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1. THE $GROTHENDIECK-TEICHM\ddot{U}$LLER GROUP

In his celebrated papers on quantum groups [Dr86, Dr90, Dr91] Drin-
feld came to the notion of quasitriangular quasi-Hopf quantized uni-
versal enveloping algebras. It is a topological algebra which differs from
a topological Hopf algebra in the sense that the coassociativity axiom
and the cocommutativity axiom is twisted by an associator and an
R-matrix satisfying a pentagon axiom and two hexagon axioms. One
of the main theorems in [Dr91] is that any quasitriangular quasi-Hopf
quantized universal enveloping algebra modulo twists (in other words
gauge transformations [Ka]) is obtained as a quantization of a pair
(called its classical limit) of a Lie algebra and its symmetric invariant
2-tensor. Quantizations are constructed by ‘universal’ associators. The
associator set M (definition 1.2) is defined to be the set of group-like
universal associator.

Let us fix notations and conventions:

Convention 1.1. Let k be a field of characteristic $0,\overline{k}$ its algebraic
closure and $US_{2}=k\langle\langle X_{0},$ $X_{1}\rangle\rangle$ a non-commutative formal power series
ring with two variables $X_{0}$ and $X_{1}$ . Its element $\varphi=\varphi(X_{0}, X_{1})$ is called
group-like if it satisfies $\triangle(\varphi)=\varphi\otimes\varphi$ with $\Delta(X_{0})=X_{0}\otimes 1+1\otimes X_{0}$
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and $\Delta(X_{1})=X_{1}\otimes 1+1\otimes X_{1}$ and its constant term is equal to 1. For
a monic monomial $W,$ $c_{W}(\varphi)$ means the coefficient of $W$ in $\varphi$ . For any
k-algebra homomorphism $\iota$ : $US_{2}arrow S$ the image $\iota(\varphi)\in S$ is denoted
by $\varphi(\iota(X_{0}), \iota(X_{1}))$ .

Definition 1.2 ([Dr91]). The associator set $\underline{M}$ (resp. $M$) is the pro-
algebraic variety whose set of k-valued points consists of pairs $(\mu, \varphi)$

with $\mu\in k$ (resp. $\mu\in k^{x}$ ) and group-like series $\varphi\in US_{2}$ satisfying
Drinfel’d’s two hexagon equations in $US_{2}$ :
(1.1)
$\exp\{\frac{\mu(t_{13}+t_{23})}{2}\}=\varphi(t_{13}, t_{12})\exp\{\frac{\mu t_{13}}{2}\}\varphi(t_{13}, t_{23})^{-1}\exp\{\frac{\mu t_{23}}{2}\}\varphi(t_{12}, t_{23})$,

(1.2)
$\exp\{\frac{\mu(t_{12}+t_{13})}{2}\}=\varphi(t_{23}, t_{13})^{-1}\exp\{\frac{\mu t_{13}}{2}\}\varphi(t_{12}, t_{13})\exp\{\frac{\mu t_{12}}{2}\}\varphi(t_{12}, t_{23})^{-1}$

and his pentagon equation in $Ua_{4}$ :
(1.3)
$\varphi(t_{12}, t_{23}+t_{24})\varphi(t_{13}+t_{23}, t_{34})=\varphi(t_{23}, t_{34})\varphi(t_{12}+t_{13}, t_{24}+t_{34})\varphi(t_{12}, t_{23})$ .

Here $Ua_{4}$ means the universal enveloping algebra of the completed pure
bmid Lie algebm $a_{4}$ over $k$ with 4 strings, generated by $t_{ij}(1\leq i,j\leq 4)$

with defining relations $t_{ii}=0,$ $t_{ij}=t_{ji},$ $[t_{ij}, t_{ik}+t_{jk}]=0(i,j,k$ : all
distinct) and $[t_{ij}, t_{kl}]=0$ ($i,j,k,l$ : all distinct).

Remark 1.3. It is proved in [Dr91] (reproved in [Ba]) that $M(Q)$ is
non-empty.

The category of representations of a quasitriangular quasi-Hopf quan-
tized universal enveloping algebra [Dr91] forms a quasitensored cate-
gory, in other words, a braided tensor category [JS]; its associativity
constraint and its commutativity constraint are subject to one penta-
gon axiom and two hexagon axioms. The Grothendieck-Teichm\"uller
group $GRT_{1}$ is introduced in [Dr91] as a group of deformations of such
category which change its associativity constraint keeping all three ax-
ioms.

Definition 1.4 ([Dr91]). The (unipotent part of the graded) Grothendieck-
Teichmuller (pro-algebraic) group $GRT_{1}$ is defined by $\underline{M}\backslash M$ , that is,
the pro-algebraic variety whose set of k-valued points consists of group-
like series $\varphi\in Uff_{2}$ satisfying two hexagon equations (1.1), (1.2) and
the pentagon equations (1.3) with $\mu=0$ .
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In [Dr91] it is shown that $GRT_{1}$ is closed by the multiplication 1

(1.4) $\varphi_{2}\circ\varphi_{1}:=\varphi_{1}(\varphi_{2}X_{0}\varphi_{2}^{-1}, X_{1})\cdot\varphi_{2}=\varphi_{2}\cdot\varphi_{1}(X_{0}, \varphi_{2}^{-1}X_{1}\varphi_{2})$

for $\varphi_{1},$ $\varphi_{2}\in GRT_{1}(k)$ .
Remark 1.5. Let $\underline{F_{2}}$ be the free pro-unipotent algebraic group with
two generators $e^{X_{0}}$ and $e^{X_{1}}$ and $\underline{Aut}\underline{F_{2}}$ be the pro-algebraic group which
represents $k\mapsto Aut\underline{F_{2}}(k)$ . By the map sending $X_{0}\mapsto X_{0}$ and $X_{1}\mapsto$

$\varphi X_{1}\varphi^{-1}$ , the group $GRT_{1}$ is regarded as a subgroup of $\underline{Aut}\underline{F_{2}}$ .
Remark 1.6. We note that the group is also closely related to the
philosophy of un $jeu$ de ”Lego-Teichmuller“ posed by Grothendieck in
Esquisse d’un progmmme [Gr]. And that is why Drinfel $d$ named it the
Grothendieck-Teichm\"uller group.

