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INTRODUCTION

As has been stressed many times (see, e.g., [19]), Hopf Galois extensions
can be viewed as non-commutative analogues of principal fiber bundles (also
known as G-torsors), where the role of the structural group is played by a
Hopf algebra. Such extensions abound in the world of quantum groups and
of non-commutative geometry. The problem of constructing systematically
all Hopf Galois extensions of a given algebra for a given Hopf algebra and
of classifying them up to isomorphism has been addressed in a number of
papers, such as [4, 7, 9, 12, 13, 14, 15, 18] to quote but a few.

A new approach to the classification problem of Hopf Galois extensions
was recently advanced by Eli Aljadeff and the present author in [2]; this
approach uses classical techniques from non-commutative algebra such as
polynomial identities (such techniques had previously been used in [1] for
group-graded algebras). In [2] we developed a theory of identities for any
comodule algebra over a given Hopf algebra $H$ , hence for any Hopf Galois
extension. As a result, out of the identities for an H-comodule algebra $A$ , we
obtained a universal H-comodule algebra $\mathcal{U}_{H}(A)$ . It turns out that if $A$ is a
cleft H-Galois object (i.e., a comodule algebra obtained from $H$ by twisting
its product with the help of a two-cocycle) with trivial center, then a suitable
central localization of $\mathcal{U}_{H}(A)$ is an H-Galois extension of its center. We thus
obtain a (non-commutative principal fiber bundle” whose base space is the
spectrum of some localization of the center of $\mathcal{U}_{H}(A)$ .

This survey is organized as follows. After a preliminary section on comod-
ule algebras, we define the concept of an H-identity for such algebras in \S 2.
We illustrate this concept with a few examples and we attach a universal
H-comodule algebra $\mathcal{U}_{H}(A)$ to each H-comodule algebra $A$ .

In \S 3 turning to the special case where $A=\alpha H$ is a twisted comodule
algebra, we exhibit a universal comodule algebra map that allows us to
detect the H-identities for $A$ .
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In \S 4 we construct a commutative domain $\mathcal{B}_{H}^{\alpha}$ and we state that under
some natural extra condition, $\mathcal{B}_{H}^{\alpha}$ is the center of a suitable central localiza-
tion of $\mathcal{U}_{H}(A)$ ; moreover after localization, $\mathcal{U}_{H}(A)$ becomes a free module
over its center.

Lastly in \S 5, we illustrate all previous constructions with the help of
the four-dimensional Sweedler algebra, thus giving complete answers in this
simple, but non-trivial example. We end the paper with an open question
on Taft algebras.

The material of the present text is mainly taken from [2], for which it
provides an easy access. The reader is advised to complement it with [10, 11].

1. HOPF ALGEBRAS AND COACTIONS

1.1. Standing assumption. We fix a field $k$ over which all our construc-
tions are defined. In particular, all linear maps are supposed to be k-linear
and unadorned tensor products mean tensor products over $k$ . Throughout
the survey we assume that the ground field $k$ is infinite.

By algebra we always mean an associative unital k-algebra. We suppose
the reader familiar with the language of Hopf algebra, as expounded for
instance in [20]. As is customary, we denote the coproduct of a Hopf alge-
bra by $\Delta$ , its counit by $\epsilon$ , and its antipode by $S$ . We also make use of a
Heyneman-Sweedler-type notation for the image

$\Delta(x)=x_{1}\otimes x_{2}$

of an element $x$ of a Hopf algebra $H$ under the coproduct, and we write

$\Delta^{(2)}(x)=x_{1}\otimes x_{2}\otimes x_{3}$

for the iterated coproduct $\Delta^{(2)}=(\Delta\otimes id_{H})\circ\Delta=(id_{H}\otimes\triangle)\circ\Delta$, and so on.

1.2. Comodule algebras. Let $H$ be a Hopf algebra. Recall that an H-
comodule algebra is an algebra $A$ equipped with a right H-comodule struc-
ture whose (coassociative, counital) coaction

$\delta:Aarrow A\otimes H$

is an algebra map. The subalgebra $A^{H}$ of coinvari,ants of an H-comodule
algebra $A$ is defined by

$A^{H}=\{a\in A|\delta(a)=a\otimes 1\}$ .

Given two H-comodule algebras $A$ and $A’$ with respective coactions $\delta$

and $\delta’$ , an algebra map $f$ : $Aarrow A^{f}$ is an H-comodule algebra map if

$\delta’\circ f=(f\otimes id_{H})\circ\delta$ .

We denote by $Alg^{H}$ the category whose objects are H-comodule algebras
and arrows are H-comodule algebra maps.

Let us give a few examples of comodule algebras.

Example 1.1. If $H=k$ , then an H-comodule algebra is nothing but an
ordinary (associative, unital) algebra.
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Example 1.2. The algebra $H=k[G]$ of a group $G$ is a Hopf algebra with
coproduct, counit, and antipode given for all $g\in G$ by

$\Delta(g)=g\otimes g$ , $\epsilon(g)=1$ , $S(g)=g^{-1}$

It is well-known (see [5, Lemma 4.8]) that an H-comodule algebra $A$ is the
same as a G-gmded algebm

$A= \bigoplus_{g\in G}A_{g}$
, $A_{g}A_{h}\subset A_{gh}$ .

The coaction $\delta$ : $Aarrow A\otimes H$ is given by $\delta(a)=a\otimes g$ for all $a\in A_{g}$ and $g\in G$ .
We have $A^{H}=A_{e}$ , where $e$ is the neutral element of $G$ .

Example 1.3. Let $G$ be a finite group and $H=k^{G}$ be the algebra of k-
valued functions on a finite group $G$ . This algebra can be equipped with
a Hopf algebra structure that is dual to the Hopf algebra $k[G]$ above. An
H-comodule algebra $A$ is the same as a G-algebra, i.e., an algebra equipped
with a left action of $G$ on $A$ by group automorphisms.

If we denote the action of $g\in G$ on $a\in A$ by $ga$ , then the coaction
$\delta$ : $Aarrow A\otimes H$ is given by

$\delta(a)=\sum_{g\in G}ga\otimes e_{g}$
,

where $\{e_{g}\}_{g\in G}$ is the basis of $H$ consisting of the functions $e_{g}$ defined by
$e_{g}(h)=1$ if $h=g$ , and $0$ otherwise.

