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HOPF ALGEBRAS AND POLYNOMIAL IDENTITIES

CHRISTIAN KASSEL

ABSTRACT. This is a survey of results obtained jointly with E. Aljadeff
and published in [2]. We explain how to set up a theory of polynomial
identities for comodule algebras over a Hopf algebra, and concentrate on
the universal comodule algebra constructed from the identities satisfied
by a given comodule algebra. All concepts are illustrated with various
examples.

KEY WoORDs: Polynomial identity, Hopf algebra, comodule, localization

MATHEMATICS SUBJECT CLASSIFICATION (2010): 16R50, 16T05, 16T15,
16T20, 16540, 16S85

INTRODUCTION

As has been stressed many times (see, e.g., [19]), Hopf Galois extensions
can be viewed as non-commutative analogues of principal fiber bundles (also
known as G-torsors), where the role of the structural group is played by a
Hopf algebra. Such extensions abound in the world of quantum groups and
of non-commutative geometry. The problem of constructing systematically
all Hopf Galois extensions of a given algebra for a given Hopf algebra and
of classifying them up to isomorphism has been addressed in a number of
papers, such as {4, 7, 9, 12, 13, 14, 15, 18] to quote but a few.

A new approach to the classification problem of Hopf Galois extensions
was recently advanced by Eli Aljadeff and the present author in [2]; this
approach uses classical techniques from non-commutative algebra such as
polynomial identities (such techniques had previously been used in [1] for
group-graded algebras). In [2] we developed a theory of identities for any
comodule algebra over a given Hopf algebra H, hence for any Hopf Galois
extension. As a result, out of the identities for an H-comodule algebra A, we
obtained a universal H-comodule algebra Uy (A). It turns out that if A is a
cleft H-Galois object (i.e., a comodule algebra obtained from H by twisting
its product with the help of a two-cocycle) with trivial center, then a suitable
central localization of Uy (A) is an H-Galois extension of its center. We thus
obtain a “non-commutative principal fiber bundle” whose base space is the
spectrum of some localization of the center of Uy (A).

This survey is organized as follows. After a preliminary section on comod-
ule algebras, we define the concept of an H-identity for such algebras in § 2.
We illustrate this concept with a few examples and we attach a universal
H-comodule algebra Uy (A) to each H-comodule algebra A.

In § 3 turning to the special case where A = *H is a twisted comodule
algebra, we exhibit a universal comodule algebra map that allows us to
detect the H-identities for A.
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In § 4 we construct a commutative domain Bg and we state that under
some natural extra condition, B is the center of a suitable central localiza-
tion of Uy (A); moreover after localization, Uy (A) becomes a free module
over its center.

Lastly in § 5, we illustrate all previous constructions with the help of
the four-dimensional Sweedler algebra, thus giving complete answers in this
simple, but non-trivial example. We end the paper with an open question
on Taft algebras.

The material of the present text is mainly taken from [2], for which it
provides an easy access. The reader is advised to complement it with [10, 11].

1. HOPF ALGEBRAS AND COACTIONS

1.1. Standing assumption. We fix a field k over which all our construc-
tions are defined. In particular, all linear maps are supposed to be k-linear
and unadorned tensor products mean tensor products over k. Throughout
the survey we assume that the ground field k is infinite.

By algebra we always mean an associative unital k-algebra. We suppose
the reader familiar with the language of Hopf algebra, as expounded for
instance in [20]. As is customary, we denote the coproduct of a Hopf alge-
bra by A, its counit by &, and its antipode by S. We also make use of a
Heyneman-Sweedler-type notation for the image

Alz) =11 ® =2
of an element z of a Hopf algebra H under the coproduct, and we write
A(z)(x) =TI1 QT2 XT3
for the iterated coproduct A® = (A®idy)o A = (idy ®A) 0 A, and so on.
1.2. Comodule algebras. Let H be a Hopf algebra. Recall that an H-

comodule algebra is an algebra A equipped with a right H-comodule struc-
ture whose (coassociative, counital) coaction

0:A—>ARH

is an algebra map. The subalgebra A¥ of coinvariants of an H-comodule
algebra A is defined by

Al ={a€c A|é(a)=a®1}.

Given two H-comodule algebras A and A’ with respective coactions §
and ¢, an algebra map f: A — A’ is an H-comodule algebra map if

dof=(f®idy)od.

