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1 Introduction

Some interesting macroeconomic models described by nonlinear equations were proposed
about half a century ago (e.g., Kaldor 1940, Hicks 1950, Goodwin 1967). Again, since the
nonlinearity in time series of main economic indices was pointed out by many empirical
researches (e.g., Brock and Sayers 1988), nonlinear models have been attracting much
attention and generalizations of those models have been studied energetically. Asada et
al. (2003, Ch. 10) have exemplified that interaction between two large open economies can
generate chaotic business fluctuations by a high-dimensional nonlinear model. We have
observed large increases in trade and capital flows for several decades. Recent interactions
between large countries are worth focusing on. Therefore, such a two-country model is
considered to be more important than simple ones in this context.

In this paper, taking the two-country KWG model in Asada et al. (2003), we try
to reveal essential properties of complicated business fluctuations when there are strong
linkages between the countries. As pointed out in Ishiyama and Saiki (2005), unstable
periodic orbits chosen from an appropriate viewpoint are useful in order to capture sta-
tistical and dynamical characteristics of chaotic behavior. We study the high-dimensional
nonlinear model phenomena by way of a periodic orbit analysis.

In the next section, we review the two-country KWG model. In Section 3 it is confirmed
that the model exhibits chaotic behavior for a setting of parameters. In Section 4, by using
unstable periodic orbits, we extract the essential properties of the chaotic phenomenon
as typical behavior strong linkages between countries give rise to. Final section concludes
our results.
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2 The model

In this section we review a variant of the two-country KWG model given in Asada et al.
(2003, Ch.10). Let us begin with the definitions of important macroeconomic magnitudes.
The symbol $\omega$ denotes the real wage, which is measured by the unit of domestic output.
The real wage is defined as follows:

$\omega=\frac{w}{p}$ , (1)

where $w$ and $p$ are the money wage and the price level, respectively. The actual rate of
profit $\rho$ is defined by

$\rho=\frac{Y-\delta K-\omega L^{d}}{K}$ , (2)

where $Y$ denotes the real output, $K$ the capital stock, $L^{d}$ the employed labor force, and
$\delta$ the capital depreciation rate. Hereafter, we employ the following abbreviations:

$y= \frac{Y}{K})$ $l^{d}= \frac{L^{d}}{K}$ . (3)

Thus, equation (2) can be rewritten as

$\rho=y-\delta-\omega l^{d}$ . (4)

We assume $\delta$ is constant. In addition, assuming a Leontief-type production function, $y$

and ld are also constant.1 Economic agents in the two-country KWG model are work-
ers, asset holders, firms, and governments. Reviewing assumptions with respect to their
expenditure, we consider how excess demand in the goods market is determined.

Householders consist of workers and asset holders. Workers spend all their money to
consume domestic goods solely. A part of the expenditure of asset holders is directed to
imports. The amount in the case of the home country2 is

$(1-\gamma_{c}(\eta))(1-s_{c})Y_{c}^{D}$ , (5)

where variable $\eta$ means the real exchange rate, $\gamma_{c}(\eta)$ is a negative function of $\eta,$ $s_{c}$ is
the average saving rate of asset holders3, and $Y_{c}^{D}$ denotes their disposable income. We
express the disposable income per unit of capital as

$\rho-t_{c}$ , (6)

where $t_{c}K$ means the difference between all taxes they pay and all their interest income.
For simplicity, $t_{c}$ is assumed to be fixed. This simplification removes the effect of the
accumulation of the domestic and the foreign bonds from the model. Thus, for domestic
goods,

$c_{1}=\omega l^{d}+\gamma_{c}(\eta)(1-s_{c})(\rho-t_{c})$ (7)
lIn other words, we assume that the capital output ratio and the labor productivity are fixed.
2In the case of thc foreign country, it is expressed as $(1-\gamma_{c}^{*}(\eta))(1-s_{c}^{*})Y_{c}^{D}$ , wherc $\gamma_{c}^{r}(\eta)$ is a positive function of $\eta$ .
3The saving rate is assumcd to be smallcr than unity and grcatcr than zcro, i.e., $0<s_{c}<1$ .
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expresses the households’ demand per unit of capital.4 On the other hand, firms determine
their investment level according to the following equation:

$I=i(\rho-(r-\pi))K+nK$ , (8)

where variables $r$ and $\pi$ are the nominal interest rate and the expected inflation rate,
respectively; $i$ is a positive constant, and $n$ is the growth rate on a balanced growth
path.5 Note that the capital accumulation rate (and the growth rate of GDP) in the
model is represented by

$\hat{K}=\frac{I}{K}=i(\rho-(r-\pi))+n$ , (9)

where a hat over a variable denotes the change rate of the variable. The government
expenditure is proportional to the capital stock, that is,

$G=gK$. (10)

By assuming initial levels of labor supply in both two countries are equivalent, the export
per unit of capital of the home country can be expressed as

$c_{1}^{*}= \frac{l}{\eta l^{*}}(1-\gamma_{c}(\eta))(1-s_{c}^{*})(\rho^{*}-t_{c}^{*})$ , (11)

where $l$ means the labor supply capital ratio in the home country, and superscript $*$

indicates a foreign country variable. From equations (7), (8), (10) and (11), excess demand
on the goods market in the home country is expressed as

$X^{p}=c_{1}+c:+i(\rho-(r-\pi))+n+\delta+g-y$ . (12)

Similarly that in the foreign country is

$X^{p*}=c_{2}^{*}+c_{2}+i^{*}(\rho^{*}-(r^{*}-\pi^{*}))+n^{*}+\delta^{*}+g^{*}-y^{*}$ , (13)

where $c_{2}^{*}K^{*}$ means the foreign householders’ demand level for the foreign goods, and $c_{2}K^{*}$

is the amount of imports from the foreign country to the home country.
Next, let us consider the labor market. Excess demand on the labor market in the

home country is indicated by

$X^{w}= \frac{l^{d}}{l}-\overline{V}$ , (14)

where $\overline{V}$ is NAIRU-type normal utilization rate concept of labor. Each growth rate of $p$

and $w$ is assumed to be influenced by both $X^{p}$ and $X^{w}$ , and wage deflation is excluded from
the model.6 Namely, $\hat{p}$ and $\hat{w}$ are determined by the following simultaneous equations:

$\{\begin{array}{l}\hat{p}=\beta_{p}X^{p}+k_{p}\hat{w}+(1-k_{p})\pi\hat{w}=\max[\beta_{w}X^{w}+k_{w}\hat{p}+(1-k_{w})\pi, 0].\end{array}$ (15)

4The tax rate on wage income is assumed to be zero.
5Thc trajectory on which the capital stock, the labor supply and thc national income grow at thc same rate is callcd a

balanccd growth path. Thc balanced growth is realized at thc long run cquilibrium point.
6Such a wage rigidity contributes to bound fluctuations $oi$ state variables in an economically meaningful region (Chiarella

et al. 2003).
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From equation (1), the change rate of the real wage is determined as
$\hat{\omega}=\hat{w}$ - $p$ . (16)

Labor force is assumed to grow at the natural rate $n$ . Hence,

$\hat{l}=n-\hat{K}=-i(\rho-(r-\pi))$ . (17)

Expectation formation for the domestic price is expressed as
$\dot{\pi}=\beta_{\pi}(\alpha_{\pi}(\hat{p}-\pi)+(1-\alpha_{\pi})(\hat{p}_{o}-\pi))$ , (18)

where $\hat{p}_{o}$ indicates the long run inflation rate. Equation (18) means that with an ad-
justment speed $\beta_{\pi}$ , the expectation for inflation is determined by a weighted average of
backward looking and forward looking adjustments.

Then, we consider the money market. We assume asset market clearing. The stock
demand for real money balances is assumed to depend on output, capital7 and the nominal
interest as follows:

$\frac{\Lambda I^{d}}{p}=h_{1}Y+h_{2}K(r_{o}-r)$ , (19)

where $r_{o}$ is the long run nominal interest rate, and parameters $h_{1}$ and $h_{2}$ are positive
constants. The only rule of monetary policy by the central bank is to keep the domestic
money supply $M$ growing a constant rate $\mu$ . The nominal interest rate is determined so
that the following equation holds.