Our theorem here is on the defining equations of the associator set
$M$ (and hence of the Grothendieck-TeichmUller group $GRT_{1}.$ )

Theorem 1.7 ([F10]). Let $\varphi=\varphi(X_{0}, X_{1})$ be a group-like element of
$US_{2}$ . Suppose that $\varphi$ satisfies Drinfel’d’s pentagon equation (1.3). Then
there exists an element (unique up to signature) $\mu\in\overline{k}$ such that the
pair $(\mu, \varphi)$ satisfies his two hexagon equations (1.1) and (1.2). Actualty
this $\mu$ is equal $to\pm(24c_{X_{0}X_{1}}(\varphi))^{\frac{1}{2}}$ .

It should be noted that we need to use an (actually quadratic) ex-
tension of a field $k$ in order to reduce the GT-relations $(1.1)\sim(1.3)$ ,
into one pentagon equation (1.3). Particularly the theorem claims that
the pentagon equation is essentially a single defining equation of the
Grothendieck-Teichm\"uller group.

Proof of theorem 1.7. The proof of theorem 1.7 is reduced to the
following by standard arguments of Lie algebra.
Proposition 1.8 ([F10]). Let $\mathfrak{F}_{2}$ be the set of Lie-like elements $\varphi$ in
$Uff_{2}(i.e. \Delta(\varphi)=\varphi\otimes 1+1\otimes\varphi)$. Let $\varphi$ be an element of $S_{2}$ which
is commutator Lie-like 2 with $c_{X_{0}X_{1}}(\varphi)=0$ . Suppose that $\varphi$ satisfies
5-cycle relation:
$\varphi(X_{12}, X_{23})+\varphi(X_{34}, X_{45})+\varphi(X_{51}, X_{12})+\varphi(X_{23}, X_{34})+\varphi(X_{45}, X_{51})=0$

in $\hat{\mathfrak{P}}_{5}$ . Then it also satisfies 3- and $2$-cycie relation:
$\varphi(X, Y)+\varphi(Y, Z)+\varphi(Z, X)=0$ with $X+Y+Z=0$,

$\varphi(X, Y)+\varphi(Y, X)=0$ .

lFor our convenience, we change the order of multiplication in the original defi-
nition of [Dr91].

$2We$ call a series $\varphi=\varphi(X_{0}, X_{1})$ commutator Lie-like if it is Lie-like and $c_{X_{0}}=$

$c_{X_{1}}=0$ , in other words $\varphi\in \mathfrak{F}_{2}’$ $:=[ff_{2}, S_{2}]$ .
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Here $\mathfrak{P}_{5}$ stands for the completion (with respect to the natural grad-
ing) of the pure sphere braid Lie algebra with 5 strings; the Lie algebra
generated by $X_{ij}(1\leq i,j\leq 5)$ with clear relations $X_{ii}=0,$ $X_{ij}=X_{ji}$ ,
$\sum_{j=1}^{5}X_{ij}=0(1\leq i,j\leq 5)$ and $[X_{ij}, X_{kl}]=0$ if $\{i,j\}\cap\{k, l\}=\emptyset$ .

Proof. There is a projection from $\mathfrak{P}_{5}$ to the completed free Lie algebra
$S_{2}$ generated by $X$ and $Y$ by putting $X_{i5}=0,$ $X_{12}=X$ and $X_{23}=$ Y.
The image of 5-cycle relation gives 2-cycle relation.

For our convenience we denote $\varphi(X_{ij}, X_{jk})(1\leq i,j, k\leq 5)$ by $\varphi_{ijk}$ .
Then the 5-cycle relation can be read as

$\varphi_{123}+\varphi_{345}+\varphi_{512}+\varphi_{234}+\varphi_{451}=0$.

We denote LHS by $P$ . Put $\sigma_{i}(1\leq i\leq 12)$ be elements of $\mathfrak{S}_{5}$ defined
as follows: $\sigma_{1}(12345)=$ (12345), $\sigma_{2}(12345)=$ (54231), $\sigma_{3}(12345)=$

(13425), $\sigma_{4}(12345)=$ (43125), $\sigma_{5}(12345)=$ (53421), $\sigma_{6}(12345)=$

(23514), $\sigma_{7}(12345)=$ (23415), $\sigma_{8}(12345)=$ (35214), $\sigma_{9}(12345)=$

(53124), $\sigma_{10}(12345)=(24135),$ $\sigma_{11}(12345)=(52314)$ and $\sigma_{12}(12345)=$

(23541). Then

$\sum_{i=1}^{12}\sigma_{i}(P)=\varphi_{123}+\varphi_{345}+\varphi_{512}+\varphi_{234}+\varphi_{451}$

$+\varphi_{542}+\varphi_{231}+\varphi_{154}+\varphi_{423}+\varphi_{315}$

$+\varphi_{134}+\varphi_{425}+\varphi_{513}+\varphi_{342}+\varphi_{251}$

$+\varphi_{431}+\varphi_{125}+\varphi_{543}+\varphi_{312}+\varphi_{254}$

$+\varphi_{534}+\varphi_{421}+\varphi_{153}+\varphi_{342}+\varphi_{215}$

$+\varphi_{235}+\varphi_{514}+\varphi_{423}+\varphi_{351}+\varphi_{142}$

$+\varphi_{234}+\varphi_{415}+\varphi_{523}+\varphi_{341}+\varphi_{152}$

$+\varphi_{352}+\varphi_{214}+\varphi_{435}+\varphi_{521}+\varphi_{143}$

$+\varphi_{531}+\varphi_{124}+\varphi_{453}+\varphi_{312}+\varphi_{245}$

$+\varphi_{241}+\varphi_{135}+\varphi_{524}+\varphi_{413}+\varphi_{352}$

$+\varphi_{523}+\varphi_{314}+\varphi_{452}+\varphi_{231}+\varphi_{145}$

$+\varphi 235+\varphi_{541}+\varphi_{123}+\varphi 354+\varphi 412$.

