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1 Introduction

Recently study of generalized quantum groups defined for wider class of bi-
characters has been achieved marvelously. It can be said that the study was
initiated by Andruskiewitsch and Schneider’s suggestion [2] of classification pro-
gram of pointed Hopf algebras. It should be mentioned that the Drinfeld-Jimbo’s
original quantum groups, the Lusztig small quantum groups at roots of unity, the
quantum superalgebras of type A-G, the ones at roots of unity, Z/3Z-quatum
groups (cf. [8]), and multi-parameter quantum groups are generalized quantum
groups. Under the idea, Heckenberger achieved studies of Nichols algebras of di-
agonal type and their quantum doubles, including classification of those of finite
type (3], [4], [5]. Under influence of the program, he and the author obtained a
Matsumoto type theorem of the Weyl groupoids associated to finite type general-
ized root systems [6]. Algebras mentioned above admit generalized root systems.
They also obtained a factorization formula of the Shapovalov determinants of
finite type generalized quantum groups [7].

We consider that it is very important to formulate a Harish-Chandra theorem
for generalized quantum groups. In this note, we make preliminary study of
the Harish-Chandra maps of generalized quantum groups defined for symmetric
bi-characters. For original results for quantum groups, see [1].

2 Multi-parameter generalized quantum groups

For z, y € Z, let J, := {z € Zlz < z < y}. Let SJ;, be the set of
finite sequences in J,,; we assume that SJ,, has a O-sequence ¢. Namely
STy = UrSSJY) (disjoint), where SJ) = {4}, and if r € N, we mean
SIT = {(iryizy .. ip)iy € Joy(r' € Juy)}. For & = (in,ia,...,0r) € SIS,
let ||Z]] = (j1,72,---,Jr) € SJT) be such that j; < j» < ... < jr and |{k €
Jiplde = 2} = [{l € Ji,liy = 2} for all 2z € J,,; we also let ||¢]| := &.

Let N € N. Let ¢ € C\ Q. Fix gt € C\ Q with ¢ = (q%)z. For r € Z, we
write g2 := (q2)". Let II" = {e;, €;]s € Ji1,n} be a finite set with 2NV = |II”|. Let
ZI1" be a rank-2N free Z-module with the base I1”. Let \/x : ZII" x ZII" — C*
be a map such that

(21)  Vx(e,b+¢) = x(a,b)v/X(a, ), vx(a+b c) = v/x(a,c)v/X(b,c)



for all a, b, c € ZI1", and

%
(2.2) VX(ei €)= vx(€ie) = a7, x(€i€;) =1
for all ¢, j € J; n. Define a map x : ZII" x ZII" — C* by
(2.3) x(a,8) = v/X(a,b)%

Let Il := {¢j|lj € Jin},so I CII". Let £ € Jy y. Let I = {azlz € Jiz} be a
subset of ZIT s~uch that ZII is a rank-¢ submodule of ZII'.
Let BT = B¥(x) be the unital C-algebra defined with generators

(2.4) L, (a € Zl"), E; (i € J14)
and relations
(25) Lo = 1, LaLb = La.+b, LaEi = x(a,ai)EiLa.

For ¢ € SJ1,%, let Ey := 1 € B*, and for Z := (i1,...,i,;) € SJ1,") with
r €N, let E; := E;, --+ E; . Then using a standard argument, we see

Lemma 1. As a C-linear space, Bt has a C-basis
(2.6) {EzL,|Z € SJiy, a € ZIT"}.

The C-algebra BT can be regarded as a Hopf algebra (B*,A,S, ¢) with
A(Le) = Lo ® Lo, S(La) = L_g, €(La) = 1, A(E:) = E; ® 1 + L, ® E;,
S(E,) = _L—a,‘Eia E(Ez) = 0.

Let (B*)* be the dual linear space of B*. We regard (B*)* as a B*-module
by X.f(Y)= f(YX) for all f € (B*)*, and all X, Y € B*. Let

(2.7) (B*Y)° :={f € (B")*| dim B*.f < +00}.

Let f € (B*)°\ {0}. Let r := dimB™*.f and let {fi|i € Ji,} be a C-basis
of Bt.f. Assume that f; = f. Define pi; € (B)* (i,5 € Ji,) by X.f; =
Yien, Pii(X)fi. Then pi(XY) = 37, pin(X)pri(Y), so pij € (BT)°. We
have f =3 ..,  fi(1)pij. We regard (B*)° as a unital C-algebra with the unit ¢,
by the multiplication defined by fg(X) := >, f(X,gl))g(X,gz)) forall f, g € (B1)°,
and all X € B* with A(X) =3, X,gl) ® X,ﬁ”; we note that fg € (B*)° since
X.(f9) = Te(X).£)(X?.9). We regard (B*)°, (B*)° ® (B*)°, (B*)" ® (B*)"
as subspaces of (B*)*, (B*)* ® (B*)* (Bt ® B*%)* respectively in a natural
way. Define the linear maps A° : (B*)° = (B*)° ® (B*)°(C (B*)* ® (B)* C
(B* ® B*)*), S°: (B*)° — (B*)°(C (B")*) and €° : (BT)> = C by A°(f)(X ®
Y) = f(XY), S°(f)(X) = f(S(X)) and €°(f) = f(1) respectively, where we



note that A°(py;) = 3 hes, | Pik ® prjy X.(S°(pij)) = ks, Pik(S(X))S°(prs),
and 3 ey, €°(Pik)Prj = Pges, , €°(Prs)pix = pij hold for the above p;;. Then

(2.8) (B*)° = ((B*)°,A°, 5°,¢°).

can be regarded as a Hopf algebra. For the above x, define the map xV : ZII" x
ZII" — C* by x¥(a,b) := x(b,a), and let (B*)Y := B*(xY). We denote the
elements L,, E; and E; of (B*)Y by LY, EY and EY respectively. By a natural
argument, we see

Lemma 2. There ezists a unique Hopf algebra homomorphism ¢ : (B*)Y
(B*)° such that o(LY)(EsLy) = 6z oXx(b,a) and o(EY)(EzLy) = 0z,).