The subalgebra of coinvariants of $A$ coincides with the subalgebra of G-
invariant elements: $A^{H}=A^{G}$ .

Example 1.4. Any Hopf algebra $H$ is an H-comodule algebra whose coac-
tion coincides with the coproduct of $H$ :

$\delta=\triangle:Harrow H\otimes H$ .
In this case the coinvariants of $H$ are exactly the scalar multiples of the unit
of $H$ ; in other words, $H^{H}=k1$ .

2. IDENTITIES

2.1. Polynomial identities. Let $A$ be an algebra. A polynomial identity
for an algebra $A$ is a polynomial $P(X, Y, Z, \ldots)$ in a finite number of non-
commutative variables $X,$ $Y,$ $Z,$

$\ldots$ such that

$P(x, y, z, \ldots)=0$

for all $x,$ $y,$ $z,$ $\ldots\in A$ .
Examples 2.1. (a) The polynomial XY–YX is a polynomial identity for
any commutative algebra.

(b) If $A=M_{2}(k)$ is the algebm of $2\cross 2$ -matrices with entries in $k$ , then

$(XY-YX)^{2}Z-Z(XY-YX)^{2}$

is a polynomial identity for A. (Use the Cayley-Hamilton theorem to check
this.)

51



CHRISTIAN KASSEL

The concept of a polynomial identity first emerged in the 1920 $s$ in an arti-
cle [6] on the foundation of projective geometry by ${\rm Max}$ Dehn, the topologist.
The above polynomial identity for the algebra of $2\cross 2$-matrices appeared
in 1937 in [22]. Today there is an abundant literature on polynomial iden-
tities; see for instance [8, 17].

For algebras graded by a group $G$ there exists the concept of a graded
polynomial identity (see [1, 3]). In this case we need to take a family of
non-commutative variables $X_{g},$ $Y_{g},$ $Z_{g},$ $\ldots$ for each element $g\in G$ . Given a
G-graded algebra $A=\oplus_{g\in G}A_{g}$ , a gmded polynomial identity is a polyno-
mial $P$ in these indexed variables such that $P$ vanishes upon any substitution
of each variable $X_{g}$ appearing in $P$ by an element of the g-component $A_{g}$ .

In general, we should keep in mind that in order to define polynomial
identities for a class of algebras, we need to single out

(i) a suitable algebra of non-commutative polynomials and
(ii) a suitable notion of specialization for these polynomials.

The algebras of interest to us in this survey are comodule algebras over
a Hopf algebra $H$ . The non-commutative variables we wish to use will be
indexed by the elements of some linear basis of $H$ . Since in general a Hopf
algebra does not have a natural basis, we find it preferable to use a more
canonical construction, namely the tensor algebra over $H$ , and to resort to
a given basis only when we need to perform computations.

2.2. Definition and examples of H-identities. Let $H$ be a Hopf algebra.
We pick a copy $X_{H}$ of the underlying vector space of $H$ and we denote the
identity map from $H$ to $X_{H}$ by $x\mapsto X_{x}$ for all $x\in H$ .

Consider the tensor algebm $T(X_{H})$ of the vector space $X_{H}$ over the
ground field $k$ :

$T(X_{H})= \bigoplus_{r\geq 0}T^{r}(X_{H})$
,

where $T^{r}(X_{H})=X_{H}^{\otimes r}$ is the tensor product of $r$ copies of $X_{H}$ over $k$ , with
the convention $T^{0}(X_{H})=k$ . If $\{x_{i}\}_{i\in I}$ is some linear basis of $H$ , then
$T(X_{H})$ is isomorphic to the algebra of non-commutative polynomials in the
indeterminates $X_{x_{i}}(i\in I)$ .

Beware that the product $X_{x}X_{y}$ of symbols in the tensor algebra is different
from the symbol $X_{xy}$ attached to the product of $x$ and $y$ in $H$ ; the former
is of degree 2 while the latter is of degree 1.

The algebra $T(X_{H})$ is an H-comodule algebm equipped with the coaction
$\delta$ : $T(X_{H})arrow T(X_{H})\otimes H$ ; $X_{x}\mapsto X_{x_{1}}\otimes x_{2}$ .

Note that $T(X_{H})$ is gmded with all generators $X_{x}$ in degree 1. The
coaction preserves the grading, where $T(X_{H})\otimes H$ is graded by

$(T(X_{H})\otimes H)_{r}=T^{r}(X_{H})\otimes H$

for all $r\geq 0$ .
We now give the main definition of this section.

Definition 2.2. Let $A$ be an H-comodule algebra. An element $P\in T(X_{H})$

is an H-identity for $A$ if $\mu(P)=0$ for all H-comodule algebm maps
$\mu:T(X_{H})arrow A$ .
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To convey the feeling of what an H-identity is, let us give some simple
examples.

Example 2.3. Let $H=k$ be the one-dimension Hopf algebra as in Ex-
ample 1.1. An H-comodule algebra $A$ is then the same as an algebra. In
this case, $T(X_{H})$ coincides with the polynomial algebra $k[X_{1}]$ and an H-
comodule algebra map is nothing but an algebra map. Therefore, an element
$P(X_{1})\in T(X_{H})=k[X_{1}]$ is an H-identity for $A$ if and only if all $P(a)=0$
for all $a\in A$ . Since $k$ is assumed to be infinite, it follows that there are no
non-zero H-identities for $A$ .

Example 2.4. Let $H=k[G]$ be a group Hopf algebra as in Example 1.2.
We know that an H-comodule algebra is a G-graded algebra $A=\oplus_{g\in G}A_{g}$ .
Since $\{g\}_{g\in G}$ is a basis of $H$ , the tensor algebra $T(X_{H})$ is the algebra of
non-commutative polynomials in the indeterminates $X_{g}(g\in G)$ .

It is easy to check that an algebra map $\mu$ : $T(X_{H})arrow A$ is an H-comodule
algebra map if and only if $\mu(X_{g})\in A_{g}$ for all $g\in G$ . This remark allows us
to produce the following examples of H-identities.

(a) Suppose that $A$ is trivially gmded, i.e., $A_{g}=0$ for all $g\neq e$ . Then any
non-commutative polynomial in the indeterminates $X_{g}$ with $g\neq e$ is
killed by any H-comodule algebra map $\mu$ : $T(X_{H})arrow A$ . Therefore,
such a polynomial is an H-identity for $A$ .