By the 2-cycle relation, $\varphi_{ijk}=-\varphi_{kji}(1\leq i,j, k\leq 5)$ . This gives
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$\sum_{i=1}^{12}\sigma_{i}(P)=\varphi_{123}+\varphi_{234}$

$+\varphi_{231}+\varphi_{423}$

$+\varphi_{342}+\varphi_{312}+\varphi_{342}$

$+\varphi_{235}+\varphi_{423}$

$+\varphi_{234}+\varphi_{523}$

$+\varphi_{352}+\varphi_{312}+\varphi_{352}$

$+\varphi_{523}+\varphi_{231}$

$+\varphi_{235}+\varphi_{123}$

$=2(\varphi_{123}+\varphi_{231}+\varphi_{312})+2(\varphi_{234}+\varphi_{342}+\varphi_{423})$

$+2(\varphi_{235}+\varphi_{352}+\varphi_{523})$

$=2\{\varphi(X_{12}, X_{23})+\varphi(X_{23}, X_{31})+\varphi(X_{31}, X_{12})\}$

$+2\{\varphi(X_{23}, X_{34})+\varphi(X_{34}, X_{42})+\varphi(X_{42}, X_{23})\}$

$+2\{\varphi(X_{23}, X_{35})+\varphi(X_{35}, X_{52})+\varphi(X_{52}, X_{23})\}$ .

By $[X_{12}, X_{12}+X_{31}+X_{32}]=[X_{23}, X_{12}+X_{31}+X_{32}]=0$ and $\varphi\in$

$S_{2}’,$ $\varphi(X_{12}, X_{23})=\varphi(-X_{31}-X_{32}, X_{23})=\varphi(X_{34}+X_{35}, X_{23})$ . By
$[X_{31}, X_{12}+X_{31}+X_{32}]=[X_{12}, X_{12}+X_{31}+X_{32}]=0$ and $\varphi\in S_{2}’$ ,
$\varphi(X_{31}, X_{12})=\varphi(X_{31}, -X_{31}-X_{32})=\varphi(-X_{23}-X_{34}-X_{35}, X_{34}+X_{35})$.
By $[X_{34}, X_{42}+X_{23}+X_{34}]=[X_{42}, X_{42}+X_{23}+X_{34}]=0$ and $\varphi\in \mathfrak{F}_{2}’$ ,
$\varphi(X_{34}, X_{42})=\varphi(X_{34}, -X_{23}-X_{34})$ . By $[X_{23}, X_{42}+X_{23}+X_{34}]=$

$[X_{42}, X_{42}+X_{23}+X_{34}]=0$ and $\varphi\in S_{2}’,$ $\varphi(X_{42}, X_{23})=\varphi(-X_{23}-$

$X_{34},$ $X_{23})$ . By $[X_{35}, X_{52}+X_{23}+X_{35}]=[X_{52}, X_{52}+X_{23}+X_{35}]=0$ and
$\varphi\in \mathfrak{F}_{2}’,$ $\varphi(X_{35}, X_{52})=\varphi(X_{35}, -X_{23}-X_{35})$ . By $[X_{23}, X_{52}+X_{23}+X_{35}]=$

$[X_{52}, X_{52}+X_{23}+X_{35}]=0$ and $\varphi\in \mathfrak{F}_{2}’,$ $\varphi(X_{52}, X_{23})=\varphi(-X_{23}-$

$X_{35},$ $X_{23})$ .
So it follows

$\sum_{i=1}^{12}\sigma_{i}(P)=2\{\varphi(X_{34}+X_{35}, X_{23})+\varphi(X_{23}, -X_{23}-X_{34}-X_{35})$

$+\varphi(-X_{23}-X_{34}-X_{35}, X_{34}+X_{35})\}$

$+2\{\varphi(X_{23}, X_{34})+\varphi(X_{34}, -X_{23}-X_{34})+\varphi(-X_{23}-X_{34}, X_{23})\}$

$+2\{\varphi(X_{23}, X_{35})+\varphi(X_{35}, -X_{23}-X_{35})+\varphi(-X_{23}-X_{35}, X_{23})\}$.
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The elements $X_{23},$ $X_{34}$ and $X_{35}$ generates completed Lie subalgebra
$\mathfrak{F}_{3}$ of $\mathfrak{P}_{5}$ which is free of rank 3 and it contains $\sum_{i=1}^{12}\sigma_{i}(P)$ . Let $q$ :
$S_{3}arrow \mathfrak{F}_{2}$ be the projection sending $X_{23}\mapsto X,$ $X_{34}\mapsto Y$ and $X_{35}\mapsto$ Y.
Then

$q( \sum_{1=1}^{12}\sigma_{i}(P))=2\{\varphi(2Y, X)+\varphi(X, -X-2Y)+\varphi(-X-2Y, 2Y)\}$

$+4\{\varphi(X, Y)+\varphi(Y, -X-Y)+\varphi(-X-Y, X)\}$ .

By the 2-cycle relation,

$q( \sum_{1=1}^{12}\sigma_{i}(P))=4\{\varphi(X, Y)+\varphi(Y, -X-Y)+\varphi(-X-Y, X)\}$

$-2\{\varphi(X, 2Y)+\varphi(2Y, -X-2Y)+\varphi(-X-2Y, X)\}$ .

Put $R(X, Y)=\varphi(X, Y)+\varphi(Y, -X-Y)+\varphi(-X-Y, X)$ . Then
$q( \sum_{i=1}^{12}\sigma_{i}(P))=4R(X, Y)-2R(X, 2Y)$ . Since $P=0$, it follows
$2R(X, Y)=R(X, 2Y)$ . Expanding this equation in terms of the Hall
basis, we see that $R(X, Y)$ must be of the form $\sum_{m=1}^{\infty}a_{m}(adX)^{m-1}(Y)$

with $a_{m}\in k$ . By the 2-cycle relation, $R(X, Y)=-R(Y, X)$ . So
$a_{1}=a_{3}=a_{4}=a_{5}=\cdots=0$ . By our assumption $c_{X_{0}X_{1}}(\varphi)=0,$ $a_{2}$

must be $0$ either. Therefore $R(X, Y)=0$, which is the 3-cycle relation.
This yields the validity of theorem 1.7. $\square$

2. THE DOUBLE SHUFFLE GROUP

This section shows that the pentagon equation (1.3) implies the gen-
eralized double shuffle relation (2.3). As a corollary, we obtain an
embedding from Drinfel‘d’s Grothendieck-Teichm\"uller group $GRT_{1}$ to
Racinet‘s double shuffle group $DMR_{0}$ ([R]). This realizes the project
of Deligne-Terasoma [DT] where a different approach was indicated.
Their arguments concerned multiplicative convolutions whereas our
methods are based on a bar construction calculus. We also prove that
the gamma factorization formula follows from the generalized double
shuffle relation. It extends the result in [DT, I] where they show that
the GT-relations imply the gamma factorization.