Define the bi-linear map
(2.9) (,): Bt x (B+)V —-C

by (X, XV) := ¢(XV)(X). We denote the maps A, S and ¢ for (B*)Y by AY, SV
and € respectively. As a bi-linear map, (, ) is characterized by

(Lle\)/) = ( ) (EHEV) = 511’ (LG’EV) (Ei’Ll\;/) =0,
(2.10) (XY, XY) =37, (X, (XV)(1 )(Y, (X)),
(6, X7Y) = S (), X (X2, v),

for all a,b € ZI", all 4,5 € Jy4, all X,Y € B* with A(X) =3, XY 0 X® and
all XV,YV € B* with AV(XY) = ¥,(X)¥ ® (X¥)?. We also have

(2.11) (EzLa, By L)) = 8911 - x(a, b)(Ez, Ey)
forall z, § € SJy ¢ and all a, b € ZIT". We also have
(212)  (S(X),XY) = (X,5Y(XY)), (1,X") = £(XY), (X,1) = e(X)

for all X € B+ and all XV € (B*)". Let C* = {X € B*|(X,(B*)") = {0}}
and (C*)V := {XV € (B)V|(B*,X") = {0}}. Let B* and (B*)" denote
the quotlent Hopf algebras B*/C* and (B*)Y/(C*)V respectively. By abuse of
notation, we shall use the same symbols for objects L,, E;, LY, EY, (, ) etc. and
the objects defined as those modulo C* or/and (C*)V.

By a cerebrate argument due to Drinfeld, we have a Hopf algebra D =
D(y/x) = (D = D(/x),A = Ap,S = Sp,e = €p) such that

(1) As a C-linear space, D = B* ® (B*)Y = B*(x) ® B*(x"). By abuse of
notation, for X € B* and XV € (B*)Y, we denote the elements X ®1 and 1@ X"V
of D by X and XV respectively. The linear map B* — D, X — X, is a Hopf
algebra homomorphism. The linear map (B*)Y — D, XV — XV, is a C-algebra



homomorphism. For XV € (B*)Y with AY(XV) = ZT(XV)p) ® (XV)¥), we have
Ap(XY) =3, (XV)P (X)), Sp(XY) = (SY)~1(XV), and ep(XVY) = V(X Y).

(2) As for the multiplication of D, for X € B* and XV € (B*)Y, with
(1®4)oA)(X) =T, XN o XP X and (18AY)oAY)(XY) = T, (XV){®
(XV)® @ (XV)®) we have

(213)  XV.-X= Z HX D), (X)) (XD, (XN XD . (xV)PD.

For X and XV in the above (2), we also have

(214) X-X¥ = (S7THXE), X)XD, (X)) (XD - X2,
r.k

Further we have

LoLY = LY Lq, LEY = x(~0,0;)EY Ly, LY E; = x(a;, —b) E; L},

(2.15) E;E) — E}E; _511( Lo, +LY,,).

Note that Ly = Ly = 1 holds in D. Let ZyoIl = {Zieh,g nia; € Zll|n; €
Z, n; > 0}. For § € ZII, define subspaces Uﬂ+ and U_‘ﬂ of D in the following
way. If § € ZI1\ Zyoll, let Uy := UZ; := {0}. Let Uy := Uy := CL.
If B € Zyoll, let Uf = 3,  BiUf,,, and UZy == 3,  EYUZg,,,. Let

=Y pezoonUs and U™ =355 nUZp. Let D°:=3", 4cppw CL,yLy. Then
D = Spang(UTD°U~) = Spanc(U~D°U*). Further, by (2.11), we have
Lemma 3. (1) For any v, § € ZII", L,Ly # 0 holds in D. In particular,
dimU;t = dimUy =1

(2) dim U} =dimUZ,, =1 holds for any i € Jy .

(3) Ut = @pez,onUs, U™ = ®pezyonUy, and D° = @, peznnCL, Ly hold as
C-linear spaces.

(4) The linear maps Ut @ D°QU~ - D, X® L, Ly ® XV — XL,Ly XV, and
U-®@D°QU* - D, XVQ®L,Ly ® X — XVL,Lj X, are bijective.

3 Rosso form
From now on, except for Section 8, we assume that ,/x is symmetric, that is,
(3.1) we assume that \/X(a,b) = \/X(b,a) for all a, b € ZIT".

Define the subgroup T of ZII' by

(3.2) T :={w € ZII'|\/x(w, ZIT") = {1}}.



Let D' be the subalgebra of D generated by E;, EY (i € J14) and Ly, Ly (6 € ZIT').
Then D' is a Hopf subalgebra of D. Let G be the ideal of D' (as a C-algebra)
generated by LgLy —1 (8 € ZII') and L, — 1 (we T). Let U =U(/x) :=D'/G
(as a C-algebra). Then U can be regarded as a quotient Hopf algebra of D'. Let

(3.3) ZIT = ZIT'/T.

For A € ZII', let A := A+ T € ZIT, and let Ly := Ly + G € U. For any n € ZIT,
L, #0holds in U. Let U® := 3, 7 Ly,. Then U° = &,z Ly holds. The U*
and U~ in the previous section can be regarded as subalgeras of U. Further, the
linear maps Ut QU°®U~ — D, X®L,® X" — XL, XV, and U~ QU°QU* — D,
XVQL,®X — XVL,X, are bijective. We have a C-algebra automorphism
of U such that Q(E;) = EY, Q(E)) = E;, and Q(L,) = L_,. Then Q? = 1.
Let U2% := Span(U*U?). Define the bi-linear form (,) : U2% x U2% — C by
(XLs, XLg) := (XLx,QX)LY,) for all X, X € U+, and all A, s € ZII'. Then
(, ) is symmetric. Define the non-degenerate bi-linear form

(3.4) (,):UxU—=C
by
(3.5) (XLsS(Y), Y LpS(X)) := v/X(= 2, u)(X, Q(Y))(X, Q(Y))

forall X, X e U*,allY,Y € U™, and all \, u € ZIT'.
Define the left action ad and the right action ad of U on U by

(3.6) ad(u) v := Zuﬁl)vS(u?)) and v-ad(u) = Z S(uM)vu?

respectively for all u, v € U with A(u) =), M @ u®.
Theorem 4. We have
(3.7) (ad(u) - v, va) = (v1, ve - ad(u))
for all u, vy, v, € U.

