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This is a write-up of my lecture delivered at RIMS, Kyoto, in November 2008. The full
technical details of this work can be found in the series of papers [Wem07], [Wem08], $[Wem09a]$

and $[Wem09b]$ . For a slightly more geometrical interpretation of the results presented here
please consult the lecture notes $[Wem09c]$ .

1. INTRODUCTION

Put simply, given a finite subgroup $G$ of SL $($ 2, $\mathbb{C})$ the McKay Correspondence relates the
geometry of the minimal resolution of the singularity $\mathbb{C}^{2}/G$ to the representation theory of
$G$ . Since the group is inside SL $($ 2, $\mathbb{C})$ things are particularly nice, for example there is a 1-1
correspondence

{exceptional curves} $rightarrow$ { $non$-trivial irreducible representations}.
We can add a little more structure to the right hand side:

Definition 1.1. For given finite $G$ acting on $\mathbb{C}^{2}=V$ , the $McKay$ quiver is defined to be the
quiver with vertices $co$mesponding to the isomorphism classes of indecomposable representa-
tions, and the number of amws from $\rho_{1}$ to $\rho_{2}$ is defined to be

$\dim_{\mathbb{C}}Hom_{\mathbb{C}G}(\rho_{1}, \rho_{2}\otimes V)$

Example 1.2. For the groups $\frac{1}{4}(1,3)$ and $BD_{4\cdot 3}$ inside SL $($ 2, $\mathbb{C})$ the McKay quivers are

$(| \stararrow 1arrow\bigwedge_{\vee}$ $\downarrow)11$ –1
$1=-1_{2}^{1}I_{-2^{-}}$

$1_{\star}|$

respectively, where the number on a vertex is the dimension of the representation at that
vertex.

Equipped with this extra structure, McKay observed that

{dual graph of the minimal resolution} $=$ McKay quiver

where we go from one side to the other by deleting (or adding) the vertex corresponding
to the trivial representation. Furthermore it is precisely the ADE Dynkin diagrams which
appear. For example

$1_{-}^{--}1_{2}^{1}I_{=_{\iota_{\star}^{2}\downarrow}-1}$
$\bullet-\overline{2}-\overline{2}-\overline{2}-2|^{-2}.$.
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In this lecture I shall explain how the above generalizes (with some changes) to all finite
subgroups of GL $($ 2, $\mathbb{C})$ . The key to this generalization is not to try and build a quiver in
such a simple way from the representation theory, but instead to obtain it as the quiver of
an algebra obtained as the endomorphism ring of a certain module. The algebra will contain
more information, which we can then ask to provide us with derived equivalences and moduli
spaces.

2. THE GL$(2, \mathbb{C})McKAY$ CORRESPONDENCE
Throughout this section we assume that all groups are small, that is contain no pseu-

doreflections except the identity. Before continuing we should firstly point out that when
$G\not\leq SL(2, \mathbb{C})$ there are more representations than exceptional divisors, so such a simple
picture as above cannot be true. However work by Wunram [Wun88] in the 80 $s$ gives us a
1-1 correspondence

{exceptional curves} $rightarrow$ { $non$-trivial special irreducible representations}.
To define what we mean by special, for a representation $\rho$ denote $M_{\rho}=(\mathbb{C}[[x, y]]\otimes c\rho)^{G}$

where $G$ acts on both sides of the tensor. Denoting the minimal resolution by $f$ : $\tilde{X}arrow \mathbb{C}^{2}/G$

we may consider the vector bundle $\mathcal{M}_{\rho}:=f^{*}(M_{\rho})/tors$ on $\tilde{X}$ . The representation $\rho$ is said
to be special if $H^{1}(\mathcal{M}_{\rho}^{\vee})=0$ .

This is not the easiest definition to work with and for a long time it was an open question
to explicitly write down the specials for non-cyclic groups. This problem has now been solved
[IW08] and we have a full classification, although this shall not be needed in this lecture.

We arrive at the main definition:

Definition 2.1. The rring End $(\oplus M_{\rho})$ , where the sum is over all special representations, $is$

called the reconstruction algebm.

The reason for the name is twofold - firstly (as we shall see below) the quiver of
$End_{R}(\oplus M_{\rho})$ can be reconstructed combinatorially from the dual graph of the minimal resolu-
tion. Secondly, the geometry can be reconstructed from the algebra by considering a certain
moduli space of representations.

To describe the reconstruction, we need to introduce a piece of combinatorics.