(b) Suppose that the trivial component $A_{e}$ is central in $A$ . We claim
that

$X_{g}X_{g^{-1}}X_{h}-X_{h}X_{g}X_{g^{-1}}$

is an H-identity for $A$ for all $g,$ $h\in G$ . Indeed, for any H-comodule
algebra map $\mu$ : $T(X_{H})arrow A$ , we have

$\mu(X_{g})\in A_{g}$ and $\mu(X_{g^{-1}})\in A_{g^{-1}}$ ;
therefore, $\mu(X_{g}X_{g^{-1}})=\mu(X_{g})\mu(X_{g^{-1}})$ belongs to $A_{e}$ , hence com-
mutes with $\mu(X_{h})$ . One shows in a similar fashion that if $g$ is an
element of $G$ of finite order $N$ , then for all $h\in G$ ,

$X_{g}^{N}X_{h}-X_{h}X_{g}^{N}$

is an H-identity for $A$ .
Example 2.5. Let $H$ be an arbitrary Hopf algebra, and let $A$ be an H-
comodule algebra such that the subalgebra $A^{H}$ of coinvariants is central in $A$

(the twisted comodule algebras of \S 3.1 satisfy the latter condition).
For $x,$ $y\in H$ consider the following elements of $T(X_{H})$ :

$P_{x}=X_{x_{1}}X_{S(x)}2$ and $Q_{x,y}=X_{x_{1}}X_{y_{1}}X_{S(x2y_{2})}$ .
Then for all $x,$ $y,$ $z\in H$ ,

$P_{x}X_{z}-X_{z}P_{x}$ and $Q_{x,y}X_{z}-X_{z}Q_{x,y}$

are H-identities for $A$ . Indeed, $P_{x}$ and $Q_{x,y}$ are coinvariant elements of $T(X_{H})$ ;
see [2, Lemma 2.1]. It follows that for any H-comodule algebra map $\mu$ :
$T(X_{H})arrow A$ , the elements $\mu(P_{x})$ and $\mu(Q_{x,y})$ are coinvariant, hence central,
in $A$ .

More sophisticated examples of H-identities will be given in \S 5.
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2.3. The ideal of H-identities. Let $H$ be a Hopf algebra and $A$ an H-
comodule algebra. Denote the set of all H-identities for $A$ by $I_{H}(A)$ . By
definition,

$I_{H}(A)=$ $\cap$ $Ker\mu$ .
$\mu\in Alg^{H}(T(X_{H}),A)$

A proof of the following assertions can be found in [2, Prop. 2.2].

Proposition 2.6. The set $I_{H}(A)$ has the following properties:
$(a)$ it is a gmded ideal of $T(X_{H})$ , i. e.,

$I_{H}(A)T(X_{H})\subset I_{H}(A)\supset T(X_{H})I_{H}(A)$

and
$I_{H}(A)= \bigoplus_{r\geq 0}(I_{H}(A)\cap T^{r}(X_{H}))$ ;

$(b)$ it is a right H-coideal of $T(X_{H})$ , i. e.,
$\delta(I_{H}(A))\subset I_{H}(A)\otimes H$ .

Note that for any H-comodule algebra map $\mu$ : $T(X_{H})arrow A$ , we have
$\mu(1)=1$ ; therefore, the degree $0$ component of $I_{H}(A)$ is always trivial:

$I_{H}(A)\cap T^{0}(X_{H})=0$ .
If, in addition, there exists an injective H-comodule map $Harrow A$ , then the
degree 1 component of $I_{H}(A)$ is also trivial:

$I_{H}(A)\cap T^{1}(X_{H})=0$ .
Remark 2.7. Right from the beginning we required the ground field $k$ to
be infinite. This assumption is used for instance to establish that $I_{H}(A)$ is
a graded ideal of $T(X_{H})$ . Let us give a proof of this fact in order to show
how the assumption is used. Indeed, expand $P\in I_{H}(A)$ as

$P= \sum_{r\geq 0}P_{r}$

with $P_{r}\in T^{r}(X_{H})$ for all $r\geq 0$ . To prove that $I_{H}(A)$ is a graded ideal, it
suffices to check that each $P_{r}$ is in $I_{H}(A)$ . Given a scalar $\lambda\in k$ , consider the
algebra endomorphism $\lambda_{*}$ of $T(X_{H})$ defined by $\lambda(X_{x})=\lambda X_{x}$ for all $x\in H$ ;
clearly, $\lambda_{*}$ is an H-comodule map. If $\mu$ : $T(X_{H})arrow A$ is an H-comodule
algebra map, then so is $\mu\circ\lambda_{*}$ . Since $P\in I_{H}(A)$ , we have

$\sum_{r\geq 0}\lambda^{r}\mu(P_{r})=(\mu\circ\lambda_{*})(P)=0$
.

The A-valued polynomial $\sum_{r\geq 0}\lambda^{r}\mu(P_{r})$ takes zero values for all $\lambda\in k$ .
By the assumption on $k$ , this implies that its coefficients are all zero, i.e.,
$\mu(P_{r})=0$ for all $r\geq 0$ . Since this holds for all $\mu\in Alg^{H}(T(X_{H}), A)$ , we
obtain $P_{r}\in I_{H}(A)$ for all $r\geq 0$ .

If the ground field is finite, then Definition 2.2 still makes sense, but the
ideal $I_{H}(A)$ may no longer be graded. Indeed, let $k$ be the finite field $F_{p}$ and
$H=k$ . Then for $q=p^{N}$ , the finite field $F_{q}$ is an H-comodule algebra. In
view of Example 2.3, the polynomial $X_{1}^{q}-X_{1}$ is an H-identity for $F_{q}$ , but
clearly the homogeneous summands in this polynomial, namely $X_{1}^{q}$ and $X_{1}$ ,
are not H-identities.
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2.4. The universal H-comodule algebra. Let $A$ be an H-comodule al-
gebra and $I_{H}(A)$ the ideal of H-identities for $A$ defined above. Since $I_{H}(A)$

is a graded ideal of $T(X_{H})$ , we may consider the quotient algebra
$\mathcal{U}_{H}(A)=T(X_{H})/I_{H}(A)$ .