Pr_oof. We may assume that
(3.8) v = XL;S(Y) and v, =YL;S(X)

with A\, u € ZII', X € U}, Y € UZ,, X € U}, Y € U=, and 6, v, w, § € LIl
Case-1. Assume u = L; with v € ZII'. Then we have

(ad(u) - v1,v2) = x(v, 0 — v){v1,v2)
= x(v,0 —1)60,,56%w(v1, ve) = X(—v,w — 8)(vy,v2)
= (v, v - ad(uw)),



as desired.
Case-2. Assume u € Uy with § € ZxoIl. We write:

(3.9) Au) = Z u,(.,l) ® u,(f),

(1®1@A)o(1®A)oA)(u)
Z uﬁ,l,) ® ug) b2 u,(.i) ® u,(f,)

rll

(B1) (ﬂ ) ) (B4)
Z“ - Lgrtaevis ® Y2, Lggra ® Us fa Lz ®uy,,

where ﬁ = (1, B2, B3, Bs) € (Z>oI1)* with By + B2+ B3 + s = B, and ug(,ff) € U;;.
We also write:

(3.10) (1®A)oA)Y)
— Z YW g Y(2) R Ys(l3)

- Zy(“h) ® (72)L-71 ® YS(ZS)L—'n—'m’

where ¥ = (71,72, 73) € (Z>oI1)® with 41 + 2 + 3 =, and Yy(,Z") € UZ, . Then



we have

ad(u) -

Zu(l)v S(u

Zu(l)XL Sy Zu(l)XL S?Y)

Zuf.%?XLA ( 2, Q) (571 ), 0 u?)
T" SI

Y WP Ly, Q) (ST W), QY L))
Byr3,s

U Ly X L3S (Yo Lzu L)

Bo+B3+Ba
> x(B2+ Bs + Ba, 0)x(—Ba, Bs)
B‘,T,;)",s
(uéﬂ:)L53+B4,ﬂ(n‘;?I>)><s L), Qv L—=))

72) (ﬂ )
o XLﬁ2+/33+[34+/\S(Y? 32 L g iR Y ; )

> (ﬁz+ﬁs+ﬁ4, 8)x(—Ba, B3)x (ﬂz+63,+54+A,ﬁ3)

-
o

ﬂ”r"y,s

(@) L, QYT (S W), QY L))
(W XS (ufP) L) L S (Yo )
Z X(B2 + B3 + B, 0)x(B2 + B3 + A, Bs)

=
-

ﬂ’ri’Y’s
(W) L, QYN (S (W), UV L))
(@ XS (W) L) LS (Yar?).




Then we have

(ad(u) * U1y U2>
= 5 x(Ba+ Bs + Ba,0)x(B2 + Bs + A, Bs)VX(—(Bz + X +m), )

B,r4,8

(2 L UBI (7 (), QYT L=z=)
(W XS W) Lz, AY)) (X, Q¥5T))
= Y x(Bo+Bs+ Bu,0)x(B2 + B3 + A Bs)vx(— (B2 + A + M), )
BrA,s
) 6/92 "1 6/54,’73 6;91 +0+pB3,6 6w,’72
(@2, QY (S W), (VP L==))
(W) XS (W) Lz, V) (X, QYVar L=;))

= ZX(,Bz + Bs + Ba, 0)x(B2 + B3 + A, Bs)x(—Ba, )X (=, 1)

B,r

~

(S~ (ul) Xul?), Q(Y)) (WP XS W) Lg;, Q(Y)).

We write:

t’
(8 (6 (6
= Z Yl(,tl) ® Yz(,t2)L’—'?sT ® Y3(,t3)L—61—62a
ot

where § = (8,,02,03) € (Zxoll)® with &, + &, + 63 = 6, and ¥;%”) € UZ, . Then



we have

)= s

Z S(u,(}))f’LﬁS(X)u,(f)

> (S, QTN (SHS W), AT TS (@) LS (X )u

7'” T"

> (S Lz, VD)) () L, UV L))

Yo LS (ulfy) L) LS (X)ull?
(0 ']
> (S L), V) P Ly, UV L))

Vi LS () L) La S (X) LS (S~ (w4 L)

r

> x(=t, B2)x(—Ba, Bo + w)

) (8
(S L), AT)) () Ly, UV L
6 ; ,
Voo LS (S (uf) Ly X ).

)

4)

,rII



Hence we have

(v1,; - ad (u))

10

= Y x(—t B2)X(= B, B2 + w)/X(= ), =01 — B3 + 1)

Birdit

(S 1), UV () Ly, UYae L=5=5;))
(X, QTSN (ST () Lz X uSD, (1))
= > x(—, Bo)X(~Ba, B2 + w)V/X(= A, =61 — Bs + 1)

Birit

'6193,51 5191 ,03 60,52 6/34 +w+B2,7 :
(0 (0

(S(uf¥ Lg7), UTEN) (Wl Lo, UV L))

(X, QI L)) (S () Ly X uf?, (1))

-

B,r

(

=

B

S x(=t, Bo)X(—=Ba, Ba + w)x (X, Bs)v/X (=X, 1)

) L X S L), (V) (S () L Xusly), Q(Y))
> x(= 1, B2)x(—Ba, B2 + w)x(A, Bs) v/X(= A 1)

x(Ba, ) x(B2 + B3,6 + B3)x(Bs, w + 52)
(@I XS (W), Q) (S (uf) Xuf?, (Y))
= (ad(u) - v, v2),

as desired.