We denote by Alg? the category whose objects are H-comodule algebras
and arrows are H-comodule algebra maps.
Let us give a few examples of comodule algebras.

Example 1.1. If H = k, then an H-comodule algebra is nothing but an
ordinary (associative, unital) algebra.
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Example 1.2. The algebra H = k[G] of a group G is a Hopf algebra with
coproduct, counit, and antipode given for all g € G by

Alg)=g®g, €elg)=1, S(g=g".

It is well-known (see [5, Lemma 4.8]) that an H-comodule algebra A is the
same as a G-graded algebra

A= 4, AgALCAg.
geG
The coaction d : A — A®H is given by 6(a) = a®g foralla € Ajand g € G.
We have A” = A, where e is the neutral element of G.

Example 1.3. Let G be a finite group and H = kC be the algebra of k-
valued functions on a finite group G. This algebra can be equipped with
a Hopf algebra structure that is dual to the Hopf algebra k[G] above. An
H-comodule algebra A is the same as a G-algebra, i.e., an algebra equipped
with a left action of G on A by group automorphisms.

If we denote the action of g € G on a € A by 9a, then the coaction
§: A— AQ® H is given by

5a) =" %a®e,,
gea

where {eg}gecc is the basis of H consisting of the functions e, defined by
eg(h) = 1if h = g, and 0 otherwise.

The subalgebra of coinvariants of A coincides with the subalgebra of G-
invariant elements: A7 = AC,

Example 1.4. Any Hopf algebra H is an H-comodule algebra whose coac-
tion coincides with the coproduct of H:

0=A:H->-HQ®H.

In this case the coinvariants of H are exactly the scalar multiples of the unit
of H; in other words, H¥ = k1.

2. IDENTITIES

2.1. Polynomial identities. Let A be an algebra. A polynomial identity
for an algebra A is a polynomial P(X,Y,Z,...) in a finite number of non-
commutative variables X,Y, Z,... such that

P(z,y,z,...)=0
for all z,y, 2,... € A.

Examples 2.1. (a) The polynomial XY —Y X is a polynomial identity for

any commutative algebra.
(b) If A = Ma(k) is the algebra of 2 x 2-matrices with entries in k, then

(XY -YX)?Z - Z(XY - YX)?

is a polynomial identity for A. (Use the Cayley-Hamilton theorem to check
this.)
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The concept of a polynomial identity first emerged in the 1920’s in an arti-
cle [6] on the foundation of projective geometry by Max Dehn, the topologist.
The above polynomial identity for the algebra of 2 x 2-matrices appeared
in 1937 in [22]. Today there is an abundant literature on polynomial iden-
tities; see for instance (8, 17].

For algebras graded by a group G there exists the concept of a graded
polynomial identity (see [1, 3]). In this case we need to take a family of
non-commutative variables X, Yy, Zg, ... for each element g € G. Given a
G-graded algebra A = ®g€G Ay, a graded polynomial identity is a polyno-
mial P in these indexed variables such that P vanishes upon any substitution
of each variable X, appearing in P by an element of the g-component A,.

In general, we should keep in mind that in order to define polynomial
identities for a class of algebras, we need to single out

(i) a suitable algebra of non-commutative polynomials and
(ii) a suitable notion of specialization for these polynomials.

The algebras of interest to us in this survey are comodule algebras over
a Hopf algebra H. The non-commutative variables we wish to use will be
indexed by the elements of some linear basis of H. Since in general a Hopf
algebra does not have a natural basis, we find it preferable to use a more
canonical construction, namely the tensor algebra over H, and to resort to
a given basis only when we need to perform computations.

2.2. Definition and examples of H-identities. Let H be a Hopf algebra.
We pick a copy Xy of the underlying vector space of H and we denote the
identity map from H to Xy by z — X, for all z € H.

Consider the tensor algebra T'(Xg) of the vector space Xy over the
ground field k:

T(Xn) =P T"(Xn),
r>0
where T"(Xg) = X5 is the tensor product of r copies of Xy over k, with
the convention T°(Xy) = k. If {z;}icr is some linear basis of H, then
T(Xg) is isomorphic to the algebra of non-commutative polynomials in the
indeterminates X, (i € I).

Beware that the product X; X, of symbols in the tensor algebra is different
from the symbol X, attached to the product of z and y in H; the former
is of degree 2 while the latter is of degree 1.