The grading on $T(X_{H})$ induces a grading on $\mathcal{U}_{H}(A)$ . As $I_{H}(A)$ is a right
H-coideal of $T(X_{H})$ , the quotient algebra $\mathcal{U}_{H}(A)$ carries an H-comodule
algebra structure inherited from $T(X_{H})$ .

By definition of $\mathcal{U}_{H}(A)$ , all H-identities for $A$ vanish in $\mathcal{U}_{H}(A)$ . For this
reason we call $\mathcal{U}_{H}(A)$ the universal H-comodule algebm attached to $A$ .

The algebra $\mathcal{U}_{H}(A)$ has two interesting subalgebras:
(i) The subalgebra $\mathcal{U}_{H}(A)^{H}$ of coinvariants of $\mathcal{U}_{H}(A)$ .
(ii) The center $\mathcal{Z}_{H}(A)$ of $\mathcal{U}_{H}(A)$ .

We now raise the following question. Suppose that the comodule alge-
bra $A$ is free as a module over the subalgebra of coinvariants $A^{H}$ (or over its
center); is $\mathcal{U}_{H}(A)$ , or rather some suitable central localization of it, then free
as a module over some localization of $\mathcal{U}_{H}(A)^{H}$ (or of $\mathcal{Z}_{H}(A)$ )? An answer
to this question will be given below (see Theorem 4.5) for a special class of
comodule algebras, which we introduce in the next section.

3. DETECTING H-lDENTITIES

Fix a Hopf algebra $H$ . We now define a special class of H-comodule
algebras for which we can detect all H-identities.

3.1. Twisted comodule algebras. Recall that a two-cocycle $\alpha$ on $H$ is a
bilinear form $\alpha$ : $H\cross Harrow k$ such that

$\alpha(x_{1}, y_{1})\alpha(x_{2}y_{2}, z)=\alpha(y_{1}, z_{1})\alpha(x, y_{2}z_{2})$

for all $x,$ $y,$ $z\in H$ . We assume that $\alpha$ is convolution-invertible and write $\alpha^{-1}$

for its inverse. For simplicity, we also assume that $\alpha$ is normalized, i.e.,
$\alpha(x, 1)=\alpha(1, x)=\epsilon(x)$

for all $x\in H$ .
Any Hopf algebra possesses at least one normalized convolution-invertible

two-cocycle, namely the trivial two-cocycle $\alpha_{0}$ , which is defined by
$\alpha_{0}(x, y)=\epsilon(x)\epsilon(y)$

for all $x,$ $y\in H$ .
Let $u_{H}$ be a copy of the underlying vector space of $H$ . Denote the identity

map from $H$ to $u_{H}$ by $x\mapsto u_{x}(x\in H)$ . We define the twisted algebm $\alpha H$

as the vector space $u_{H}$ equipped with the associative product given by
$u_{x}u_{y}=\alpha(x_{1}, y_{1})u_{x2y_{2}}$

for all $x,$ $y\in H$ . This product is associative because of the above cocycle
condition; the two-cocycle $\alpha$ being normalized, $u_{1}$ is the unit of $\alpha H$ .

The algebra $\alpha H$ is an H-comodule algebra with coaction $\delta:^{\alpha}Harrow\alpha H\otimes H$

given for all $x\in H$ by
$\delta(u_{x})=u_{x_{1}}\otimes x_{2}$ .

It is easy to check that the subalgebra of coinvariants of $\alpha H$ coincides
with $ku_{1}$ , which lies in the center of $\alpha H$ .
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Note that if $\alpha=\alpha_{0}$ is the trivial two-cocycle, then $\alpha H=H$ is the H-
comodule algebra of Example 1.4.

The twisted comodule algebras of the form $\alpha H$ coincide with the so-called
cleft H-Galois objects; see [16, Prop. 7.2.3]. It is therefore an important class
of comodule algebras. We next show how we can detect H-identities for such
comodule algebras.

3.2. The universal comodule algebra map. We pick a third copy $t_{H}$ of
the underlying vector space of $H$ and denote the identity map from $H$ to $t_{H}$

by $x\mapsto t_{x}(x\in H)$ . Let $S(t_{H})$ be the symmetric algebm over the vector
space $t_{H}$ . If $\{x_{i}\}_{i\in I}$ is a linear basis of $H$ , then $S(t_{H})$ is isomorphic to the
(commutative) algebra of polynomials in the indeterminates $t_{x_{i}}(i\in I)$ .

We consider the algebra $S(t_{H})\otimes\alpha H$ . As a k-algebra, it is generated by
the symbols $t_{z}u_{x}(x, z\in H)$ (we drop the tensor product sign $\otimes$ between
the t-symbols and the u-symbols).

The algebra $S(t_{H})\otimes\alpha H$ is an H-comodule algebra whose $S(t_{H})$-linear
coaction extends the coaction of $\alpha H$ :

$\delta(t_{z}u_{x})=t_{z}u_{x1}\otimes x_{2}$ .
Define an algebra map $\mu_{\alpha}$ : $T(X_{H})arrow S(t_{H})\otimes^{\alpha}H$ by

$\mu_{\alpha}(X_{x})=t_{x_{1}}u_{x2}$

for all $x\in H$ . The map $\mu_{\alpha}$ possesses the following properties (see [2,
Sect. 4] $)$ .
Proposition 3.1. $(a)$ The map $\mu_{\alpha}$ : $T(X_{H})arrow S(t_{H})\otimes\alpha H$ is an H-
comodule algebm map.

$(b)$ For every H-comodule algebm map $\mu$ : $T(X_{H})arrow\alpha H$ , there is a
unique algebm map $\chi$ : $S(t_{H})arrow k$ such that

$\mu=(\chi\otimes id)\circ\mu_{\alpha}$ .

In other words, any H-comodule algebra map $\mu$ : $T(X_{H})arrow\alpha H$ can be
obtained from $\mu_{\alpha}$ by specialization. For this reason we call $\mu_{\alpha}$ the universal
comodule algebm map for $\alpha H$ .
Theorem 3.2. An element $P\in T(X_{H})$ is an H-identity for $\alpha H$ if and only
if $\mu_{\alpha}(P)=0$ ; equivalently,

$I_{H}(^{\alpha}H)=ker(\mu_{\alpha})$ .
This result is a consequence of Proposition 3.1. It allows us to detect the

H-identities for any twisted comodule algebra: it suffices to check them in
the easily controllable algebra $S(t_{H})\otimes\alpha H$ . In \S 5 we shall show how to
apply this result in an interesting example.