Definition 2.1. Multiple zeta values (MZV $s$ for short) $\zeta(k_{1}, \cdots, k_{m})$

are the real numbers defined by the following series

(2.1) $\zeta(k_{1}, \cdots, k_{m})$
$:= \sum_{0<n_{1}<\cdots<n_{m}}\frac{1}{n_{1}^{k_{1}}\cdots n_{m}^{k_{m}}}$

for $m,$ $k_{1},\ldots,$ $k_{m}\in N(=Z_{>0})$ .

68



They converge if and only if the index $(k_{1}, \cdots, k_{m})$ is admissible (i.e.
$k_{m}>1)$ . They were studied (allegedly) firstly by Euler [E] for $m=1,2$ .
Several types of relations among MZV $s$ have been discussed. Here we
focus on two types of relations, GT-relations and generalized double
shuflle relations. Both of them are described in terms of the Drinfel’d
associator.

Definition 2.2. The Drinfel’d associator $\Phi_{KZ}(X_{0}, X_{1})\in C\langle\langle X_{0},$ $X_{1}\rangle\rangle$

is the two variables non-commutative formal power series with com-
plex number coefficients introduced in [Dr91] which has the following
expression

$\Phi_{KZ}(X_{0}, X_{1})=1+\sum(-1)^{m}\zeta(k_{1}, \cdots, k_{m})X_{0^{m}}^{k-1}X_{1}\cdots X_{0^{1}}^{k-1}X_{1}$

$+$ (regularized terms).

Its coefficients including regularized terms are explicitly calculated
to be linear combinations of MZV $s$ in [F03] proposition 3.2.3 by Le-
Murakami $s$ method [LM].

Remark 2.3. The Drinfel $d$ associator was introduced as the connec-
tion matrix of the Knizhnik-Zamolodchikov equation and it was shown
in [Dr91] that it is group-like and satisfies the GT-relations $(1.1)\sim$

(1.3) with $\mu=\pm 2\pi\sqrt{-1}$, namely $(\pm 2\pi\sqrt{-1}, \Phi_{KZ})\in M(C)$ , by using
symmetry of the KZ-system on configuration spaces.

The generalized double shuffle relation is a kind of combinatorial
relation among MZV $s$ . It consists of the double shuffie relation and
the regularization relation. The former is the combination of series
shuffle relations and integral shuffie relations. Both of them are product
formulae between MZV $s$ . It arises from two ways of expressing MZV $s$

as iterated integrals and as power series. The simplest example of the
series shuffle relation is

$\zeta(n_{1})\zeta(n_{2})=\zeta(n_{1}, n_{2})+\zeta(n_{2}, n_{1})+\zeta(n_{1}+n_{2})$ .
It is easily obtained from the expression (2.1) and can be generalized
in a similar way to other MZV $s$ . The simplest example of the integral
shuffie relation is

$\zeta(n_{1})\zeta(n_{2})=\sum_{i=0}^{n_{1}-1}(\begin{array}{l}n_{2}-l+ii\end{array})\zeta(n_{1}-i, n_{2}+i)+\sum_{j=0}^{n_{2}-1}(\begin{array}{ll}n_{1}-j +1j \end{array}) \zeta(n_{2}-j,n_{1}+j)$ .

This follows from the iterated integral expression for MZV’s (note: this
also follows from the fact that the Drinfel $d$ associator $\Phi_{KZ}$ is group-
like). Using these formulae we can get many relations among the MZV $s$

however the double shuffie relations are not enough to capture all the
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relations between MZV $s$ . There are two regularization of the MZV $s$

for non-admissible indices: the series regularization, which extends the
validity of the series shuffle relation and the integral regularization
which extends the validity of the integral shuffle relation. The reg-
ularization relation is an algebraic relation among MZV $s$ connecting
the above two regularization. The generalized double shuffle relation
is expected to capture all relation among MZV $s$ . There are several
formulations of the relation (see [IKZ, $R]$ ). In [R] it was formulated as
(2.3) (see below) for $\varphi=\Phi_{KZ}$ .

Let us fix notations and conventions:
Convention 2.4. Let $\pi_{Y}$ : $k\langle\langle X_{0},$ $X_{1}\rangle\ranglearrow k\langle\langle Y_{1},$ $Y_{2},$ $\ldots\rangle\rangle$ be the k-
linear map between non-commutative formal power series rings that
sends all the words ending in $X_{0}$ to zero and the word $X_{0^{m}}^{n-1}X_{1}\cdots X_{0}^{n_{1}-1}X_{1}$

$(n_{1}, \ldots, n_{m}\in N)$ to $(-1)^{m}Y_{n_{m}}\cdots Y_{n_{1}}$ . Define the coproduct $\Delta_{*}$ on
$k\langle\langle Y_{1},$ $Y_{2},$ $\ldots\rangle\rangle$ by $\Delta_{*}Y_{n}=\sum_{i=0}^{n}Y_{i}\otimes Y_{n-i}$ with $Y_{0};=1$ . For $\varphi=$

$\sum_{W:word}c_{W}(\varphi)W\in k\langle\langle X_{0},$ $X_{1}\rangle\rangle$ , define the series shuffle regulariza-
tion $\varphi_{*}=\varphi_{corr}\cdot\pi_{Y}(\varphi)$ with the correction term

(2.2) $\varphi_{\omega rr}=\exp(\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n}c_{X_{0}^{n-1}X_{1}}(\varphi)Y_{1}^{n})$ .