The algebra T'(Xy) is an H-comodule algebra equipped with the coaction

0:T(Xyg) > T(Xu)QH; Xz Xz, Qx2.
Note that T'(Xg) is graded with all generators X, in degree 1. The
coaction preserves the grading, where T'(Xy) ® H is graded by
(T(Xg)®H), =T (Xg)®H
for all » > 0.
We now give the main definition of this section.

Definition 2.2. Let A be an H-comodule algebra. An element P € T(Xg)
is an H-identity for A if u(P) =0 for all H-comodule algebra maps

p:T(Xyg)— A.
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To convey the feeling of what an H-identity is, let us give some simple
examples.

Example 2.3. Let H = k be the one-dimension Hopf algebra as in Ex-
ample 1.1. An H-comodule algebra A is then the same as an algebra. In
this case, T'(Xg) coincides with the polynomial algebra k[X;] and an H-
comodule algebra map is nothing but an algebra map. Therefore, an element
P(X1) € T(Xy) = k[X1] is an H-identity for A if and only if all P(a) =0
for all @ € A. Since k is assumed to be infinite, it follows that there are no
non-zero H-identities for A.

Example 2.4. Let H = k[G] be a group Hopf algebra as in Example 1.2,
We know that an H-comodule algebra is a G-graded algebra A = ) sea Ag-
Since {g}gec is a basis of H, the tensor algebra T(Xpy) is the algebra of
non-commutative polynomials in the indeterminates X, (g € G).

It is easy to check that an algebra map pu : T(Xy) — A is an H-comodule
algebra map if and only if u(X,) € Ay for all g € G. This remark allows us
to produce the following examples of H-identities.

(a) Suppose that A is trivially graded, i.e., Ay =0for all g # e. Then any
non-commutative polynomial in the indeterminates Xy with g # e is
killed by any H-comodule algebra map u : T(Xp) — A. Therefore,
such a polynomial is an H-identity for A.

(b) Suppose that the trivial component A, is central in A. We claim
that

XgX g1 Xp — Xp XX,
is an H-identity for A for all g,h € G. Indeed, for any H-comodule
algebra map p : T(Xy) — A, we have

u(Xg) € Ay and  p(Xg-1) € Ag-1;
therefore, (XX -1) = u(Xy) u(X,-1) belongs to A, hence com-

mutes with p(X). One shows in a similar fashion that if g is an
element of G of finite order N, then for all h € G,

XY Xn - Xp XY
is an H-identity for A.

Example 2.5. Let H be an arbitrary Hopf algebra, and let A be an H-
comodule algebra such that the subalgebra A of coinvariants is central in A
(the twisted comodule algebras of § 3.1 satisfy the latter condition).
For z,y € H consider the following elements of T(X):
Pr = Xoy Xg(a;) and  Qoy = Xay Xy, X 5(zay2) -
Then for all z,y,2z € H,
P, X,—-X,P, and Qw,y X, - X, Q:c,y

are H-identities for A. Indeed, P, and Q) are coinvariant elements of T'(Xg);
see [2, Lemma 2.1]. It follows that for any H-comodule algebra map u :
T(Xg) — A, the elements u(P,) and p(Qc,y) are coinvariant, hence central,
in A.

More sophisticated examples of H-identities will be given in § 5.
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2.3. The ideal of H-identities. Let H be a Hopf algebra and A an H-
comodule algebra. Denote the set of all H-identities for A by Iz (A). By
definition, .
Iy(A) = ﬂ Kerp.

€ AlgH(T(XR),A)
A proof of the following assertions can be found in (2, Prop. 2.2].

Proposition 2.6. The set Iy (A) has the following properties:
(a) it is a graded ideal of T(Xg), i.e.,

In(A)T(Xy) € In(A) O T(Xn) In(A)

and
In(4) = P (In(4) N T"(Xw))
r>0
(b) it is a right H-coideal of T(Xp), i.e.,

5(In(A)) C In(A)® H.

Note that for any H-comodule algebra map u : T(Xy) — A, we have
p(1) = 1; therefore, the degree 0 component of Iy (A) is always trivial:

In(A) () T°(Xw) =0.

If, in addition, there exists an injective H-comodule map H — A, then the
degree 1 component of Ig(A) is also trivial:

In(4) () T(Xn) = 0.