$\underline{M}=h_{1}Y+h_{2}K(r_{o}-r)$ , (20)
$p$

That is,

$r=r_{o}+ \frac{h_{1}y-m}{h_{2}}$ , (21)

where variable $m$ denotes real money balances per unit of capital. The change rate of $m$

is

$\hat{m}=\mu-\hat{p}-i(\rho-(r-\pi))-n$ . (22)

Finally, we consider the dynamics of the foreign exchange market. By using the nominal
exchange rate $e$ , the definition of $\eta$ is written as

$\eta=\frac{p}{ep}*\cdot$ (23)

Hence,

$\hat{\eta}=\hat{p}-\hat{e}-\hat{p}^{*}$ . (24)

The way and the extent of international capital flows per unit of capital depend on
the interest differential under imperfect capital mobility. The nominal exchange rate is
assumed to be adjusted according to the capital flows and net exports as follows:

$\hat{e}=\beta_{e}(\beta(r^{*}+\epsilon-r)-nx)+\hat{e}_{o}$ , (25)
7For simplicity, we think $K$ rcal wcalth.
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where $nx$ denotes net export (per unit of capital) of the home country and $\hat{e}_{o}$ is the
growth rate of the nominal exchange at the long run equilibrium8, and $\epsilon$ is the expected
rate of exchange depreciation. The expectation formation for the nominal exchange rate
is similar to the case of inflation.9 That is,

$\dot{\epsilon}=\beta_{\epsilon}(\alpha_{\epsilon}(\hat{e}-\epsilon)+(1-\alpha_{\epsilon})(\hat{e}_{o}-\epsilon))$ . (26)

The dynamics of the foreign county is modeled analogously. Hence, if the magnitudes
of $\omega,$ $l,$ $m,$ $\pi,$ $\eta,$ $\epsilon,$

$\omega^{*},$ $l^{*},$ $m^{*},$ $\pi^{*}$ are known, their developments can be derived from the
following equations.

$\hat{\omega}=\hat{w}-\hat{p}$ , (27)

$\hat{l}=-i(\rho-(r-\pi))$ , (28)

$\hat{m}=\mu-\hat{p}-i(\rho-(r-\pi))-n$ , (29)

$\dot{\pi}=\beta_{\pi}(\alpha_{\pi}(\hat{p}-\pi)+(1-\alpha_{\pi})(\hat{p}_{o}-\pi)))$ (30)

$\hat{\eta}=\hat{p}-\hat{e}-\hat{p}^{*}$ , (31)

$\dot{\epsilon}=\beta_{\epsilon}(\alpha_{\epsilon}(\hat{e}-\epsilon)+(1-\alpha_{\epsilon})(\hat{e}_{o}-\epsilon))$ , (32)

$\hat{\omega}^{*}=\hat{w}^{*}-\hat{p}^{*}$ , (33)

$\hat{l}^{*}=-i^{*}(\rho^{*}-(r^{*}-\pi^{*}))$ , (34)

$\hat{m}^{*}=\mu^{*}-\hat{p}^{*}-i^{*}(\rho^{*}-(r^{*}-\pi^{*}))-n^{*}$ , (35)

$\dot{\pi}^{*}=\beta_{\pi}^{*}(\alpha_{\pi}^{*}(\hat{p}^{*}-\pi^{*})+(1-\alpha_{\pi}^{*})(\hat{p}_{o}^{*}-\pi^{*}))$ . (36)

This is the 10 dimensional differential equation system to be analyzed in this paper.
An economy modeled by the above equations moves in response to gaps between actual

and expected values if it does not exist at the long run equilibrium. Now we turn our
attention to the long run equilibrium. The time derivatives of 10 main variables are
equal to zero at the equilibrium, where clearing all the markets is realized and GDP
of each country grows at the natural rate. For simplicity, we assume that there is no
difference between the natural growth rates of two countries, namely, $n=n^{*}$ . Concerning
each variable fixed at the long run equilibrium, the equilibrium value is expressed using
subscript $0$ .