For a group-like series $\varphi\in U\mathfrak{F}_{2}$ the genemlised double shuffle relation
means the equality
(2.3) $\Delta_{*}(\varphi_{*})=\varphi_{*}\otimes\varphi_{*}\wedge$ .
Definition 2.5 ([R]). The double shuffle set $\underline{DMR}$ (resp. $DMR$)
is the pro-algebraic variety whose set of k-valued points consists of
pairs $(\mu, \varphi)$ with $\mu\in k$ (resp. $\mu\in k^{\cross}$ ) and group-like series $\varphi$ with
$c_{X_{0}}(\varphi)=c_{X_{1}}(\varphi)=0$ and $c_{X_{0}X_{1}}(\varphi)=\mu 2^{\frac{2}{4}}$ which satisfy the generalized
double shuffie relation (2.3). 3

Remark 2.6. We have $(\pm 2\pi\sqrt{-1}, \Phi_{KZ})\in DMR(C)$ because MZV $s$

satisfy generalized double shuffle relations. Like the case of $M(Q)$ it is
proved in [R] that $DMR(Q)$ is non-empty.

Definition 2.7 ([R]). The double shuffle group $DMR_{0}$ is defined by
$\underline{DMR}\backslash DMR$ , that is, the pro-algebraic variety whose set of k-valued
points consists of group-like series $\varphi$ with $c_{X_{0}}(\varphi)=c_{X_{1}}(\varphi)=c_{X_{0}X_{1}}(\varphi)=$

$0$ which satisfy the generalized double shuffle relation (2.3).
In [R] it is proved that $DMR_{0}$ is closed by the multiplication (1.4)

as $GRT_{1}$ .
$3_{For}$ our convenience, we change some signatures in the original definition ([R]

definition 3.2.1.)
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Remark 2.8. By the same way to the $GRT_{1}$ -case, the group $DMR_{0}$

is regarded as a subgroup of $\underline{Aut}\underline{F_{2}}$ .
Theorem 2.9 ([F08]). Let $\varphi=\varphi(X_{0}, X_{1})$ be a gmup-like element
of $U\mathfrak{F}_{2}$ . Suppose that $\varphi$ satisfies Drinfel’d’s pentagon equation (1.3).
Then it also satisfies the genemlized double shuffle relation (2.3).

The following is a direct corollary of our theorem 2.9 since the equa-
tions (1.1) and (1.2) for $(\mu, \varphi)$ imply $c_{X_{0}X_{1}}(\varphi)=\mu 2^{\frac{2}{4}}$ .
Corollary 2.10 ([F08]). $\underline{M}\subset\underline{DMR}$ . Particularly $GRT_{1}\subset DMR_{0}$ .

Proof of Theorem 2.9. By [F10] lemma 5, theorem 2.9 is reduced
to the following.
Proposition 2.11 ([F08]). Let $\varphi$ be a group-like element of $US_{2}$ with
$c_{X_{0}}(\varphi)=c_{X_{1}}(\varphi)=0$ . Suppose that $\varphi$ satisfies the 5-cycle relation

$\varphi(X_{34}, X_{45})\varphi(X_{51}, X_{12})\varphi(X_{23}, X_{34})\varphi(X_{45}, X_{51})\varphi(X_{12}, X_{23})=1$

in the completed universal enveloping algebm $U\mathfrak{P}_{5}$ of $\mathfrak{P}_{5}$ . Then it also
satisfies the genemlized double shuffle relation, $i.e$ . $\Delta_{*}(\varphi_{*})=\varphi_{*}\otimes\varphi_{*}\wedge$ .
Proof. Let $\mathcal{M}_{0,4}$ be the moduli space $\{(x_{1}, \cdots, x_{4})\in(P_{k}^{1})^{4}|x_{i}\neq$

$x_{j}(i\neq j)\}/PGL_{2}(k)$ of 4 different points in $P^{1}$ . It is identified with
$\{z\in P^{1}|z\neq 0,1, \infty\}$ by sending $[(0, z, 1, \infty)]$ to $z$ . Let $\mathcal{M}_{0,5}$ be the
moduli space $\{(x_{1}, \cdots, x_{5})\in(P_{k}^{1})^{5}|x_{i}\neq x_{j}(i\neq j)\}/PGL_{2}(k)$ of 5
different points in $P^{1}$ . It is identified with $\{(x, y)\in G_{m}^{2}|x\neq 1,$ $y\neq$

$1,$ $xy\neq 1\}$ by sending $[(0, xy, y, 1, \infty)]$ to $(x, y)$ .
For $\mathcal{M}=\mathcal{M}_{0,4}/k$ or $\mathcal{M}_{0,5}/k$ , we consider the Brown $s$ variant $V(\mathcal{M})$

[Br] of the Chen’s reduced bar construction [C]. This is a graded
Hopf algebra $V(\mathcal{M})=\oplus_{m=0}^{\infty}V_{m}(\subset TV_{1}=\oplus_{m=0}^{\infty}V_{1}^{\otimes m})$ over $k$ . Here
$V_{0}=k,$ $V_{1}=H_{DR}^{1}(\mathcal{M})$ and $V_{m}$ is the totality of linear combinations
(finite sums) $\sum_{I=(i_{m},\cdots,i_{1})}c_{I}[\omega_{i_{m}}|\cdots|\omega_{i_{1}}]\in V_{1}^{\otimes m}(c_{I}\in k,$ $\omega_{i_{j}}\in V_{1}$ ,
$[\omega_{i_{m}}|\cdots|\omega_{i_{1}}]$ $:=\omega_{i_{m}}\otimes\cdots\otimes\omega_{i_{1}})$ satisfying the integrability condition

$\sum_{I=(i_{m},\cdot\cdot,i_{1})}.c_{I}[\omega_{i_{m}}|\omega_{i_{m-1}}|\cdots|\omega_{i_{j+1}} A \omega_{i_{j}}|\cdots|\omega_{i_{1}}]=0$

in $V_{1}^{\otimes m-j-1}\otimes H_{DR}^{2}(\mathcal{M})\otimes V_{1}^{\otimes j-1}$ for all $j(1\leq j<m)$ .
For the moment assume that $k$ is a subfield of C. We have an

embedding (called a realisation in [Br]\S 1.2, \S 3.6) $\rho$ : $V(\mathcal{M})arrow I_{o}(\mathcal{M})$

as algebra over $k$ which sends $\sum_{I=(i_{m},\cdots,i_{1})}c_{I}[\omega_{i_{m}}|\cdots|\omega_{i_{1}}](c_{I}\in k)$ to
$\sum_{I}c_{I}$It $\int_{0}\omega_{i_{m}}$ o. . .o $\omega_{i_{1}}$ . Here $\sum_{I}c_{I}$It $\int_{0}\omega_{i_{m}}\circ\cdots 0\omega_{i_{1}}$ means the iterated
integral defined by