Case-3. Assume u = EY with i € J;4. Note that 25Q = S~'. Then

Q

—

1

v2)’Q('U1)>

(Y LaS(X)), AXL;S(Y))
(QF)L_pS(SHQ(X))), AX)L_5S(S(QYV)))
VX (=N Q(T), X)(S2QUY)), ASHUX)))
VR (= N(Q(F), X)(§Q(Y)), $H(X))

VX, =N Q(F), X)(Q(Y), X)

<’l)1, ’02).

Y
Y
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We have
Q(ad(E;) - v;)
= Q(E{Ul — La—iU1L—a‘;Ei)
= QB — x(,0 — 7)v1 E;)
= —x(0i,0 = 7)(~EY LatQ(v1) Lo + Q1) BY)
= —X(O!i, 0 — 'Y)Q(vl) ’ ad(E.,Y),
and

vz - ad(E3))
= Q-L_zEvs + Lz E;)
xX(—aj,w— 08 + 0;)QU—FEweL_z + vo E; L _5;)
= —x(—ai,w— 6 + ;) (EYQ(ve) Lg; — QUv2) EY L)
= —x(—aw — 6+ a;)ad(E)) - Q(vy).

Hence we have

(ad(EY) - Q(v2), Q(v1))

= —x(0,w — 6 + a;)(Qvs - ad(E)), (1))
= —x(ai,w—08+ a;)(v1, vy - ad( i)

= —x(ai,w— 0+ o;)(ad(E;) - v1,v3)

= —x(ai,w— 38+ ) (Q(vy), 2ad(E;) - vl)L

= x(og,w =208+ a; + 0 —7){(Qv2), Q(v1) - ad(E})))

= X(04,w — 6 + 0 + 8 — V)0~ (w-8)),— (9—)—axs (Uw2), 01) - 2d(EY)))
= O ( (o)) (Q(v2), Qvy) - ad (EY)))

= (Qva), Avy) - ad(EY)),

as desired. This completes the proof. O

4 Harish-Chandra map

We define the C-linear map @ : U — U° by #(XVL;X) := e(XV)e(X)L; for all
X € Ut, all p € ZIT, and all XV € U~. For A € ZIT', define \/x; € (U°)* by
VX5 (L) = /x(A\, p) for all u € ZII'. Define the C-linear monomorphism ¢ :
U — U* by ((v2)(v;) := (v, v5). Define the right action of U on U* by fru(v) =
f(ad(w) -v) for and f € U*, all u, v € u. By (3.7), we have ((v)-u = ((v-ad(u))
for all u, v € u. Let 3(U) be the center of U, that is 3(U) := {u € U|Vv eU, w =
vu}. It is easy to see that 3(U) = {u € U|Vv € U, u - ad(v) = £(v)u}.
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(4.1) Assume that 3 p € ZIT', Vi € Ji 4, x(§, i) = x(04, ).

Then S?(u) = L_zuLz hold for all u € U.
Let V be a finite dimensional left U-module. Define fy € U* by fy(u) :=

Tr(uL_3; V). Then for all u, v € U with A(u) =3, v @ ul? we have

(fv - u)(v) = fr(ad(v) - v)
= va (uMvS(u?)) Z’I‘r uMvSW)L_5 V)

= Z’I‘r (vS(u®)L_suM; V) = Z’I‘r(vS ) S?(uM)L_5 V)

= ZTr vS(S(uM) (2))L ; V) = Tr(vS(e(uw))L_3V)

= Tr(s( wvL_5V) = e(u) fv(v),

so we have fy - u = e(u) fy. Hence we see that

(4.2) fremm(¢) = (7' (fv) €3(V).

Assume that 3\ € ZIT', 3vs € V \ {0}, V = @pez,,nU 505,

(4.3) Vi € ZIT, Lyvs = v/X(1 A)vs, Vi € Jug, Eivs = 0.

Lemma 5. We have fy € Im(¢). In particular, (7'(fv) € 3(U). Further we
have

(4.4) (7 (fy) = ) (dimUZpv)y/x(5,28 — N Lag=x

ﬂEZ?_oH

and

¢THfv) = B(CTHHY)

€ Z Spanc (U, Lgrp=xU)-
WEZ5oIN\{0},8€Z5oI,dim U= 5_,v570

Proof. Let v; = XL,Y,vo =YLz X e U withv, p€ ZII', X e U, Y € UZ,,
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X eU,YeUZ;, and#, v, w, 6 € Zxoll. Then we have

C(v2)(v1) = (v1, v2) = (X L5Y, ?Ln)b

et
h
2
05
=
..Ig
b‘
p.<
h
£'3
)
‘é
&
=

{

= (S-I(Y)L_v) YL,H_wS(S

~

= VX(=v+7, 5+ w) (X, QY)) (57 ))
(=v + 7+ w)(X, Q1)) (ST (L5 X), AS(L4Y))
(=v + 7,1+ w)(X, Q) (S7H(L-sX), S(QL5Y)))
(=¥ +7, 1+ w)(X, QY))(S(S™(L-aX)), ULsY))
(=¥ + 7, 1+ w)x(—w, @)X (=1 N (X, Q) (X L-a, AY) L)
(=¥ + 7, 1+ w)x(=w, w)x(=7, M)x(=w, =7 (X, AY))(X, Q(Y))
(W, b= W)/ Xm=5(7) 80,0002 (X, QY)) (X, Q(Y))

Let B € Zyoll. Let ms := dimUj. Let X, € UF and Yop, € UZ
(z € Jim,) be such that (Xp.,Q(Y_g,)) = 0zy. Then {X_pz|z € Jim,} and
{Y_pzlz € Jim,} is C-bases of Uy and U, respectivly. Let kg := dimUZ,v;.
Let {Z_p vs|r € Ji,} be a C-basis of Ugv5. For r € Ji,, Define t_g, € V*

by t_pr(Z-p rv5) = Op,pOr.
Let v; € U be as above. Then we have

felo) = D tepr(il_5Z-p,v5)