From equation (14), the equilibrium level of $l$ is determined as

$l_{o}= \frac{l^{d}}{\overline{V}}$ . (37)

8In the long run, thc prices and the nominal exchangc rate grow depcnding only on thc natural growth ratcs and incrcases
in money supply in both countries.

9See equation (18).
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Substituting $r=r_{o}$ into equation (21), we obtain

$m_{o}=h_{1}y$ . (38)

$Rom\hat{l}=0$ ,

$r_{o}=\rho_{0}+\pi_{o}$ . (39)

From $\hat{l}=0,\hat{m}=0$ and $\hat{p}_{o}=\pi_{o}$ ,

$\pi_{o}=\mu-n$ . (40)

At the long run equilibrium, net export $nx$ is zero, therefore, we can derive the equilibrium
values of $\rho$ and $\omega$ from

$\{\begin{array}{l}\rho_{0}=y-\delta-\omega_{o}l^{d}\omega_{o}l^{d}+(1-s_{c})(\rho_{0}-t_{c})+n+\delta+g-y=0.\end{array}$ (41)

They are solved as

$\rho_{0}=t_{c}+\frac{n+g-t_{c}}{s_{c}}$ , (42)

$\omega_{o}=\frac{y-\delta-\rho_{0}}{l^{d}}$ . (43)

The real exchange rate at the long run equilibrium is

$\eta_{0}=\frac{l_{o}(1-\gamma_{c}^{*})(1-s_{c}^{*})(\rho_{0}^{*}-t_{c}^{*})}{l_{o}^{*}(1-\gamma_{c})(1-s_{c})(\rho_{0}-t_{c})}$ , (44)

where both $\gamma_{c}=\gamma_{c}(\eta_{0})$ and $\gamma_{c}^{*}=\gamma_{c}^{*}(\eta_{0})$ are assumed to be greater than zero and smaller
than unity. From $\pi_{o}=\mu-n,$ $\pi_{o}^{*}=\mu^{*}-n^{*},$ $n=n^{*}$ and $\dot{\epsilon}=0$ ,

$\epsilon_{o}=\mu-\mu^{*}$ . (45)

It is obvious that the long run equilibrium is independent of any adjustment speed
included in the model. Moreover, it has been also obvious from the analytical examination
in Asada et al. (2003, Ch.10) that the equilibrium can be locally unstable if the adjustment
speeds are sufficiently large.

3 Chaotic behavior of the model

To see the model phenomena in detail, hereafter, we restrict our examination to a setting
of parameters, for which two countries are linked through international trade and capital
flows. Parameters are set as follows:
$s_{c}=s_{c}^{*}=0.8,$ $\delta=\delta^{*}=0.1,$ $t_{c}=t_{c}^{*}=0.35,$ $g=g^{*}=0.35,$ $n=n^{*}=0.02,$ $h_{1}=h_{1}^{*}=0.1$ ,
$h_{2}=h_{2}^{*}=0.2,$ $y=y^{*}=1,$ $l^{d}=l^{d*}=0.5,$ $k_{w}=k_{w}^{*}=0.5,$ $k_{p}=k_{p}^{*}=0.5,$ $i=i^{*}=0.5$ ,
$\overline{V}=\overline{V}^{*}=0.8,$ $\alpha_{\epsilon}=0.5,$ $\alpha_{\pi}=0.5,$ $\mu=0.025,$ $\mu^{*}=0.022;\beta_{w}=\beta_{w}^{*}=2,$ $\beta_{p}=\beta_{p}^{*}=3$ ,
$\beta_{k}=\beta_{k}^{*}=1,$ $\beta_{\pi}=3.9,$ $\beta_{\pi}^{*}=3.8,$ $\beta=1,$ $\beta_{e}=2,$ $\beta_{\epsilon}=9.5$ ,
where the unit of time is considered to be one year. For example, $\mu=0.025$ means
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money supply in the home country grows 2.5% in a year. Note that the two countries are
different with respect to monetary policy rules as well as adjustment speeds of inflation
expectation. In the two-country KWG model, the level of an individual adjustment speed
expresses characteristics of the corresponding market. Note that there are differences
among the speeds set above. For the setting, the long run equilibrium

$(\omega_{o}, l_{o}, m_{o}, \pi_{o}, \eta_{0}, \epsilon_{o}, \omega_{o}^{*}, l_{o}^{*}, m_{o}^{*}, \pi_{o}^{*})=(1.05$ , 0.625, 0.1, 0.005, 1, 0.003, 1.05, 0.625, 0.1, 0.002 $)$

is locally unstable.
Now the equations which determine the dynamics of main variables can be rewritten

as follows.