Let us derive some consequences of Theorem 3.2. To simplify notation, we
denote the ideal of H-identities $I_{H}(^{\alpha}H)$ by $I_{H}^{\alpha}$ , the universal H-comodule
algebra $\mathcal{U}_{H}(^{\alpha}H)$ by $\mathcal{U}_{H}^{\alpha}$ , and the center $Z_{H}(^{\alpha}H)$ of $\mathcal{U}_{H}^{\alpha}$ by $\mathcal{Z}_{H}^{\alpha}$ .

Corollary 3.3. $(a)$ The map $\mu_{\alpha}$ : $T(X_{H})arrow S(t_{H})\otimes\alpha H$ induces an injec-
tion of comodule algebras

$\overline{\mu}_{\alpha}:\mathcal{U}_{H}^{\alpha}arrow S(t_{H})\otimes^{\alpha}H$ .
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$(b)$ An element of $\mathcal{U}_{H}^{\alpha}$ belongs to the subalgebm $(\mathcal{U}_{H}^{\alpha})^{H}$ of coinvariants if
and only if its image under $\overline{\mu}_{\alpha}$ sits in the subalgebm $S(t_{H})\otimes u_{1}$ .

We also proved that an element of $\mathcal{U}_{H}^{\alpha}$ belongs to the center $\mathcal{Z}_{H}^{\alpha}$ if and
only if its image under $\overline{\mu}_{\alpha}$ sits in the subalgebra $S(t_{H})\otimes Z(^{\alpha}H)$ , where
$Z(^{\alpha}H)$ is the center of $\alpha H$ (see [2, Prop. 8.2]). In particular, since $u_{1}$ is
central in $\alpha H$ , it follows that all coinvariant elements of $\mathcal{U}_{H}^{\alpha}$ belong to the
center $Z_{H}^{\alpha}$ .

We mention another consequence: it asserts that there always exist non-
zero H-identities for any non-trivial finite-dimensional twisted comodule al-
gebra.

Corollary 3.4. If $2\leq\dim_{k}H<\infty$ , then $I_{H}^{\alpha}\neq\{0\}$ .

Pmof. Suppose that $I_{H}^{\alpha}=\{0\}$ . Then in view of $\mathcal{U}_{H}^{\alpha}=T(X_{H})/I_{H}^{\alpha}$ and of
Corollary 3.3, we would have an injective linear map

$T^{r}(X_{H})arrow S^{r}(X_{H})\otimes^{\alpha}H$

for all $r\geq 0$ . (Here $S^{r}(X_{H})$ is the subspace of elements of degree $r$ in $S(t_{H}).$ )
Taking dimensions and setting $\dim_{k}H=n$ , we would obtain the inequality

$n^{r}\leq n(\begin{array}{l}-1r+nn-1\end{array})$ ,

which is impossible for large $r$ . $\square$

4. LOCALIZING THE UNIVERSAL COMODULE ALGEBRA

We now wish to address the question raised in \S 2.4 in the case $A$ is a
twisted comodule algebra of the form $\alpha H$ , where $H$ is a Hopf algebra and $\alpha$

is a normalized convolution-invertible two-cocycle on $H$ .

4.1. The generic base algebra. Recall the symmetric algebra $S(t_{H})$ in-
troduced in \S 3.2. By [2, Lemma A.1] there is a unique linear map $x\mapsto t_{x}^{-1}$

from $H$ to the field of fractions Frac $S(t_{H})$ of $S(t_{H})$ such that for all $x\in H$ ,

$\sum_{(x)}t_{x_{(1)}}t_{x_{(2)}}^{-1}=\sum_{(x)}t_{x_{(1)}}^{-1}t_{x_{(2)}}=\epsilon(x)1$
.

(The algebra of fractions generated by the elements $t_{x}$ and $t_{x}^{-1}(x\in H)$ is
Takeuchi $s$ free commutative Hopf algebra on the coalgebra underlying $H$ ;
see [21]. $)$

Examples 4.1. (a) If $g$ is a gmup-like element, i.e., $\Delta(g)=g\otimes g$ and
$\epsilon(g)=1$ , then

$t_{g}^{-1}= \frac{1}{t_{g}}$ .

(b) If $x$ is a skew-primitive element, i.e., $\triangle(x)=g\otimes x+x\otimes h$ for some
group-like elements $g,$ $h$ , then

$t_{x}^{-1}=- \frac{t_{x}}{t_{g}t_{h}}$ .
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For $x,$ $y\in H$ , define the following elements of the haction field Frac $S(t_{H})$ :

$\sigma(x, y)=\sum_{(x),(y)}t_{x_{(1)}}t_{y(1)}\alpha(x_{(2)}, y_{(2)})t_{xy(3)}^{-1}(3)$

and

$\sigma^{-1}(x, y)=\sum_{(x),(y)}t_{x_{(1)}y_{(1)}}\alpha^{-1}(x_{(2)}, y_{(2)})t_{x_{(8)}}^{-1}t_{y_{(3)}}^{-1}$
,

where $\alpha^{-1}$ is the inverse of $\alpha$ .
The map $(x, y)\in H\cross H\mapsto\sigma(x, y)\in$ Frac $S(t_{H})$ is a two-cocycle with

values in the fraction field Frac $S(t_{H})$ .

Definition 4.2. The generic base algebm is the subalgebm $\mathcal{B}_{H}^{\alpha}$ of Frac $S(t_{H})$

genemted by the elements $\sigma(x, y)$ and $\sigma^{-1}(x, y)$ , where $x$ and $y$ run over $H$ .

Since $\mathcal{B}_{H}^{\alpha}$ is a subalgebra of the field Frac $S(t_{H})$ , it is a domain and the
Krull dimension of $\mathcal{B}_{H}^{\alpha}$ cannot exceed the Krull dimension of $S(t_{H})$ , which
is $\dim_{k}H$ . Actually, it is proved in [11, Cor. 3.7] that if the Hopf alge-
bra $H$ is finite-dimensional, then the Krull dimension of $\mathcal{B}_{H}^{\alpha}$ is exactly equal
to $\dim_{k}H$ . More properties of the generic base algebra are given in [11].