ﬁGZ)oH TEJ] kﬁ

ZX p )8 )t ﬁr(UIZ—ﬂrU/\)
Zx (=5 =B)/X (=B, \t—p (X LoY Z_p,v5)
Zx( B —B)V/X(=8, Nx (v, =7 = BIVX(¥, Nt-pr (XY Z_prv5)

Z \/)_(- p? 2ﬂ - )\)ﬂm(p)defyt_ﬁar('XYZ_'ﬂar,UX)'
B.r

Hence we have

as desired.

fvo= 2 2

BEL>oIl,r€Jy kg WEL0ILT,YEI1,myg
VX(P = w28 = Nt-pr(XueY-wyZ-p;rvs)
.'C(Y"w,yLw-l-Zﬂ—)\Xwax)’
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Let A € ZIT'. Let M()) be the left U-module satisfying (4.3) and satisfying
that dimU_gvy = dimUZ; for all B € ZyoIl. Let I (A) be the proper ideal of
M()) defined as the sum of proper ideals I' of M()) with I' C ®gez,,m (0} U7 V-
Let V(A) := M())/I()). Note that V() satisfies (4.3).

(4.5) For r € Zyg and t € C, let {r}; := Y4y, t*7", and {r}e!:=Jley,  {K}e-

(4.6) For i € Jug, let g; := /X(s, i), 50 ¢ := x(cu;, o).
Let ¢ € Ji» and r € Z>o. Then we have
(BL,E) = > (BF'LgE[™ E[™") = {r}a(B] ' La, E{"")

kGJI,r
= {r}a(E7 B = {r}g!,

which implies
(4.7) {rlp!=00E =0& (EY) =0,
since EY = Q(E;). We also have

(4.8) E(E)) — (EY) E;
= Y (B H(~Lg+ Lg)(E)"
ke-fl,r
B Y (~g7 Vg + ¢V L)
keJI,r
= {r)gE) N ~¢7* Vg + L g).

Applying €2, we have
(4.9) BB} — BYE} = {r}p(-q;"" Lo + L) B} "
By (4.8), we have

(4.10) Ei(EY) s
= {r}a(BY) (=g VXl ) + v/X(ou, —N)vs
= —{r}evxla, =2 (x(a, Ng 2™ = 1)(BY) 5.
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5 Rank one case

In this section, we assume that £ = 1. Let V be a U-module satisfying (4.3). Let
r € N be such that

(5.1) (x(a, Ng; 2™ = 1){r} 2 = 0, (EY) vz # 0 and (BY) vz = 0.
Then dimV = r. We have

(5.2)
i) |
= Z VX(p — may, 2ka; — A)

k€Jo,r-1,m€Jo,r—1-k

g (B (i (BY)™) (BY )*og)

{m }q

1 m

'{m}q2! (EI/) L(m+2k)a1—)\E{n
1

2(1-m)k
= VRN Y VRN

kedo,r—1,m€Jo r_1-k

(=)™ TT (o, Ag ™9 — 1))

tEJl,m

m {m + k} 2! m m
Vx(on, =) ——{E}qz—!‘h(EY) 1 e e ¥ 4
1

f(l ™k im k}ga!
N D S0 (ETLIN i S L

12 |
meJo,r—1 kEJo,r—m-1 ({m}qf) {k}qf'

(TT Gelon, Nar ™™ = 1)) Lz ) BT

t€J1,m

which implies

(5.3) P(¢” (fv))—— Z qgkszal—,\

kGJO r—1
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If {r}g # 0, then x(a1,A) = g2V which implies
(5.4)
( v) v
\/—( L(r Dai—A
> E (o Y

2(1 m)k{m + k}q

2
meJo,r-1 kEJo,r—m—1 ({m}ql) {k}ql'
2((r—1)—=(m+k)+t
(T (@m0 )_1))L————(m+2k_r+1)m)Er,
teJ1,m

which implies

(5.5) S(CUV)) = LremvX(B =N Y & Lgemrrmar-

k€Jo,r-1

Theorem 6. Assume that £ =1 and ¢ # 1. Let {v, € ZIl'lp € P} be a set of
representatives of {7 € ZII'lv € ZIT', x(c1,v) = 1}. Assume that for all x € N,
zag #0, so LT # 1.

(1) Assume that {k}g2! # 0 for allk € N. Then

(5.6) 3(U) = @ C¢ M (fvikan)) Lo

PGP,kEZZO

as a C-linear space. In particular, as a C-algebra, 3(U) is generated by L
(p € P), and —(¢} — 1)EY Er + La7 + ¢{ Ly

(2) Assume that there ezists r € N such that {r — 1}g! # 0 and {r};z = 0.
Let R := {p € ZIl'|u € ZIV, x(o1, 1) ¢ {g}|s € Jor—2}}. Then we have

(5.7) ) =( P CC fvman)ls) & (ED T (Fvim),

pEPkEJy -2 nER
as a C-linear space, where let V(n) := V(i) if n = [

Proof. Let C =3, .cs  (BY)"2nE € 3(U) with z, € U°. Define the C-
algebra automorphism g : U® — U° by f(L3) = x(a1, —A)Lj for all A € ZIT'. By
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(4.8)-(4.9), we have

- (5.8)
0= CEl - ElC
= ) (BY)™(zm — 9(2m)) BT
meJo,k
—(BY)"{m} (=7 "™V Lar + L_arzm) ET)
= Z (EY)™ (2m — 9(em) — {m + l}qf(_(h—%nl’ﬁ + L—Tf)zm+1)Ein+1
meJo,k—1
+E{ (2 — g(z1)) (EY)E,
and
(5.9)
0=E/C - CEY
= D (BY)™(2m — g(zm)) ET"
meJo,k

*(Ei/)m{m}qf(_q;z(m_l)Lm— + L—ﬁ)szl “1)

= ( Z (BY)™(2m — g(2m) — {m + l}qf (._‘h—szﬁ'F L—a_f)zmH)Ein)

meJo k-1

+Ef (2 — g(z)) (BY)¥H!
Hence we have
(5.10) Eftt #£0 = 2, = g(z),
and
(5.11) Vm' € Jok-1, EP # 0= 2w —g(zm) = {m'+1}2(—a7*™ Loy + L)

(1) Let C be as above. By (5.10), we have z; € @pcpCLy. By (5.4), the last
term of (7! (fv(kay)) is b(EY)*EF for some b € C*. Then we can see (5.6).