$\frac{dw}{dt}=(\hat{w}-\hat{p})\omega$ , (46)

$\frac{dl}{dt}=\hat{l}l$ , (47)

$\frac{dm}{dt}=(\mu-\hat{p}+\hat{l}-0.02)m_{\dot{r}}$ (48)

$\frac{d\pi}{dt}=1.95(\hat{p}-2\pi+\mu-0.02)_{\dot{\prime}}$ (49)

$\frac{d\eta}{dt}=(\hat{p}-\hat{p}^{*}-\hat{e})\eta,\cdot$ (50)

$\frac{d\epsilon}{dt}=4.75(\hat{e}-2\epsilon+\mu-\mu^{*})$ , (51)

$\frac{d\omega^{*}}{dt}=(\hat{w}^{*}-\hat{p}^{*})\omega^{*}$ , (52)

$\frac{dl^{*}}{dt}=\hat{l}^{*}l^{*}$ , (53)

$\frac{dm^{*}}{dt}=(m^{*}-\hat{p}^{*}+\hat{l}^{*}-0.02)m^{*}$ , (54)

$\frac{d\pi^{*}}{dt}=1.9(\hat{p}^{*}-2\pi^{*}+\mu^{*}-0.02)$ . (55)

Other variables are determined by the following equations.

$\hat{w}=\max[2X_{p}+\frac{8}{3}X_{w}+\pi, 0]$ , (56)

$\hat{w}^{*}=\max[2X_{p}^{*}+\frac{8}{3}X_{w}^{*}+\pi^{*}, 0]$ , (57)
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$\hat{p}=\{$
$3X_{p}+0.5\pi$ $(\hat{w}=0)$

$4X_{p}+ \frac{4}{3}X_{w}+\pi$ $(\hat{w}>0)$ ’ (58)

$\hat{p}^{*}=\{\begin{array}{ll}3X_{p}^{*}+0.5\pi^{*} (\hat{w}^{*}=0)4X_{p}^{*}+\frac{4}{3}X_{w}^{*}+\pi^{*} (\hat{w}^{*}>0) ’\end{array}$ (59)

$\hat{l}=0.25\omega+0.5\mu-2.5m-0.5\pi+0.9X_{p}-0.0225$ , (60)

$\hat{l}^{*}=0.25\omega^{*}+0.5\mu^{*}-2.5m^{*}-0.5\pi^{*}+0.9X_{p}^{*}-0.0225$ , (61)

$X_{p}=c_{1}+c_{1}^{*}-0.25\omega-0.5\mu+2.5m+0.5\pi-0.5075$ , (62)

$X_{p}^{*}=c_{2}^{*}+c_{2}-0.25\omega^{*}-0.5\mu^{*}+2.5m^{*}+0.5\pi^{*}-0.5075$ , (63)

$X_{w}= \frac{1}{2l}-0.8$ , (64)

$X_{w}^{*}= \frac{1}{2l^{*}}-0.8_{\dot{r}}$ (65)

$c_{1}=0.5\omega+\gamma(\eta)(0.11-0.1\omega)$ , (66)

$ci$ $=( \frac{l}{\iota*})(1-\gamma^{*}(\eta))(0.11-0.1\omega^{*})/\eta$ , (67)

$c_{2}=( \frac{\iota*}{l})(1-\gamma(\eta))(0.11-0.1\omega)\eta$ , (68)

$c_{2}^{*}=0.5\omega^{*}+\gamma^{*}(\eta)(0.11-0.1\omega)$ , (69)

$\hat{e}=2(\epsilon-c_{1}^{*}+c_{2}(\frac{l}{\iota*})/\eta)+10(m-m^{*})+(\mu^{*}-\mu)$ , (70)

$\gamma(\eta)=-\max[-1, -\max[-0.2\eta+0.7,0]]$ , (71)