$\sum_{I}c_{I}\int_{0<t_{1}<\cdots<t_{m-1}<t_{m}<1}\omega_{i_{m}}(\gamma(t_{m}))\cdot\omega_{i_{m-1}}(\gamma(t_{m-1}))\cdots\cdot\omega_{i_{1}}(\gamma(t_{1}))$
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for all analytic paths $\gamma$ : $(0,1)arrow \mathcal{M}(C)$ starting from the tangen-
tial basepoint $0$ (defined by $\frac{d}{dz}$ for $\mathcal{M}=\mathcal{M}_{0,4}$ and defined by $\frac{d}{dx}$

$and\frac{d}{9]dy}for\mathcal{M}=\mathcal{M}_{0,5})attheoriginin\mathcal{M}(foritstreatmentseealso[De8\S 15)andI_{o}(\mathcal{M})denotesthe\mathcal{O}_{\mathcal{M}}^{an}-modu1egeneratedbyallsuch$

homotopy invariant iterated integrals with $m\geq 1$ and holomorphic
l-forms $\omega_{i_{1}},$

$\ldots,\omega_{i_{m}}\in\Omega^{1}(\mathcal{M})$ .
For $a=(a_{1}, \cdots, a_{k})\in Z_{>0}^{k}$ , its weight and its depth are defined to

be $wt(a)=a_{1}+\cdots+a_{k}$ and $dp(a)=k$ respectively. Put $z\in C$ with
$|z|<1$ . Consider the following complex function which is called the
one variable multiple polylogari$thm$

$Li_{a}(z):= \sum_{0<m_{1}<\cdot\cdot<m_{k}}.\frac{z^{m_{k}}}{m_{1^{1}}^{a}\cdots m_{k}^{a_{k}}}$ .

It satisfies the recursive differential equations (cf. [BF, F08]) It gives
an iterated integral starting from $0$ , which lies on $I_{o}(\mathcal{M}_{0,4})$ . Actually
it corresponds to an element of $V(\mathcal{M}_{0,4})$ denoted by $l_{a}$ .

Similarly for a $=(a_{1}, \cdots, a_{k})\in Z_{>0}^{k},$ $b=(b_{1}, \cdots, b_{l})\in Z_{>0}^{l}$ and
$x,$ $y\in C$ with $|x|<1$ and $|y|<1$ , consider the following complex
function which is called the two variables multiple polylogarithm

$Li_{a,b}(x, y):=0<m_{1}<. \cdot.\cdot.<m_{h}\sum_{<n1<<n_{l}}\cdot\frac{x^{m_{k}}y^{n_{l}}}{m_{1}^{a_{1}}\cdots m_{k}^{a_{k}}n_{1}^{b_{1}}\cdots n_{l}^{b_{l}}}$

.

It also satisfies the recursive differential equations (cf. [BF]\S 5). They
show that the functions $Li_{a,b}(x, y),$ $Li_{a,b}(y, x),$ $Li_{a}(x),$ $Li_{a}(y)$ and
$Li_{a}(xy)$ give iterated integrals starting from $0$ , which lie on $I_{o}(\mathcal{M}_{0,5})$ .
They correspond to elements of $V(M_{0,5})$ by the map $\rho$ denoted by $l_{a,b}^{x,y}$ ,
$l_{a,b}^{y,x},$ $l_{a}^{x},$ $l_{a}^{y}$ and $l_{a}^{xy}$ respectively.

The idea of the proof of proposition 2.11 goes as follows: Recall that
multiple polylogarithms satisfy the analytic identity, the series shuffie
formula in $I_{o}(\mathcal{M}_{0,5})$

$Li_{a}(x) \cdot Li_{b}(y)=\sum_{(\sigma\in Sh\leq k,l)}Li_{\sigma(a,b)}(\sigma(x, y))$
.

Here $Sh^{\leq}(k, l)$ $:= \bigcup_{N=1}^{\infty}\{\sigma$ : $\{1, \cdots, k+l\}arrow\{1, \cdots, N\}|\sigma$ is onto, $\sigma(1)<$

. $..<\sigma($ $k),$ $\sigma(k+1)<\cdots<\sigma(k+l)\},$ $\sigma(a, b):=((c_{1}, \cdots, c_{j}), (c_{j+1}, \cdots, c_{N}))$

with $\{j$ $N\}=\{\sigma(k), \sigma(k+l)\}$ ,

$c_{\dot{\tau}}=\{\begin{array}{ll}a_{s}+b_{t-k} if \sigma^{-1}(i)=\{s,t\} with s<t,a_{\delta} if \sigma^{-1}(i)=\{s\} with s\leq k,b_{\epsilon-k} if \sigma^{-1}(i)=\{s\} with s>k,\end{array}$
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and $\sigma(x, y)=\{\begin{array}{ll}xy if \sigma^{-1}(N)=k, k+l,(x, y) if \sigma^{-1}(N)=k+l,(y, x) if \sigma^{-1}(N)=k.\end{array}$

Since $\rho$ is an embedding of algebras, the above analytic identity
implies the algebraic identity, the series shuffie formula in $V(\mathcal{M}_{0,5})$

(2.4)
$l_{a}^{x} \cdot l_{b}^{y}=\sum_{(\sigma\in Sh\leq k,l)}l_{\sigma(a,b)}^{\sigma(x,y)}$

.

