces a perfect isometry $R_{\mu}: \mathcal{R}_{\mathcal{K}}(G, b) \rightarrow \mathcal{R}_{\mathcal{K}}\left(G^{\prime}, b^{\prime}\right)$ which satisfies $R_{\mu}(\phi)=\epsilon_{\phi} \phi_{\left(G^{\prime}\right)}$.

Let D be a common defect group of b and b^{\prime}. For $P \leq D, R^{P}$ be the perfect isometry between $\mathcal{R}_{\mathcal{K}}\left(C_{G}(P), b_{P}\right)$ and $\mathcal{R}_{\mathcal{K}}\left(C_{G^{\prime}}(P),\left(b_{P}\right)_{\left(C_{G^{\prime}}(P)\right)}\right)$ obtained by the Dade correspondence.

Theorem 8 (see [7], Theorem 5.5) Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$. Then b and b^{\prime} are isotypic with the local system $\left(R^{P}\right)_{\{P(\text { cyclic }) \leq D\}}$.
Example Suppose $p=5$. Let $G=S z\left(2^{2 n+1}\right)$, the Suzuki group, $A=\langle\sigma\rangle$ where σ is the Frobenius automorphism of G with respect to GF($\left.2^{2 n+1}\right) / \mathrm{GF}(2)$. Set $G^{\prime}=S z(2)=$ $C_{G}(A), E=G \rtimes A, E^{\prime}=G^{\prime} \times A$. Suppose that $5 \nmid 2 n+1$. Then $\left(2 n+1,\left|G^{\prime}\right|\right)=1$. Moreover a Sylow 5 -subgroup of G has order 5 . By the above theorem, the Dade correspondence gives an isotypy between $b(G)$ and $b\left(G^{\prime}\right)$. Moreover, if $5 \mid\left(2^{2 n+1}+2^{n+1}+1\right)$, then $b(G)$ and $b\left(G^{\prime}\right)$ are splendidly Morita equivalent.

References

[1] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181182(1990), 61-92.
[2] E.C. Dade, A new approach to Glauberman's correspondence, J. Algebra, 270(2003), 583-628.
[3] G. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math., 20(1968), 1465-1488.
[4] H. Horimoto, The Glauberman-Dade correspondence and perfect isometries for principal blocks, preprint.
[5] H. Nagao and Y. Tsushima, "Representations of Finite Groups", Academic Press, Boston, 1989.
[6] I.M. Isaacs, "Character Theory of Finite Groups" Academic Press, New York, 1976.
[7] F. Tasaka, On the isotypy induced by the Glauberman-Dade correspondence between blocks of finite groups, J. Algebra, 319(2008), 2451-2470.
[8] J. Thévenaz, " G-algebras and Modular Representation Theory", Oxford University Press, New York, 1995.