Example 4.3. If $H=k[G]$ is the Hopf algebra of a group $G$ and $\alpha=\alpha_{0}$

is the trivial two-cocycle, then the generic base algebra $\mathcal{B}_{H}^{\alpha}$ is the algebra
generated by the Laurent polynomials

$( \frac{t_{g}t_{h}}{t_{gh}})^{\pm 1}$

where $g,$ $h$ run over $G$ . A complete computation for the (in)finite cyclic
groups $G=\mathbb{Z}$ and $G=\mathbb{Z}/N$ was given in [10, Sect. 3.3].

4.2. Non-degenerate cocycles. We now restrict to the case when $\alpha$ is a
non-degenemte two-cocycle, i.e., when the center of the twisted algebra $\alpha H$ is
one-dimensional. In this case, the center of $\alpha H$ coincides with the subalgebra
of coinvariants.

Recall the injective algebra map $\overline{\mu}_{\alpha}$ : $\mathcal{U}_{H}^{\alpha}arrow S(t_{H})\otimes^{\alpha}H$ of Corollary 3.3.
By this corollary and the subsequent comment, it follows that in the non-
degenerate case the center $Z_{H}^{\alpha}$ of $\mathcal{U}_{H}^{\alpha}$ coincides with the subalgebra $(\mathcal{U}_{H}^{\alpha})^{H}$

of coinvariants, and we have

$Z_{H}^{\alpha}=(\mathcal{U}_{H}^{\alpha})^{H}=\overline{\mu}_{\alpha}^{-1}(S(t_{H})\otimes u_{1})$ .

The following result connects $Z_{H}^{\alpha}$ to the generic base algebra $\mathcal{B}_{H}^{\alpha}$ intro-
duced in \S 4.1 (see [2, Prop. 9.1]).

Proposition 4.4. If $\alpha$ is a non-degenemte two-cocycle on $H$ , then $\overline{\mu}_{\alpha}$ maps
$Z_{H}^{\alpha}$ into $\mathcal{B}_{H}^{\alpha}\otimes u_{1}$ .

This result allows us to view the center $Z_{H}^{\alpha}$ of $\mathcal{U}_{H}^{\alpha}$ as a subalgebra of the
generic base algebra $\mathcal{B}_{H}^{\alpha}$ . It follows from the discussion in \S 4.1 that $Z_{H}^{\alpha}$ is
a domain whose Krull dimension is at most $\dim_{k}H$ .
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We may now consider the $\mathcal{B}_{H}^{\alpha}$ -algebra
$\mathcal{B}_{H}^{\alpha}\otimes_{\mathcal{Z}_{H}^{\alpha}}\mathcal{U}_{H}^{\alpha}$ .

It is an H’-comodule algebra, where $H’=\mathcal{B}_{H}^{\alpha}\otimes H$ .
The following answers the question raised in \S 2.4.

Theorem 4.5. If $H$ is a Hopf algebm and $\alpha$ is a non-degenemte two-cocycle
on $H$ such that $\mathcal{B}_{H}^{\alpha}$ is a localization of $Z_{H}^{\alpha}$ , then $\mathcal{B}_{H}^{\alpha}\otimes_{Z_{H}^{\alpha}}\mathcal{U}_{H}^{\alpha}$ is a cleft H-
Galois extension of $\mathcal{B}_{H}^{\alpha}$ . In particular, there is a comodule isomorphism

$\mathcal{B}_{H}^{\alpha}\otimes z_{H}^{\alpha}\mathcal{U}_{H}^{\alpha}\cong \mathcal{B}_{H}^{\alpha}\otimes H$ .
It follows that under the hypotheses of the theorem, a suitable central

localization of the universal comodule algebra $\mathcal{U}_{H}^{\alpha}$ is free of rank $\dim_{k}H$ as
a module over its center.

5. AN EXAMPLE: THE SWEEDLER ALGEBRA

We assume in this section that the characteristic of $k$ is different from 2.

5.1. Presentation and twisted comodule algebras. The Sweedler alge-
bm $H_{4}$ is the algebra generated by two elements $x,$ $y$ subject to the relations

$x^{2}=1$ , $xy+yx=0$ , $y^{2}=0$ .
It is four-dimensional. As a basis of $H_{4}$ , we take the set $\{1, x, y, z\}$ , where
$z=xy$ .

The algebra $H_{4}$ carries the structure of a non-commutative, non-cocom-
mutative Hopf algebra with coproduct, counit, and antipode given by

$\Delta(1)$ $=$ $1\otimes 1$ ,
$\Delta(y)$ $=$ $1\otimes y+y\otimes x$ ,

$\epsilon(1)$ $=$ $\epsilon(x)=1$ ,
$S(1)$ $=$ 1,
$S(y)$ $=$ $z$ ,

$\Delta(x)$ $=$ $x\otimes x$ ,
$\Delta(z)$ $=$ $x\otimes z+z\otimes 1$ ,

$\epsilon(y)$ $=$ $\epsilon(z)=0$ ,
$S(x)$ $=$ $x$ ,
$S(z)$ $=$ $-y$ .

The tensor algebra $T(H_{4})$ is the free non-commutative algebra on the four
symbols

$E=X_{1}$ , $X=X_{x}$ , $Y=X_{y}$ , $Z=X_{z}$ ,
whereas $S(t_{H_{4}})$ is the polynomial algebra on the symbols $t_{1},$ $t_{x},$ $t_{y},$ $t_{z}$ .

Masuoka [13] (see also [7]) showed that any twisted $H_{4}$-comodule algebra
as in \S 3.1 has, up to isomorphism, the following presentation:

$\alpha H_{4}=k\langle u_{x},$ $u_{y}|u_{x}^{2}=au_{1},$ $u_{x}u_{y}+u_{y}u_{x}=bu_{1},$ $u_{y}^{2}=cu_{1}\rangle$

for some scalars $a,$ $b,$ $c$ with $a\neq 0$ . To indicate the dependence on the
parameters $a,$ $b,$ $c$ , we denote $\alpha H_{4}$ by $A_{a,b,c}$ .

The center of $A_{a,b,c}$ consists of the scalar multiples of the unit $u_{1}$ for all
values of $a,$ $b,$ $c$ . In other words, all two-cocycles on $H_{4}$ are non-degenerate.