(2) Let C be as above and assume that £ = r — 1. Assume that C is not
in RHS of (5.7). By (5.8)-(5.9), we may assume that there exists A € ZII' such
that 2, € @yezCL5 257 for all m € Jy,_;. By the same argument as in (1), we
may assume 2z,_; # 0. For p € ZII' with i ¢ R, V(u) = M(p) and, by (5.2), for
p € ZIT', the last term of (™! (fa(y)) is c(E}’)’”‘leE{"l for some ¢ € C*.
Hence we may assume that x(), 1) =1 and 2,1 € @zezs0yedrr -1 CLAt(rary)ar
However this contradicts (5.11) since 2’ — g(2) € @z,ez41€51 -1 CLx4(rzy+y1)ar fOT
all 2’ € ®z,e2CL5 1207 4
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6 Higher rank case

Assume that £ € N. From now on,

(6.1) assume that g2 # 1 for all ¢ € Jy 4,
and
(6.2) assume that there exist w; € ZII' (i € J;4) such that

VX(wi, ;)™ # 1 for all r; € N and VX (wi, o) = 1 for i # j.
Then Ly # 1 for all ¥ € ZIT \ {0}. Further
(6.3) 3(U) C @ Spang(UZ,U°Uy).
BEZ>oIl
Moreover we have
Lemma 7. Let z € 3(U). Assume that $(z) =0. Then z = 0.

Proof. Let B € ZxoI1\ {0}. Let X, € Uf,and Y, € U, (r € Jl,ding) be

C-base elelemnts of U; , and U—4 respectively such that (X, Q(Yx)) = dk. By
(2.14), and formulas similar to (3.10), we have

(6.4) (X, Vi) €64l g+ Y, CL_gi,
YE€Zy oI\ {0}

O

Then we can easily see that the statemet holds.

Let i € Jyp Let (ZIT'); := {)\ € ZII'|3t € Z, x(c, A) = ¢7'}, and (ZIT'); :=
(X € ZIV/T|X € (ZI');}. If ¢ # 1 for all m € N, define the map o; : (ZIT'); —
(ZIT'); by letting o;()\) be such that o;(A) € A + Zo; and x(A + 0i(A), ) = 1
for all A € (ZIT');; we also denote the map (ZII'); — (ZII'); induced from o; by
the same symbol. Assume that there exists r € N such that {r — 1},! # 0 and
{r}z = 0. Define the map 7; : (ZII'); — (ZIT'); as follows. Let A € (ZI1');. Let
y € Jo,—1 be such that x(A + ya, ;) = 1. Then we let 7;(X) := A + 2yo;. We
also denote the map (ZIT'); — (ZIT'); induced from 7; by the same symbol.

Theorem 8. Leti € Jip. Let Y, gmraqLy € P(3(U)) with a, € C.
(1) Assume that g* # 1 for allm € N. Then we have (3(U)) C &, zmy, CLn-
Further we have

(6'5) Ym € (ZIT');, ﬁﬁ(_ai(nl))aai(m) = \/>_<3(*—771)am-

(2) Assume that there ezists r € N such that {r — 1},! # 0 and {r},z = 0.
Then for A € ZIT' \ (ZI1');, we have

(6.6) Vm € {0} U Jor-1, Z 2™ a5 4ok = 0.

keZ
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Further for p € ZIT' with x(u, ;) = ¢2¢ for some d € Jy,_1, we have

(6.7) > (6 ) agp e = 0.
kez
Proof. Let z =} 5.5 125 € 3(U) with 23 € Spanc(UZzUUy). Let i € Jy.
We see that E;(20 + 2za;) — (20 + 20, ) Ei = EY (20 + Za;) — (20 + 24,) EY = 0. Then
this theorem follows from Theorem 6, and (5.3), (5.5). O

7 Uy(gl(2]1))

Assume that N = 4 and ¢ = 2. Let p; := py := 0, and let p3 := 1. Define the
symmetric bi-additive map ((, )) : ZII' x ZII' = Z by ((&;,¢€;)) := (1 — 6;4)(1 —
dj4)(—1)%P. Assume that \/X(es, €4) = /=1, /X(€4,€) = Vv X(€r,€4) =1 hold
for all 7 € Ji3, and /x(ei,€5) = q(’(i‘zﬂ)‘) for all 7, j € J;3. Then there exists
an additive group isomorphism Z3 x (Z/4Z) — ZIT', (my, my, m3, my + 4Z)
Zte Jp.a M€y where m; € Z. Assume that a; = €; — €3 and ap = €3 — €3 + €4. We
also denote this U by U,(gl(2]1)). Let EY, := EYEy — qEYEY. It is well-known
that

(7.1) U= @ cE)E)E),

n1€Zyq,n2,n12€J0,1

as a C-linear space.
Let A = 3> s, %yey € ZII' with x, € Z. Let k := 3%, Assume that

k € Zso. We have x(\, a1) = ¢?*. By (4.10), we have a left U-module K ()
satisfying (4.3) and satisfying:

(7.2) K(\) = P C(EY)™(EYy)™2(EY )™ vs,

n1€Jo,k4+1,n2,m12€J0,1

as a C-linear space. By (4.4), we have

(¢ (Fr )
= X3, D (6™ L_sromar + G L5 amy 4 1)wr2m7)

m1€Jo,k

2m _ <
~Losiom— (D 2™ L 5iomyarszar) — Lossagsarsoar))-
me€Jy k1

Note that for m;, my € Z, we have 3((a1, —A+2my01+2maas)) = —k+2m; —ms,.
For k € Z, let [ZI'], := {u € ZII'|1((o4, p)) = k}, and let [ZIT]; := {p €
ZI'|lv € [ZII']x}. By the above argument, we see that for u € [ZIT']; with k € N,
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we have

(7‘3) Q(C_l(fK(—u+2(k+1)a1+2az))) € Cpr & @ @ CL,,.

mEJ—kk~1 n€[ZI'm
Let z € 3(U). By Theorem 8 (1),

(7.4) B(2)= Y. ayly+Y, D 6u(Ly+d7*Lo-aka),

neZi'] kEN welZIT),

where a,, a, € C. Assume that a,, = 0 for all w € Ugen|ZIl')x. By Theorem 8 (2),
we see that for v € [ZI'], if ay # 0, then v = z(€; + €3 — €3) + 2ye4 for some z,
y € Z. By Lemma 7, we have

Theorem 9. Let U be as above. Then we have
3(U,(g1(2[1)))
= @ CLy, (e1+e—e3)+2y264

YV1€Z,y2€J0,1

D @ CC—I (fK((231+$2+2)€1 +$262+$3€3+Z4€4))'

z1€Z30,72,23€Z,24€J0,3

8 Lusztig isomorphisms

In this section we may not assume that /X is symmetric. For n € N and q,
b € C, let {n;a,b} := a”'b — 1, and {n;a,b}! = [], {m;a,b}. Let D =
D(y/x) = Spang(UtD°U~) = Spanc(U~D°UT) be as above. For a € ZII, let
Dg := ®,eznSpanc (U} DU,_.,).

For a € ZII and X € D,, define four C-linear map adiX . adl X, ade ,
ad®X : D = D by letting
adk X (Y) := XY - x(+a, B)Y X,
ad®X(Y) := XY — x(B,£a)Y X
for all 5 € ZI1 and all Y € Dg.

Let g;; := x(au, ;) for all i, j € Ji4. Then g; = ¢}. We have assumed that
gi # 1 for all i € Jy,.

Lemma 10. (see [5]) For i, j € Ji4 with i # j and m, n € Zxo, in D, we have
(ad} E:)™(E;)(ad L EY)™(EY) — (ad}EY)"(E})(ad i E:)™(E;)

(8.1)

[ (=)™ {,E,n_lzf};:‘!{m; Qi 3ij0i E" " Lngi+a;
if m > n,
(8-2) = (—1)"{7"}%!{"; Qii’Qiiji}!(_Lna.-+aj + L,\{a,.J,aj)
if m=n,
! _
(—1)" ot {1; s, Gt (BY )" ™ Ly e,
L if m <n.
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Let \/x be as above. Let i € I. We say that /x is i-finite, if for any j € I'\ {3},
there exists n € N such that {n},,'{n; g, ¢;jg;i}! = 0.
Assume that /X is i-finite. Define c;; = c(o4, ;) € Z by

(8.3) Cij 1= { 2 if]: - 15’
" —min{n € Zyo|{n}q.{n; @i, ija;i }! #0}.  if j#i.
Let

(84) aj." =y — G0y,

Then o; = of — ¢;;af”. Further we have c(o, o)) = c(aj, a), and o™ = a.

Let II* := {a“’|y € Jl ¢}, and (I* = I, (H")“> := II". Let D® the Hopf
algebra deﬁned in the same way as for D with II*, (IT')*, (II")® in place of II,
IT', II". Define the Z-module map s; : Z(II")® — ZII” to be the identity map.
Then s;(0f’) = o — ¢ij04.

By [5], we have:

Theorem 11. (see [5]) Assume that /X is i-finite. Let g,y = x(ow, ;) and
gir 5 = x(af, aj-‘?) for alld', j' € Jy 4. Then there ezists a C-algebra isomorphism

(8.5) T,: D® -+ D
such that
Ti(La) = Ls@), Ti(La) = Lya,
w0 EES, oLl
i(Ej) = (ad E)o(E i)
BY) = e A3 (),
and
T (La) = Ly@y, T3 (L) = Ly
T7YE) = L_o,EY, T YEY)=ELY,,
(8.7) TY(E;) = ()= c,J)(—Czj‘l)(qwq;")(—cu)(adl—gEi)—cij (E;),

{—-c,J} t> {_C'J ’qu ’th ;‘:}'

T7H(EY) = (=1)% (ad?BY) e (),
for alloa € ZIT" and all j € J1 ¢\ {i}.

9 Lusztig isomorphisms and &(3(U®))

From now on, we again assume that ,/x is symmetric. Assume that ,/x is i-finite.
Let U™ the Hopf algebra defined in the same way as for U with II*>, (IT')*, (TI")*
in place of II, IT', II”. Denote the C-algebra isomorphism U® — U induced
from T; : D™ - D by the same symbol. Denote the Z-module isomorphism
Z(II')®> — ZIT induced from s; : ZII" — Z(II")* by the same symbol; in this
stage, s; is the identity map.
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Theorem 12. Assume that \/X is i-finite. Let Z € 3(U™). Assume that $(Z) =
ZGGW bgLg with by € C. Assume that S(T3(2)) = )_, zm anLy with a, € C.

(9.1) r:= min{r’' € N|g?" =1} if there ezists " € N such that ¢Z"" =1,
0 otherwise,

(cf. (6.1)). Then we have
(9.2) az = x(e, \)' by
for all A € ZIT'.