Suppose that $\varphi$ is an element as in proposition 2.11. Evaluation of
the equation (2.4) at the group-like element $\varphi_{451}\varphi_{123^{4}}$ gives the series
shuffle formula

$l_{a}( \varphi)\cdot l_{b}(\varphi)=\sum_{(\sigma\in Sh\leq k,l)}l_{\sigma(a,b)}(\varphi)$

for admissible 5 indices a and $b$ because of [F08] lemma 4.1. and 4.2.
For non-admissible indices we need a special treatment. The idea is

essentially same to the above admissible indices case except that we
consider $e^{TX_{51}}\varphi_{451}\varphi_{123}$ ($T$ : a parameter which stands for $\log x$) instead
of $\varphi_{451}\varphi_{123}$ (see [F08] in more detail), which completes the proof of
theorem 2.9. $\square$

Remark 2.12. Alekseev and Torossian [AT] gave the second proof
of the Kashiwara-Vergne (KV) conjecture. It is a conjecture on a
property of the Campbell-Baker-Hausdorff formula which was posed
in [KV]. Their proof was based on Drinfel‘d’s theory [Dr91] of the
Grothendieck-Teichm\"uller group. They showed that the set of solu-
tions of the generalized KV-problem admitted a free and transitive
action of the (graded) Kashiwam-Vergne gmup $KRV$ (see also [AET]
for the definition). It is a subgroup of $\underline{Aut}F_{2}$ and they showed that it
contains $GRT_{1}$ , i,e, there is an embedding $\overline{G}RT_{1}arrow KRV$ .

They conjectured the following.

Conjecture 2.13 ([AT]\S 4). The embedding might give an isomor-
phism between $GRT_{1}$ and the degree$>1$-part $KRV_{>1}$ .

One of the main defining equations of $KRV$ is the coboundary Jaco-
bian condition (cf. loc.cit.), which is a lift of the gamma factorization
formula (2.5) (see below) to the trace space $\hat{\mathfrak{T}}_{2}$ . The following theorem
might be a step to relate $KRV$ with $DMR_{0}$ .

4For simplicity we mean $\varphi_{ijk}$ for $\varphi(X_{ij},X_{jk})\in U\mathfrak{P}_{5}$ .
5An index $a=(a_{1}, \cdots, a_{k})$ is calIed admissible if $a_{k}>1$ .
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Theorem 2.14 ([F08]). Let $\varphi$ be a non-commutative formal power
series in two variables which is group-like with $c_{X_{0}}(\varphi)=c_{X_{1}}(\varphi)=0$ .
Suppose that it satisfies the genemlized double shuffle relation (2.3).
Then its meta-abelian quotient 6

$B_{\varphi}(x_{0}, x_{1})$ is gamma-factorisable, $i.e$ .
there exists a unique series $\Gamma_{\varphi}(s)$ in $1+s^{2}k[[s]]$ such that

(2.5) $B_{\varphi}(x_{0}, x_{1})= \frac{\Gamma_{\varphi}(x_{0})\Gamma_{\varphi}(x_{1})}{\Gamma_{\varphi}(x_{0}+x_{1})}$.

The gamma element $\Gamma_{\varphi}$ gives the correction term $\varphi_{corr}$ of the series
shuffle regularization (2.2) by $\varphi_{corr}=\Gamma_{\varphi}(-Y_{1})^{-1}$ .

This theorem was proved in [F08] \S 5. It extends the result in [DT, I]
which shows that for any group-like series satisfying (1.1), (1.2) and
(1.3) its meta-abelian quotient is gamma factorisable. We note that it
was calculated in [Dr91] that especially $\Gamma_{\varphi}(s)=\exp\{\sum_{n=2}^{\infty}\frac{\zeta(n)}{n}s^{n}\}=$

$e^{-\gamma s}\Gamma(1-s)$ for $\varphi=\Phi_{KZ}$ where $\gamma$ is the Euler constant, $\Gamma(s)$ is the
classical gamma function and $\Phi_{KZ}$ is the Drinfel’d associator.

3. THE MOTIVIC GALOIS GROUP

We recall the motivic Galois group of the category of mixed Tate
motives over $Z$ [DG] in this section. This is related with the Drinfel‘d’s
Grothendieck-Teichm\"uller group ([Dr91]) in \S 1 and the Racinet‘s dou-
ble shuffle group ([R]) in \S 2.

Convention 3.1. Let $DM(Q)_{Q}$ be the triangulated category of mixed
motives 7 over $Q$ constructed by Hanamura [Ha], Levine [L2] and Vo-
evodsky [V]. Tate motives $Q(n)(n\in Z)$ are (Tate) objects of the cat-
egory. Let $DMT(Q)_{Q}$ be the triangulated sub-category of $DM(Q)_{Q}$

generated by Tate motives $Q(n)(n\in Z)$ . By the work of Levine [Ll]
a neutral tannakian Q-category $MT(Q)=MT(Q)_{Q}$ of mixed Tate
motives over $Q$ can be extracted by taking a heart with respect to a
t-structure of $DMT(Q)_{Q}$ .

Each object $M$ of $MT(Q)$ has an increasing filtration of subobjects
called weight filtmtion, $W$ :. . . $\subseteq W_{m-1}M\subseteq W_{m}M\subseteq W_{m+1}M\subseteq\cdots$ ,
whose intersection is $0$ and union is $M$ . The quotient $Gr_{2m+1}^{W}M$ $:=$

$6_{It}$ means $(1+\varphi_{X_{1}}X_{1})^{ab}$ for the unique expression $\varphi=1+\varphi_{X_{O}}X_{0}+\varphi x_{1}X_{1}$

$(\varphi x_{O}, \varphi x_{1}\in k\langle\langle X_{0}, X_{1}\rangle))$ and $(\cdot)^{ab}$ means the image of the abelianization map
$k\langle\langle X_{0},$ $X_{1}\rangle\ranglearrow k[[x_{0}, x_{1}]]$ .

7As for a nice expository on mixed motives, see [De94]. According to Wikipedia,
“the (partly conjectural) theory of motives is an attempt to find a universal way
to linearize algebraic varieties, i.e. motives are supposed to provide a cohomology
theory which embodies all these particular cohomologies.”
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$W_{2m+1}M/W_{2m}M$ is trivial and $Gr_{2m}^{W}M$ $:=W_{2m}M/W_{2m+1}M$ is a direct
sum of finite copies of Tate motive $Q(m)$ for each $m\in$ Z. Morphisms
of $MT(Q)$ are strictly compatible with weight filtration. The extension
group is related to K-theory as follows

$Ext_{MT(Q)}^{i}(Q(0), Q(m))=\{\begin{array}{ll}K_{2m-i}(Q)_{Q} for i=1,0 for i>1.\end{array}$

There are realization fiber functors ([L2] and [Hu]) corresponding to
usual (Betti, de Rham, \’etale, etc) cohomology theories.