$\gamma^{*}(\eta)=-\max[-1, -\max[0.2\eta+0.3,0]]$ , (72)

where functions $\gamma_{c}(\eta)$ and $\gamma_{c}^{*}(\eta)$ are specialized as piecewise linear functions.
Figure 1 shows the attractor of the 10 dimensional dynamical system numerically in-

tegrated by using fourth order Runge-Kutta method. The maximum Lyapunov exponent
evaluated along the attractor is about 0.13. This value means the system exhibits be-
havior that depends sensitively on the initial conditions. In this case, it may be difficult
to predict trade conditions in a few years. On the other hand, kinks of Phillips curves
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and the functions of real exchange rate seem to contribute to the viability of economically
meaningful fluctuations, and the oscillation in a bounded region generates recurrent time
series. Therefore, recurrence and sensitivity on the initial values are characteristics of the
dynamics of the system. In other words, the dynamics is chaotic.

Is generation of such a chaotic attractor associated with weak linkages between coun-
tries? It is true that we assume that workers consume only domestic goods. We may
downgrade the role of international trade.10 On the other hand, we stress the interna-
tional mobility of capital. Let us examine the amount of capital flows from the home
country in proportion to the domestic capital stock. A time series of the amount on the
attractor is depicted in figure 2 (left). This figure exemplifies that, for our parameter
setting, two countres are strongly connected through capital flows.

In general, it is not easy to see the dynamics of 10 main variables at the same time.
As our concern is typical patterns of growth cycles of two countries the dynamical system
depicts, let us focus on the deviations of GDP growth rates of two countries from their
natural growth rates. Thus we introduce new variables: $x=\hat{Y}-n$ and $x^{*}=\hat{Y}^{*}-n^{*.11}$

The time series of these variables on the attractor are illustrated in figure 2 (right). We
cannot see any distinct relationships between $x$ and $x^{*}$ in this figure. However, it should
be noted that the length of the chaotic trajectory plotted on the figure is too short to
capture the typical patterns of business cycles of the countries.

Figure 3 shows the attractor projected onto $x-x^{*}$ plane. Few points are plotted on
the left lower area. It implies that the worldwide recession seldom occurs for the setting
of parameters. The next section discusses the characteristics of the attractor by using
unstable periodic orbits.

4 Unstable periodic orbits

It is known that there are an infinite number of unstable periodic orbits embedded in
a chaotic attractor. When similar patterns are observed subsequently in a long time
development in a chaotic attractor, it can be considered that the trajectory is going along
an unstable periodic orbit embedded in the attractor. Figure 4 shows a chaotic trajectory
which is a part of the complicated orbit illustrated in figure 3.

For an initial guess $X_{(i)}\in R^{10}$ chosen from the chaotic attractor and $T_{(i)}\in R_{+}$ , we
iterate the following algorithm:
Step 1: Solve

$(^{\Phi_{T_{(i)}}(X_{(i)})-I}F(X_{(i)})^{t}$ $F(\phi\tau_{0}(i)(X_{(i)})))(\begin{array}{l}\triangle X_{(i)}\triangle T_{(i)}\end{array})=(^{X_{(i)}-\phi_{T_{(i)}}(X_{(i)})}0)$ (73)

about $\triangle X_{(i)}$ and $\triangle T_{(i)}$ , where $F(x)$ is the time derivative of $x,$ $\{\phi_{t}(x)\}_{t\in R}$ denotes the
orbit passing through $x(x\in R^{10})$ at $t=0,$ $I$ is the $10\cross 10$ unit matrix, and $10\cross 10$

matrix $\Phi_{t}(x)$ means the variation of $\phi_{t}(x)$ about $x$ .
Step 2: Modify the guess as

( $X$ $(i+1),(i+1)(X_{(i)}+2^{\lambda}\triangle X_{(i)}, T_{(i)}+2^{\lambda}\triangle T_{(i)})$ , (74)

and go back to step 1 after replacing $i+1$ with $i$ . This is a damped-Newton method, and
parameter $\lambda$ is a damping exponent.12 When both $|\triangle X_{(i)}|$ and $|\triangle T_{(i)}|$ are sufficiently