Remark 2.7. Right from the beginning we required the ground field k to
be infinite. This assumption is used for instance to establish that Iy (A) is
a graded ideal of T(Xy). Let us give a proof of this fact in order to show
how the assumption is used. Indeed, expand P € I (A) as

P=>"P
r=>0
with P, € T"(Xg) for all r > 0. To prove that Iy (A) is a graded ideal, it
suffices to check that each P, is in Iy(A). Given a scalar A € k, consider the
algebra endomorphism A, of T'(Xy) defined by A(X;) = AX; for all x € H;
clearly, )\, is an H-comodule map. If u : T(Xyg) — A is an H-comodule
algebra map, then so is u o A.. Since P € Iy(A), we have

Z A u(Fr) = (ko A)(P) =0.

r>0
The A-valued polynomial ..o A"u(P,) takes zero values for all A € k.
By the assumption on k, this implies that its coefficients are all zero, i.e.,
u(Pr) = 0 for all » > 0. Since this holds for all x4 € Alg?(T(Xy), A), we
obtain P, € Iy(A) for all r > 0.

If the ground field is finite, then Definition 2.2 still makes sense, but the
ideal I'y(A) may no longer be graded. Indeed, let k be the finite field F, and
H = k. Then for ¢ = p", the finite field F, is an H-comodule algebra. In
view of Example 2.3, the polynomial X{ — X; is an H-identity for Fy, but
clearly the homogeneous summands in this polynomial, namely X 7 and Xi,
are not H-identities.
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2.4. The universal H-comodule algebra. Let A be an H-comodule al-
gebra and Iy (A) the ideal of H-identities for A defined above. Since Iy (A)
is a graded ideal of T'(Xf), we may consider the quotient algebra

Ust (4) = T(Xu)/Tu(4).

The grading on T'(Xp) induces a grading on Uy (A). As Ig(A) is a right
H-coideal of T(Xp), the quotient algebra Uy (A) carries an H-comodule
algebra structure inherited from T'(Xg).

By definition of Uy (A), all H-identities for A vanish in Uy (A). For this
reason we call Uy (A) the universal H-comodule algebra attached to A.

The algebra Uy (A) has two interesting subalgebras:

(i) The subalgebra Uy (A) of coinvariants of Ug(A).
(i) The center Zg(A) of Uy (A).

We now raise the following question. Suppose that the comodule alge-
bra A is free as a module over the subalgebra of coinvariants AF (or over its
center); is Uy (A), or rather some suitable central localization of it, then free
as a module over some localization of Uy (A)¥ (or of Zg(A))? An answer
to this question will be given below (see Theorem 4.5) for a special class of
comodule algebras, which we introduce in the next section.

3. DETECTING H-IDENTITIES

Fix a Hopf algebra H. We now define a special class of H-comodule
algebras for which we can detect all H-identities.

3.1. Twisted comodule algebras. Recall that a two-cocycle o on H is a
bilinear form o : H x H — k such that
a(z1,y1) a(z2y2, 2) = (Y1, 21) (T, y222)

for all z,y, z € H. We assume that « is convolution-invertible and write o™
for its inverse. For simplicity, we also assume that a is normalized, i.e.,

a(z,1) = a(l,z) = e(x)

1

for allz € H.
Any Hopf algebra possesses at least one normalized convolution-invertible
two-cocycle, namely the trivial two-cocycle ag, which is defined by

ao(z,y) = e(z) e(y)
for all z,y € H.
Let uy be a copy of the underlying vector space of H. Denote the identity
map from H to ug by z — u; (x € H). We define the twisted algebra *H
as the vector space uy equipped with the associative product given by

Ug Uy = 04(51;1, yl) Uzays,

for all z, y € H. This product is associative because of the above cocycle
condition; the two-cocycle o being normalized, u; is the unit of *H.

The algebra *H is an H-comodule algebra with coaction §: *H — “*HQH
given for all z € H by

ug) = Ug, ® X3

It is easy to check that the subalgebra of coinvariants of “H coincides
with kw1, which lies in the center of *H.
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Note that if & = g is the trivial two-cocycle, then “H = H is the H-
comodule algebra of Example 1.4.

The twisted comodule algebras of the form *H coincide with the so-called
cleft H-Galois objects; see [16, Prop. 7.2.3]. It is therefore an important class
of comodule algebras. We next show how we can detect H-identities for such
comodule algebras.