The coaction $\delta$ : $A_{a,b,c}arrow A_{a,b,c}\otimes H_{4}$ is determined by
$\delta(u_{x})=u_{x}\otimes x$ and $\delta(u_{y})=u_{1}\otimes y+u_{y}\otimes x$ .

As observed in \S 3.1, the coinvariants of $A_{a,b,c}$ consists of the scalar multiples
of the unit $u_{1}$ . Therefore, coinvariants and central elements of $A_{a,b,c}$ coincide.
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5.2. Identities. In this situation, the universal comodule algebra map
$\mu_{\alpha}:T(X_{H})arrow S(t_{H})\otimes A_{a,b,c}$

is given by
$\mu_{\alpha}(E)=t_{1}u_{1}$ ,

$\mu_{\alpha}(Y)=t_{1}u_{y}+t_{y}u_{x}$ ,

Let us set

$\mu_{\alpha}(X)=t_{x}u_{x}$ ,
$\mu_{\alpha}(Z)=t_{x}u_{z}+t_{z}u_{1}$ .

$R=X^{2}$ , $S=Y^{2}$ , $T=XY+YX$ , $U=X(XZ+ZX)$ .
Lemma 5.1. In the algebm $S(t_{H})\otimes A_{a,b,c}$ we have the following equalities:

$\mu_{\alpha}(R)$ $=$ $at_{x}^{2}u_{1}$ ,
$\mu_{\alpha}(S)$ $=$ $(at_{y}^{2}+bt_{1}t_{y}+ct_{1}^{2})u_{1}$ ,
$\mu_{\alpha}(T)$ $=$ $t_{x}(2at_{y}+bt_{1})u_{1}$ ,
$\mu_{\alpha}(U)$ $=$ $at_{x}^{2}(2t_{z}+bt_{x})u_{1}$ .

Pmof. This follows from a straightforward computation. Let us compute
$\mu_{\alpha}(S)$ as an example. We have

$\mu_{\alpha}(S)$ $=$ $\mu_{\alpha}(Y)^{2}=(t_{1}u_{y}+t_{y}u_{x})^{2}$

$=$ $t_{y}^{2}u_{x}^{2}+t_{1}t_{y}(u_{x}u_{y}+u_{y}u_{x})+t_{1}^{2}u_{y}^{2}$

$=$ $(at_{y}^{2}+bt_{1}t_{y}+ct_{1}^{2})u_{1}$

in view of the definition of $A_{a,b,c}$ . $\square$

We now exhibit two non-trivial $H_{4}$-identities.

Proposition 5.2. The elements

$T^{2}-4RS- \frac{b^{2}-4ac}{a}E^{2}R$ and $ERZ-RXY- \frac{EU-RT}{2}$

are $H_{4}$ -identities for $A_{a,b,c}$ .

Pmof. It suffices to check that these two elements are killed by $\mu_{\alpha}$ , which is
easily done using Lemma 5.1. $\square$

Since $E,$ $R,$ $S,$ $T,$ $U$ are sent under $\mu_{\alpha}$ to $S(t_{H})\otimes u_{1}$ , their images in $\mathcal{U}_{H}^{\alpha}$ be-
long to the center $\mathcal{Z}_{H}^{\alpha}$ . We assert that after inverting the elements $E$ and $R$ ,
all relations in $Z_{H}^{\alpha}$ are consequences of the leftmost relation in Proposi-
tion 5.2. More precisely, we have the following (see [2, Thm. 10.3]).

Theorem 5.3. There is an isomorphism of algebms
$Z_{H}^{\alpha}[E^{-1}, R^{-1}]\cong k[E, E^{-1}, R, R^{-1}, S, T, U]/(D_{a,b,c})$ ,

where
$D_{a,b,c}=T^{2}-4RS- \frac{b^{2}-4ac}{a}E^{2}R$ .

To prove this theorem, we first check that the generic base algebra $\mathcal{B}_{H}^{\alpha}$

(whose generators we know) is generated by $E,$ $E^{-1},$ $R,$ $R^{-1},$ $S,$ $T,$ $U$ ; this
implies that $\mathcal{B}_{H}^{\alpha}$ is the localization

$\mathcal{B}_{H}^{\alpha}=\mathcal{Z}_{H}^{\alpha}[E^{-1}, R^{-1}]$
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of $Z_{H}^{\alpha}$ . In a second step, we establish that all relations between the above-
listed generators of $\mathcal{B}_{H}^{\alpha}$ follow from the sole relation $D_{a,b,c}=0$ .

Let us now turn to the universal comodule algebra $\mathcal{U}_{H}^{\alpha}$ . By Proposi-
tion 5.2, we have the following relation in $\mathcal{U}_{H}^{\alpha}$ , where we keep the same
notation for the elements of $T(X_{H})$ and their images in $\mathcal{U}_{H}^{\alpha}$ :

$(ER)Z=(R)XY+( \frac{EU-RT}{2})$ in $\mathcal{U}_{H}^{\alpha}$ .

The elements in parentheses being central, it follows from the previous rela-
tion that if we again invert the central elements $E$ and $R$ , then $Z$ is a linear
combination of 1 and $XY$ with coefficients in $\mathcal{B}_{H}^{\alpha}=\mathcal{Z}_{H}^{\alpha}[E^{-1}, R^{-1}]$ . Noting
that

$YX=-XY+T\in-XY+\mathcal{Z}_{H}^{\alpha}\subset-XY+\mathcal{B}_{H}^{\alpha}$ ,
we easily deduce that after inverting $E$ and $R$ any element of $\mathcal{U}_{H}^{\alpha}$ is a linear
combination of 1, $X,$ $Y,$ $XY$ over $\mathcal{B}_{H}^{\alpha}$ .

In [2] the following more precise result was established (see $loc$ . $cit.$ ,
Thm. 10.7). It answers positively the question of \S 2.4.

Theorem 5.4. The localized algebm $\mathcal{U}_{H}^{\alpha}[E^{-1}, R^{-1}]$ is free of $mnk4$ over its
center $\mathcal{B}_{H}^{\alpha}=Z_{H}^{\alpha}[E^{-1}, R^{-1}]$ , and there is an isomorphism of algebms

$\mathcal{U}_{H}^{\alpha}[E^{-1}, R^{-1}]\cong \mathcal{B}_{H}^{\alpha}\langle\xi,$ $\eta\rangle/(\xi^{2}-R, \xi\eta+\eta\xi-T, \eta^{2}-S)$ .
Note that the algebra $\mathcal{B}_{H}^{\alpha}$ coincides with the subalgebra of coinvariants

of $\mathcal{U}_{H}^{\alpha}[E^{-1}, R^{-1}]$ .