$1$ In addition, wc ignorc migrant workers.
1lNote that thcir cquilibrium values are zero.
$12\ln$ order to find an unstable periodic orbit. we have to give not only initial guess but also $\lambda$ appropriately.
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Figure 1: Chaotic attractor. The attractor is projected onto five planes $(\omega-l$ (top left), $m-\pi$ (top right),
$\eta-\epsilon$ (middle), $\omega^{*}-l^{*}$ (bottom left), $m^{*}-\pi^{*}$ (bottom right) $)$ . The maximum Lyapunov exponent evaluated
on the attractor is about 0.13.
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Figure 2: Chaotic movements of capital flows and GDP growth rates. The left figure shows the variation
of $\beta(r^{*}+\epsilon-r)$ , which means a relative amount of capital flows $hom$ the home country. Time series
of $x(t)=\hat{Y}(t)-n$ (solid line) and that of $x^{*}(t)=\hat{Y}\cdot(t)-n$ (dashed line) are illustrated in the right
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Figure 3: Chaotic attractor projected onto $x-x^{*}$ plane. The trajectory of $(x(t), x^{*}(t))$ is plotted for
$0\leq t\leq 30000$ .
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small, we think that $X_{(i)}$ is a point of a periodic orbit, and that $T_{(i)}$ is the period of the
orbit. By using this method, we find an unstable periodic orbit which exists sufficiently
close to the chaotic orbit. It is also depicted in figure 4.

$x$

Figure 4: Unstable periodic orbit and chaotic attractor projected ollto $x-x^{*}$ plane. Plotted are an unstable
periodic orbit (solid line) whose period is about 22.645 and a chaotic trajectory $\{(x(t), x^{*}(t))|0\leq t\leq$

22.645} (dashed line). The chaotic trajectory starts from a point near the most stable point of the
unstable periodic orbit.

As long as a chaotic orbit is going along an unstable periodic orbit, the phase difference
between business cycles of the countries seems to be fixed in a sense. It depends on the
unstable periodic orbit how the phase difference can be fixed. In this context, the variety
of unstable periodic orbit embedded in the attractor is worth investigating. Hence, we try
to find all periodic orbits with short period. As a result we obtain ten unstable periodic
orbits in total.

When we attempt to know frequently observed phenomena by way of unstable periodic
orbits, it is important to examine the instability of the orbits in advance. Here we consider
how far a point near an unstable periodic orbit goes in a direction orthogonal to the orbit
as time goes by. This local instability is evaluated by the maximum modulus of eigenvalues
of a $9\cross 9$ square matrix as a linear map from a point near $x(t)$ to a point near $x(t+\triangle t)$ ,
where $x(t)$ and $x(t+\triangle t)$ are points on the unstable periodic orbit and $\triangle t$ is sufficiently
small. Even if a periodic orbit is unstable, the orbit is able to have some points of local
stability. 13 It is possible that such a point existing near the chaotic attractor is the starting
point when a chaotic trajectory goes along an unstable periodic orbit. Thus, we calculate
the distance between a chaotic orbit and the most stable point of each unstable periodic
orbit found numerically. The result is summarized in figure 5. According to this figure,
some unstable periodic orbits seem to be useful.

$13\ln$ fact, most pcriodic orbits wc found have not a fcw points with local stability, at which thc maximum modulus of
eigcnvalucs of thc Jacobian matrix is smaller than 1000 as shown latcr.

19



Figure 5: Distance between a point of the most stable point of each unstable periodic orbit and a chaotic
trajectory $\{X(t)|0\leq t\leq\tau\}$ . The distance is measured as $i_{l1}f_{\ell\leq\tau}\Vert X(t)-A\Vert$ , where $A$ is the most stable
point of an unstable periodic orbit,

Picking up five periodic orbits, we project each one onto $x-x^{*}$ plane with a chaotic
orbit $\{(x(t), x^{*}(t))|0\leq t\leq T\}$ , where $(x(O), x^{*}(O))$ is the closest point to the most stable
point of the unstable periodic orbit in the 10 dimensional phase space, while $T$ is equal to
the period of the unstable periodic orbit. They are shown in figure 6. This figure suggests
an important fact: the closer to an unstable periodic orbit the starting point of a chaotic
trajectory is, the more patterns like the unstable periodic orbit the chaotic trajectory
depicts. Therefore, it is essential that an unstable periodic orbit is embedded in the
chaotic attractor. The unstable periodic orbits in figure 6 are expected to be embedded
in the attractor.