Proof. Assume ¢ = 1. Let A € (ZII')" and r € N. Assume that HoeJo,,_z(X(a%D’ A g% -
1) # 0. Assume that {r —1},2! # 0 and {r},!=0. Let

(9.3)
Y= /x(0g”, —A)(—1)"7H( H (x(a”, \)ar* - 1))(E¥)T—ILW‘_—AET1’
teJo,r—2
and
Y= /X(a1, —(51(A) + 2(r = 1)) (-1)"*
(Iteso_o (X(e1,81(X) +2(r - 1)01)q_2t - 1))
(BY) ' Lgmiyas (020 - i
= /x(a1, s1(N) g (-1)"!
(Tseso,_, (X (e, 81(N))gi "o~ 11))
(BY) ' Lgmpya ~m P lfal)Er_
(9.4) = /X(0n,51(A)1gi (=)

r—1)2—(r-2)(r— -

.q4( 1)°—(r—2)( 1)( 1)~ IX(2al,31(/\))r 1
2t
(i, (x(01, 51 (1) g2 1)
(BY )r—lL(r—l)m;(sl(A)+2<r Dan 21
— (_1)r—1q;1(7"‘1) —r(r-3) (a1, s1(\)™~ -2 N
'\/Y(al,31(A))(—l)"l(HteJo,,_z(X(lau31(/\))‘11_ - 1))
r—1 r—

(EI/) L(r—-l)al—(sl()\)+2(r—1)a1)E1 .
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Then we have

T(Y) =
Ti(vx(et”, =N T (el Nar™ = D) (EY) ™ Lypyar—Er )
teJo,r—2
= Vx(=an,=si)) (=) [T (o, s1(A\)er® - 1))

teJo,r—2
(LarBr)" ™ Leg=yar sy (BY L)
= VX(aL,siM))(D) [ Gel=on,s1(0)gr® - 1))
t€Jo,r—2
x(a, (r = 1)y + s;(A) 2~V
(BY) Learmmyrae—anB1 | (mod @k, (BY)*U°EY )
(1) x(on, 1)
= x(ai,s1(N)"Y.
Assume that {r —1},! # 0 and x(a1”, A) = V. Note that s;(A) = ), since
in this stage, s; is the identity map. Let

(95)  X¥ = x(o”, =N ()T @ - D)E) T Ly BT

teJi,r—-1

and

X = y/x(on, =(s1(A) +2(r — 1)) (- )’" "Mees,, (@ - 1))
(96) (EY)T lLr Dai—(s1(A\)+2(r— 1)a1)E1
= X(e1”, =N (1) ([ Ley,,_, (@ = D)EY) Lfrpyar BT

Then by the same argument as above, we have

(9.7) Ti(X")=X (mod DBredor_o(EY)FUEY ).

Then the statement of this theorem follows by an argument similar to that for
Proof of Theorem 8. =
10 osp(3|2)

Assume that V = 3 and £ = 2. Let p; := 0, and p, := 1. Define the symmetric
bi-additive map ((, )) : ZIT' x ZH’ — Z by ((€,€;)) := (1 = &;,3) (1 — 6;,3)(—1)%P:.

Assume that \/x(e3, €3) = v/ —1, /x(€3,€) = \/X(€r,€3) = 1 hold for all r € Jy 5,

((eise;))
and /x(ei, €5) = ¢ —7 for all i, j € Ji3. Then there exists an additive group

isomorphism Z? x (Z/4Z) — ZIT, (mi,ms,m3 + 4Z) +— Y, Jis TWE, Where
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m: € Z. Assume that a; = € —€3+€3 and apy = €;. Assume that p = —e;+€e3+€3
We also denote this U by U,(osp(3]2)).
We have ol® = —a; = —€; + € — €3, and &) = a3 + ax = €1 +€3. Let

~

p' = €1 — € — e3. Then x (5", o") = x(ej”, &} )-
Let z € 3(U). Assume that &(z) = Zm1,m2€Z,m3€ Jo,s Tma ma,ms Limg +maga+mats

—m

With Zm, myms € C. By Theorem 8 (1), we have ¢ T By —mgims = 4 2 Loy maima-
By Theorem 8 (2), we conclude that if m; + my # 0 or mg € {1,3}, then
Y kez Tmi+2kmae—2kmg+2k = 0. By Theorem 12, we have mz — m; € 2Z, and
we have T_m, my—mi+2ms = ¢ Tm, mgmi+2ms- L€t 1 € N4+ 1, ny € Zyo and
ng € Jo1. Let A := nje; +ngea + (1 +2n3)ez. Then x(oy, A) = ¢+ (=1)™ # 1,
X(a27/\) — q—ng — X(a2’02)n2’ and X(a2 ,)\ a ) qn’_l(—l)m -1 _ X( 1> lb)m—l
Recall T} : U™ — U. Recall v € V(A\). Then EYv; # 0, and Ujv,\ =
(U 1")s ) +mn,)E}’ vy hold for all y € ZII (in this stage, s; means the iden-
tity map). Then in V()), we have (Ey)*vx # 0 (k € Jon,), (Ey)™*1v; =0, and
T\(EY) EYvs #0 (r € Jopy—1), T1(Ey )" EYvs = 0. Let a € Zxoll be such that
U-,ux # {0} holds in V()). Then a = zi0q + Toaz = o1 + y104° + pad” =
(1 —y1 + y2)a1 + yoap for some 1, g, Y1, Y2 € Zyo. Then 2y =y =21+ — 1.
Then z, > z, — 1 + 05,0. Note o = z16; + (T2 — 1)z + T1€3. By (4.4), w
conclude

(¢ (fvw))

X
€ Z (C L(nl —2-2k1)eg+(n2+2)e2+(n1+2n3)e3
k1€Jo,ny -2

+C™ L(n, +2—2k1 )ei+(~na—2)es+(n1+2n3)e3)

X
§ : C*L (n1-2k3)eT+(n2—2k2)ez+(n1+2n3—2k3)e3 -
k2€Jo,ny,k3€J0,n,

Finally we have

Theorem 13. Let U be as above. Then we have

3(Uq(0sp(3(2)))
@ CL?:UE ® @ CC_I (fV(n1?1'+n25+(m+2n3)§))'
y€Jo,1 n1EN+1,n2€Z>0,n3€J0,1
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