5.3. An open problem. To complete this survey, we state a problem who
will hopefully attract the attention of some researchers.

Fix an integer $n\geq 2$ and suppose that the ground field $k$ contains a
primitive n-th root $q$ of 1. Consider the Taft algebra $H_{n^{2}}$ , which is the
algebra generated by two elements $x,$ $y$ subject to the relations

$x^{n}=1$ , $yx=qxy$ , $y^{n}=0$ .
This is a Hopf algebra of dimension $n^{2}$ with coproduct determined by

$\Delta(x)=x\otimes x$ and $\Delta(y)=1\otimes y+y\otimes x$ .
The twisted comodule algebras $\alpha H_{n^{2}}$ have been classified in [7, 13]. (All
two-cocycles of $H_{n^{2}}$ are non-degenerate.)

Give a presentation by generators and reIations of the generic base alge-
bra $\mathcal{B}_{H_{n^{2}}}^{\alpha}$ and show that $\mathcal{B}_{H_{n^{2}}}^{\alpha}$ is a localization of $\mathcal{Z}_{H_{n^{2}}}^{\alpha}$ . (By [11, Rem. 2.4 $(c)$ ]
it is enough to consider the case where $\alpha$ is the trivial cocycle.)

ACKNOWLEDGEMENTS

I wish to extend my warmest thanks to the organizers of the Conference on
Quantum Groups and Quantum Topology held at RIMS, Kyoto University,
on April 19-20, 2010, and above all to Professor Akira Masuoka, for giving
me the opportunity to explain my joint work [2] with Eli Aljadeff.

This work is part of the project ANR $BLAN07-3_{-}183390$ “Groupes quan-
tiques : techniques galoisiennes et $d$ ‘int\’egration’’ funded by Agence Na-
tionale de la Recherche, France.

61



CHRISTIAN KASSEL

REFERENCES
[1] Aljadeff E., Haile D., Natapov M., Graded identities of matrix algebras and the

universal graded algebra, T}$\eta ns$ . Amer. Math. Soc. 362 (2010), 3125-3147.
[2] Aljadeff E., Kassel C., Polynomial identities and noncommutative versal torsors, Adv.

Math. 218 (2008), 1453-1495.
[3] Bahturin Y. A., Zaicev M., Identities of graded algebras, J. Algebra 202 (1998),

634-654.
[4] Bichon J., Galois and bigalois objects over monomial non-semisimple Hopf algebras,

J. Algebra Appl. 5 (2006), 653-680.
[5 $|$ Blattner R. J., Montgomery S., A duality theorem for Hopf module algebras, J. Al-

gebra 95 (1985), 153-172.
[6] Dehn M., \"Uber die Grundlagen der projektiven Geometrie und allgemeine Zahlsys-

teme, Math. Ann. 85 (1922), 184-194.
[7] Doi Y., Takeuchi M., Quaternion algebras and Hopf crossed products, Comm. Alge-

bra 23 (1995), 3291-3325.
[8] Formanek E., The polynomial identities and invariants of n $\cross n$ matrices, CBMS

Conf. Series in Math., 78, American Mathematical Society, Providence, RI, 1991.
[9] Kassel C., Quantum principal bundles up to homotopy equivalence, The Legacy of

Niels Henrik Abel, The Abel Bicentennial, Oslo, 2002, O. A. Laudal, R. Piene (eds.),
Springer-Verlag 2004, 737-748 (see also $arXiv:math.QA/0507221)$ .

[10] Kassel C., Generic Hopf Galois extensions, arXiv:0809.0638, to appear in Proc. Work-
shop on Quantum Groups and Noncommutative Geometry, ${\rm Max}$ Planck Institut f\"ur
Mathematik, Bonn, 2007, M. Marcolli and D. Parashar (eds.).

[11] Kassel C., Masuoka A., Flatness and freeness properties of the generic Hopf Galois
extensions, arXiv:0911.3719, to appear in the Proceedings of Coloquio de Algebras de
Hopf, Grupos Cu\’anticos y Categonas Tensoriales, Rev. Un. Mat. Argentina.

[12] Kassel C., Schneider H.-J., Homotopy theory of Hopf Galois extensions, Ann. Inst.
Fourier (Grenoble) 55 (2005), 2521-2550.

[13] Masuoka A., Cleft extensions for a Hopf algebra generated by a nearly primitive
element, Comm. Algebra 22 (1994), 4537-4559.

[14] Masuoka A., Cocycle deformations and Galois objects for some cosemisimple Hopf
algebras of finite dimension, New trends in Hopf algebra theory (La Falda, 1999),
195-214, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000.

[15] Masuoka A., Abelian and non-abelian second cohomologies of quantized enveloping
algebras, J. Algebra 320 (2008), 1-47.

[16] Montgomery S., Hopf algebras and their actions on rings, CBMS Conf. Series in
Math., 82, Amer. Math. Soc., Providence, RI, 1993.

[17] Rowen L., Polynomial identities in ring theory, Pure and Applied Mathematics, 84,
Academic Press, Inc., New York-London, 1980.

[18] Schauenburg P., Hopf bi-Galois extensions, Comm. Algebra 24 (1996), 3797-3825.
[19] Schneider H.-J., Principal homogeneous spaces for arbitrary Hopf algebras, Israel J.

Math. 72 (1990), 167-195.
[20] Sweedler M. E., Hopf algebras, W. A. Benjamin, Inc., New York, 1969.
[21] Takeuchi M., FYee Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23

(1971), 561-582.
[22] Wagner W., \"Uber die Grundlagen der projektiven Geometrie und allgemeine Zahlsys-

teme, Math. Ann. 113 (1937), 528-567.

CHRISTIAN KASSEL: INSTITUT DE RECHERCHE MATHEMATIQUE AVANC\’EE, CNRS &
UNIVEItSIT\’E DE STRASBOURG, 7 RUE REN\’E DESCARTES, 67084 STRASBOURG, FRANCE

E-mail address; kassel$\Phi math$ . unistra. fr
$URL$: www-irma. u-strasbg. fr$/-kassel/$

62