We have defined the local stability of a periodic orbit in the beginning of this section.
Figure 7 shows locally stable points of the unstable periodic orbits embedded in the
chaotic attractor. Since a chaotic trajectory is considered to approach such stable points,
it would be significant how many points of stability an unstable periodic orbit has, and
where they exist. In figure 7, we can see that the region which attracts chaotic trajectories
is not narrow on every unstable periodic orbit, and that such a region is divided into some
subsets among which the correlative relationship between $x$ and $x^{*}$ is different. Figure 7
visually captures the source of the complexity of business cycles the two-country KWG
model generates. On the other hand, figure 8 shows the time developments of the local
instability and GDP growth rates along each unstable periodic orbit. It is exemplified in
this figure that temporal comovements of business cycles caused by international trade
and capital flows can be observed not for a long term but rahtr for a short term though
the linkage is significantly strong. This figure also demonstrates the complexity and
diversity of the model phenomena. Finally, it should be noted that similar results have
been obtained for many different settings of parameters.
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Figure 6: Unstable periodic orbit (solod line) and chaotic orbit (dashed line). Each unstable periodic
orbit is named $UPO_{T}$ . where $T$ means the period of the orbit.

Figure 7: Unstable periodic orbit in the attractor and locally stable point. Each unstable periodic orbit is
named $UPO_{T}$ , where $T$ denotes the period of the orbit. The locally stable points (cross) are superimposed
on the corresponding unstable periodic orbit (dashed line).
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Figure 8: Fluctuation of local instability along an unstable periodic orbit and oscillations of GDP growth
rates in two countries. Two figures in the same row show time series of the multiplier of a deviation to the
most unstable direction orthgonal to an unstable periodic orbit evaluated at each point of the orbit (left),
and of the GDP growth rates of the two countries along the unstable periodic orbit (right), respectively.
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5 Conclusion

We numerically investigate the two-country KWG model with a setting of strong intensity
of linkage between the countries mainly through capital fiows. For our setting, the coun-
tries are slightly different with regard to monetary policy and the adjustment speed for
inflation. Under the circumstances, an economy starting from almost every meaningful
point reaches an attracting set after going through a transient period. We confirm the
attractor is chaotic in the sense that it is bounded and the maximum Lyapunov expo-
nent evaluated on the attractor is positive. In order to obtain more detailed information
about the dynamics of the system, we detect unstable periodic orbits by using a damped-
Newton method and then choose some orbits to be useful for our purpose among them.
We demonstrate that a chaotic trajectory can draw the growth pattern like that of an
unstable periodic orbit over and over. In addition, locally stable regions of the unstable
periodic orbits embedded in the chaotic attractor are revealed. As a result, we can see
that the region which attracts chaotic trajectories is not narrow on every unstable periodic
orbit, and that such a region is divided into some subsets among which the correlative
relationship between the GDP growth rates of the countries is different. This is one of the
interesting phenomena the two-country KWG model can represent, and in this paper we
capture it by unstable periodic orbits appropriately chosen. Moreover, we exemplify that
temporal comovements of the business cycles trhough strong linkage between countries
can be observed not for a long term but rahtr for a short term.

Finally, we refer to future issues. It is likely that the size and the number of locally
stable regions on an unstable periodic orbit embedded in the attractor can vary through
increases and decreases in a parameter as the shape of the orbit and the distance from
the attractor can change. Complex dynamics we exemplify in this paper may be caused
by the setting of asymmetric parameters in terms of two interacting economies. In order
to study effects of the asymmetry, effects of a coordinated monetary policy and so on,
we have to follow branches of unstable periodic orbits we have found through varying a
parameter. Furthermore, if we give an appropriate definition of phase in terms of the
business cycle, we will be able to discuss about chaotic time series of the phase difference
between countries in the two-country model.
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