3.2. The universal comodule algebra map. We pick a third copy tg of
the underlying vector space of H and denote the identity map from H to ty
by z — t; (z € H). Let S(ty) be the symmetric algebra over the vector
space ty. If {z;}icr is a linear basis of H, then S(tg) is isomorphic to the
(commutative) algebra of polynomials in the indeterminates t5; (i € I).

We consider the algebra S(tg) ® “H. As a k-algebra, it is generated by
the symbols t,u; (z,z € H) (we drop the tensor product sign ® between
the t-symbols and the u-symbols).

The algebra S(tg) ® *H is an H-comodule algebra whose S(tg)-linear
coaction extends the coaction of ¢ H:

O(tuz) = tyuz, @ x2.
Define an algebra map uq : T(Xg) — S(ty) ® *H by

pa(Xz) =tz Us,

for all z € H. The map p, possesses the following properties (see [2,
Sect. 4]).

Proposition 3.1. (a) The map po : T(Xy) — S(ty) ® *H is an H-
comodule algebra map.

(b) For every H-comodule algebra map p : T(Xy) — *H, there is a
unique algebra map x : S(ty) — k such that

p=(x®id) o uq.
In other words, any H-comodule algebra map y : T(Xg) — *H can be

obtained from u, by specialization. For this reason we call u, the universal
comodule algebra map for *H.

Theorem 3.2. An element P € T(Xy) is an H-identity for “H if and only
if pa(P) = 0; equivalently,

In(*H) = ker(pa) -

This result is a consequence of Proposition 3.1. It allows us to detect the
H-identities for any twisted comodule algebra: it suffices to check them in
the easily controllable algebra S(ty) ® *H. In § 5 we shall show how to
apply this result in an interesting example.

Let us derive some consequences of Theorem 3.2. To simplify notation, we
denote the ideal of H-identities Iy (*H) by If;, the universal H-comodule
algebra Uy (*H) by Uf;, and the center Zy(*H) of Uf; by Z§.

Corollary 3.3. (a) The map po : T(Xg) — S(tg) ® *H induces an injec-
tion of comodule algebras

T, i US — S(ty) ®°H.
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(b) An element of U belongs to the subalgebra (UZ)H of coinvariants if
and only if its image under Ti,, sits in the subalgebra S(tg) ® u;.

We also proved that an element of U§ belongs to the center Z§ if and
only if its image under 7, sits in the subalgebra S(ty) ® Z(*H), where
Z(“H) is the center of *H (see [2, Prop. 8.2]). In particular, since u; is
central in *H, it follows that all coinvariant elements of U belong to the
center Z§.

We mention another consequence it asserts that there always exist non-
zero H-identities for any non-trivial finite-dimensional twisted comodule al-
gebra.

Corollary 3.4. If 2 < dimy H < oo, then I # {0}.

Proof. Suppose that Iy = {0}. Then in view of U = T(Xy)/I§ and of
Corollary 3.3, we would have an injective linear map

T"(Xg) — S"(Xy)®*H

for all7 > 0. (Here S"(Xpg) is the subspace of elements of degree r in S(tg).)
Taking dimensions and setting dimy H = n, we would obtain the inequality

r r+n-—1
n Sn( n—1 )’

which is impossible for large r. O

4. LOCALIZING THE UNIVERSAL COMODULE ALGEBRA

We now wish to address the question raised in § 2.4 in the case A is a
twisted comodule algebra of the form ®H, where H is a Hopf algebra and o
is a normalized convolution-invertible two-cocycle on H.

4.1. The generic base algebra. Recall the symmetric algebra S(ty) in-
troduced in § 3.2. By [2, Lemma A.1] there is a unique linear map z — t;!
from H to the field of fractions Frac S(tg) of S(ty) such that for all z € H,

Z tm(l) x(z) Z t"‘c(l) t‘”(2) ) 1.

(2) (z)

(The algebra of fractions generated by the elements t, and t;! (z € H) is
Takeuchi’s free commutative Hopf algebra on the coalgebra underlying H;
see [21].)
Examples 4.1. (a) If g is a group-like element, i.e., A(g) = g ® g and
e(g) = 1, then
1
tg

(b) If = is a skew-primitive element, i.e., A(z) = g ® z + = ® h for some
group-like elements g, h, then

t”l

tz

gle o2
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For z,y € H, define the following elements of the fraction field Frac S(tg):

o(z,y) = Z tz tya) a($(2)’y(2))t;(t)y(a)
(),(y)

and

‘7_1(17"!/) = Z teya) a“l(x(z),y@))t;(la) ty—(:) ’
():(y)

where a~! is the inverse of a.
The map (z,y) € H x H — o(z,y) € FracS(ty) is a two-cocycle with
values in the fraction field Frac S(ty).