Definition 2.2. [Art66] For the dual graph $\{E_{i}\}$ , define the fundamental cycle $Z_{f}= \sum_{i}r_{i}E_{i}$

(with each $r_{i}\geq 1$) to be the unique smallest element such that $Z_{f}\cdot E_{i}\leq 0$ for all vertices $i$ .
Note that given the data of a dual graph, $Z_{f}$ is very quick to calculate- its an entirely

combinatorial property of the dual graph. In the case of finite subgroups of SL $($ 2, $\mathbb{C})$ these
numbers are what you expect from Lie theory.

Theorem 2.3 (The $GL(2,$ $\mathbb{C})$ McKay Correspondence). Let $G$ be a finite subgroup ofGL $($ 2, $\mathbb{C})$

and denote the minimal resolution by $\tilde{X}arrow \mathbb{C}^{2}/G$ . Then the reconstruction algebm End $(\oplus M_{\rho})$

can be written as a quiver with relations as follows: for every special representation $\rho_{i}$ (cor-
responding to the exceptional curve $E_{i}$) associate a vertex labelled $i$ , and also associate a
vertex $\star$ corresponding to the trivial representation. Then the number of arrows and relations
between the vertices is given as follows:

where for any integer $a\in \mathbb{Z}$ denote $a+=\{$ $a0$ $a<0a\geq 0$ and $a_{-=}\{\begin{array}{ll}0 a\geq 0- a a<0\end{array}$
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There are many more subgroups of GL $($ 2, $\mathbb{C})$ than SL $($ 2, $\mathbb{C})$ and so the above theorem
provides us with a much larger class of singularities on which noncommutative methods can
be deployed to help understand the geometry. The following is an easy corollary to the above,
and reduces the calculation to that of certain base cases:

Lemma 2.4. Suppose two curve systems $E=\{E_{1}\}$ and $F=\{F_{1}\}$ have the same dual graph
and fundamental cycle, such that-F:2 $\leq-E_{i}^{2}$ for all $i$ . Then the quiver for the curve system
$E$ is obtained from the quiver of the curve system $F$ by $adding-E_{\dot{\iota}}^{2}+F_{:}^{2}$ extm amws $iarrow\star$

for every curve $E_{i}$ .

The correspondence is perhaps best understood via examples.

Example 2.5. Consider the group 2 (1, 3). For this example the dual graph is

$\bullet-\overline{2}-\overline{2}-2$

After the $iarrow j$ and $\stararrow\star$ steps in the theorem, we have the following picture

$\star\Leftrightarrow!)$

Now to calculate how to connect $\star$ , we need to know the fundamental cycle. But here
$Z_{f}=$ 111 and so in matrix from $(-E_{i}\cdot Z_{f})_{i\in I}=$ 101 . Thus after the $iarrow\star$ step:

$( \star-!)\bigwedge_{arrow}$

.

For the $\stararrow i$ step notice that since all curves are (-2)-curves the number of arrows $\stararrow i$ is
equal to the number of arrows $iarrow\star$ . Consequently the quiver of the reconstruction algebra
is

$(\star^{\wedge}|_{\overline{}}^{arrow}!)$

Example 2.6. Consider now the dual graph

$-\overline{4}-\overline{3}-4$

corresponding to the group $\frac{1}{40}(1,11)$ . Now $Z_{f}$ is the same as in the previous example, so
by Lemma 2.4 we just have to add extra arrows to the above; we thus deduce that the
reconstruction algebra is

$\sim$

$arrow$
$\cup$

All other cyclic group cases are identical, and follow easily. For example
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Example 2.7. For the group $\frac{1}{693}(1,256)$ , the reconstruction algebra is

corresponding to the dual graph

$\bullet-\overline{3}-\overline{3}-\overline{2}-\overline{4}-\overline{2}-\overline{4}-3$

Lastly, we consider some non-abelian groups.

Example 2.8. Some dihedral groups.

Reconstruction Algebra dual graph $Z_{f}$ group.
$()$ .

$=\cdot=\cdot=$ . $-2-|_{-2}^{-2}-\bullet--2-4$ 12211 $D_{10,7}$

$()$ .
$-2-|_{-2}^{-2}--4--4$ 12111 $D_{26,15}$

.
$-2-|_{-4}^{-2}--4--4$ 11111 $D_{56,15}$

In fact reconstruction algebras exist for more than just quotient singularities, and are
built in an identical way. Also it is possible to reconstruct on non-minimal resolutions, but
the combinatorics change slightly.
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