Definition 3.2. Deligne and Goncharov [DG] defined the full subcat-
egory $MT(Z)=MT(Z)_{Q}$ of unmmified mixed Tate motives, whose
objects are mixed Tate motives $M$ (an object of $MT(Q)$ ) such that for
each subquotient $E$ of $M$ which is an extension of $Q(n)$ by $Q(n+1)$
for $n\in Z$ , the extension class of $E$ in $Ext_{MT(Q)}^{1}(Q(n), Q(n+1))=$

$Ext_{MT(Q)}^{1}(Q(0), Q(1))=Q^{\cross}\otimes Q$ is equal to $Z^{\cross}\otimes Q=\{0\}$ .

In this category the following hold:

$Ext_{MT(Z)}^{1}(Q(0), Q(m))=\{\begin{array}{ll}0 for m\leq 1,K_{2m-1}(k)_{Q} for m>1,\end{array}$

$Ext_{MT(Z)}^{2}(Q(0), Q(m))=0$ .

Actually $MT(Z)$ forms a neutral tannakian Q-category with the
fiber functor $\omega_{can}$ : $MT(Z)arrow Vect_{Q}(Vect_{Q}$ : the category of Q-vector
spaces) which sends each motive $M$ to $\oplus_{n}Hom(Q(n), Gr_{-2n}^{W}M)$ .

Definition 3.3. The motivic Galois gmup of unramified mixed Tate
motives $MT(Z)$ is defined to be the pro-algebraic group $Ga1^{\lambda 4}(Z):=$

$\underline{Aut}^{\otimes}(MT(Z) : \omega_{can})$ .

We have a categorical equivalence $MT(Z)\simeq Rep_{Q}Ga1^{\Lambda t}(Z)$ where
r.h. $s$ means the category of Q-vector space with $Ga1^{\mathcal{M}}$ (Z)-action. The
action of $Ga1^{\Lambda 4}(Z)$ on $\omega_{can}(Q(1))=Q$ defines a surjection $Ga1^{\mathcal{M}}(Z)arrow$

$G_{m}$ and its kernel $\mathcal{U}Ga1^{\lambda 4}(Z)$ is the unipotent radical of $Ga1^{\lambda 4}(Z)$ .
There is a canonical splitting $\tau$ : $G_{m}arrow Ga1^{\Lambda 4}(Z)$ which gives a neg-
ative grading on the Lie algebra $Lie\mathcal{U}Ga1^{\mathcal{M}}(Z)$ (consult [De89] \S 8 for
the full story). The above computations of Ext-groups follows

Proposition 3.4 ([De89] \S 8, [DG] \S 2). The gmded Lie algebm $Li\epsilon \mathcal{U}Ga\psi(Z)$

of the unipotent part $\mathcal{U}Gal^{M}(Z)$ of $Ga\psi(Z)$ is a gmded free Lie algebm
generated by one element in each degree-m $(m\geq 3$ : odd$)$ .
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In [DG] \S 4 they constructed the motivic hndamental gmup $\pi_{1}^{\lambda 4}(X$ :
$\vec{01})$ with $X=P^{1}\backslash \{0,1, \infty\}$ , which is an ind-object of $MT(Z)$ . This
is an affine group $MT(Z)$-scheme (cf. [DG]). Since all the structure
morphism of $\pi_{1}^{\mathcal{M}}(X : \vec{01})$ belong to the set of morphisms of $MT(Z)$

and $\omega_{can}(\pi_{1}^{\mathcal{M}}(X : 0\urcorner))=\underline{F_{2}}$ where $\underline{F_{2}}$ is the free pro-unipotent algebraic
group of rank 2, we have

$\varphi$ : $\mathcal{U}Ga1^{\mathcal{M}}(Z)arrow\underline{Aut}\underline{F_{2}}$ .
On this map $\varphi$ the following is one of the basic problems.

Problem 3.5. Is $\varphi$ injective?

Remark 3.6. This might be said a problem which asks a validity of
a unipotent variant of the so-called $Bely\dot{1}’ S$ theorem’ in [Be] in the
pro-finite setting. Equivalently this asks if the motivic fundamental
group $\pi_{1}^{\mathcal{M}}(X : \vec{01})$ is a ‘generator’ of the tannakian category $MT(Z)$ .
It is related with various conjectures in several realizations (cf. [F07]
note 3.10); Zagier conjecture (partially proved by Terasoma [T] and
Deligne-Gonchaov [DG] $)$ in Hodge realization, Deligne-Ihara conjecture
(partially proved by Hain-Matsumoto [HM]) in etale realization and
Furusho-Yamashita conjecture (partially proved by Yamashita [Y]) in
crystalline realization.

By using geometric interpretation of pentagon and hexagons equa-
tions, the defining equations of the Grothendieck-Teichm\"uller group
$GRT_{1}$ , we could show that the unipotent part of the motivic Galois
group $\mathcal{U}Ga1^{\mathcal{M}}(Z)$ is mapped into $GRT_{1}$ (clearly explained in $[A$ , F07]):

Proposition 3.7. $\varphi(\mathcal{U}Ga\mu(Z))\subset GRT_{1}$ .
In [Ko] Kontsevich raised a mysterious speculation which connects

motivic Galois groups and deformation quantizations. His speculation
was based on several conjectures and one of which was the following.

Conjecture 3.8. The map $\varphi$ might induce the isomorphism $\mathcal{U}Ga1^{\mathcal{M}}(Z)\simeq$

$GRT_{1}$ .

It is known that the double shuffie group $DMR_{0}$ also contains the
motivic Galois image:

Proposition 3.9. $\varphi(\mathcal{U}c_{a}\mu(Z))\subset DMR_{0}$ .

This follows from the result in [Go] and another proof is given in
[F07]. As an analogue of conjecture 3.8, the following conjecture is
posed (cf. [R] and see also [A].)
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Conjecture 3.10. The map $\varphi$ might induce the isomorphism $\mathcal{U}Ga1^{\mathcal{M}}(Z)\simeq$

$DMR_{0}$ .

The validities of conjecture 3.8 and conjecture 3.10 would imply that
$GRT_{1}$ might be isomorphic to $DMR_{0}$ . Due to corollary 2.10 we have
the injection $GRT_{1}arrow DMR_{0}$ however we do not know the opposite
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