Definition 4.2. The generic base algebra is the subalgebra B, of Frac S(tx)
generated by the elements o(z,y) and o~ 1(z,y), where z and y run over H.

Since BY is a subalgebra of the field Frac S(ty), it is a domain and the
Krull dimension of BY cannot exceed the Krull dimension of S(tg), which
is dimg H. Actually, it is proved in [11, Cor. 3.7] that if the Hopf alge-
bra H is finite-dimensional, then the Krull dimension of B is exactly equal
to dimy H. More properties of the generic base algebra are given in [11].

Example 4.3. If H = k[G] is the Hopf algebra of a group G and o = o
is the trivial two-cocycle, then the generic base algebra Bf; is the algebra
generated by the Laurent polynomials

(_tg_tﬁ ):l:l

toh ’

where g,h run over G. A complete computation for the (in)finite cyclic
groups G = Z and G = Z/N was given in (10, Sect. 3.3].

4.2. Non-degenerate cocycles. We now restrict to the case when a is a
non-degenerate two-cocycle, i.e., when the center of the twisted algebra “H is
one-dimensional. In this case, the center of *H coincides with the subalgebra
of coinvariants.

Recall the injective algebra map f, : U — S(tg) ® *H of Corollary 3.3.
By this corollary and the subsequent comment, it follows that in the non-
degenerate case the center Z§ of U coincides with the subalgebra ug)e
of coinvariants, and we have

2% = UZ)" =53 (S(tn) ®u1).

The following result connects Z§ to the generic base algebra B intro-
duced in § 4.1 (see [2, Prop. 9.1]).

Proposition 4.4. If a is a non-degenerate two-cocycle on H, then i, maps
2% into B @ ua.

This result allows us to view the center Z§ of U} as a subalgebra of the
generic base algebra Bg. It follows from the discussion in § 4.1 that 27 is
a domain whose Krull dimension is at most dimy H.
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We may now consider the Bfj-algebra
B% ®zg Ug .

It is an H'-comodule algebra, where H' = B ® H.
The following answers the question raised in § 2.4.

Theorem 4.5. If H is a Hopf algebra and a is a non-degenerate two-cocycle
on H such that Bf is a localization of Z§, then Bf ®zg UF is a cleft H-
Galois extension of BY. In particular, there is a comodule isomorphism

By ®zz U =By @ H.
It follows that under the hypotheses of the theorem, a suitable central

localization of the universal comodule algebra U is free of rank dimy H as
a module over its center.

5. AN EXAMPLE: THE SWEEDLER ALGEBRA

We assume in this section that the characteristic of k is different from 2.

5.1. Presentation and twisted comodule algebras. The Sweedler alge-
bra Hy is the algebra generated by two elements z, y subject to the relations

z2 =1, ry4+yr=0, 3>=0.
It is four-dimensional. As a basis of Hy, we take the set {1, z,y, 2z}, where
z=zy.
The algebra Hy carries the structure of a non-commutative, non-cocom-
mutative Hopf algebra with coproduct, counit, and antipode given by

A(l) = 1®1, Alz) = z®«,

Aly) = 1®y+y®r, Alz) = z®2+201,
e(l) = e(z) =1, ey) = €(2) =0,
s(1) = 1, S(z) = =,

S(y) = Z, S(Z) = Y.

The tensor algebra T'(Hj) is the free non-commutative algebra on the four
symbols
E=X, X=X;, Y=X,, Z=X,,
whereas S(ty,) is the polynomial algebra on the symbols ¢1,tz,ty,t,.
Masuoka [13] (see also [7]) showed that any twisted Hy4-comodule algebra
as in § 3.1 has, up to isomorphism, the following presentation:

2 2 _
“Hy =k<ux,uy|ux = auy, Ugly +UyUy = bur, Uy ——cu1)

for some scalars a, b, ¢ with a # 0. To indicate the dependence on the
parameters a, b, c, we denote “Hy by Agpc.
The center of A, consists of the scalar multiples of the unit u; for all
values of a, b, c. In other words, all two-cocycles on Hy are non-degenerate.
The coaction 0 : Agp . — Agpc ® Hy is determined by

0ug) =u, ®z and O(uy) =1 Qy+u, Q.

As observed in § 3.1, the coinvariants of Ag . consists of the scalar multiples
of the unit u;. Therefore, coinvariants and central elements of A, j . coincide.
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5.2. Identities. In this situation, the universal comodule algebra map
Ha - T(XH) - S(tH) by Aa,b,c
is given by
ﬂa(E) =tu, /J'a(X) = tzuz,
pa(Y) = tiuy + tyug, ba(Z) = tzu, +tyur .
Let us set
R=X? 8=Y? T=XY+YX, U=X(XZ+2ZX).
Lemma 5.1. In the algebra S(tg) ® Aqpc we have the following equalities:
pa(R) = ati ui,
pa(S) = (atz + btlty + Ct%) U1 ,
La(T) = tz(2aty + bt1)us,
pa(U) = ati(2t, +bty)u;.

Proof. This follows from a straightforward computation. Let us compute
po(S) as an example. We have

Ha(S) = /J'oz(y)2 = (t1uy + tyum)2
= 2ul + tity (uguy + uyug) + t3ul
= (at2 +btrty + ctd)w
in view of the definition of Agp c. O

We now exhibit two non-trivial Hy-identities.

Proposition 5.2. The elements

b% — dac EU - RT

E’R and ERZ - RXY - 5

T2 — 4RS —

are Hy-identities for Agpc.

Proof. It suffices to check that these two elements are killed by p4, which is
easily done using Lemma 5.1. a

Since E, R, S, T, U are sent under p4 to S(tg)®u;, their images in U be-
long to the center Z§. We assert that after inverting the elements £ and R,
all relations in Z§ are consequences of the leftmost relation in Proposi-
tion 5.2. More precisely, we have the following (see [2, Thm. 10.3]).

Theorem 5.3. There is an isomorphism of algebras
ZEEY, R 2k[E,E"',R,R™,S,T,U]/(Dap,) »
where

b2 —4acE2R.

Dape=T? —4RS —

To prove this theorem, we first check that the generic base algebra Bf
(whose generators we know) is generated by E,E~1, R, R~1,8,T,U; this
implies that Bf is the localization

B?I = Z% [E—1$ Rnl]
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of Z%. In a second step, we establish that all relations between the above-
listed generators of Bf follow from the sole relation Dy, . =0.

Let us now turn to the universal comodule algebra Uf;. By Proposi-
tion 5.2, we have the following relation in Uf, where we keep the same
notation for the elements of T(Xy) and their images in Ug:

(ER)Z = (R)XY + <ﬂ;ﬂ-) in U .

The elements in parentheses being central, it follows from the previous rela-
tion that if we again invert the central elements F and R, then Z is a linear
combination of 1 and XY with coefficients in B = Z&[E~!, R~1]. Noting
that
YX=-XY+Te-XY+Z5 c-XY + By,

we easily deduce that after inverting £ and R any element of U is a linear
combination of 1, X,Y, XY over Bf.

In [2] the following more precise result was established (see loc. cit.,
Thm. 10.7). It answers positively the question of § 2.4.

Theorem 5.4. The localized algebra UZ[E~1, R™1] is free of rank 4 over its
center BE = Z&[E~1, R™Y], and there is an isomorphism of algebras

UGIE"L R =B (&) /(- R, &n+nE—T, 7> = ) .

Note that the algebra B% coincides with the subalgebra of coinvariants
of UE(E~L, R71].

5.3. An open problem. To complete this survey, we state a problem who
will hopefully attract the attention of some researchers.

Fix an integer n > 2 and suppose that the ground field k¥ contains a
primitive n-th root ¢ of 1. Consider the Taft algebra H,2, which is the
algebra generated by two elements z, y subject to the relations

" =1, yr=gqzy, y"=0.
This is a Hopf algebra of dimension n? with coproduct determined by
Alz)=z®z and Aly)=1Q0y+y®c.

The twisted comodule algebras *H,,; have been classified in [7, 13]. (All
two-cocycles of H,2 are non-degenerate.)

Give a presentation by generators and relations of the generic base alge-
bra Bf , and show that Bj‘}n , is alocalization of Zf . (By [11, Rem. 2.4 (c)]

it is enough to consider the case where « is the trivial cocycle.)
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