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Abstract

By means of torsors (principal homogeneous spaces), we prove that
dynamical braided monoids can produce dynamical Yang-Baxter maps.

1 Introduction

Finding solutions to the quantum Yang-Baxter equation [1, 21] is essential in
the study of integrable systems [2, 8]. This quantum Yang-Baxter equation
is exactly the braid relation in a suitable tensor category; for example, the
usual quantum Yang-Baxter equation is the braid relation in the tensor
category of vector spaces, and the quantum group [3, 7] is useful for the
construction of solutions.

Lu, Yan, and Zhu [12] constructed Yang-Baxter maps [4, 20], solutions
to the braid relation in the tensor category of sets, by means of braided
groups [19]. Let S and B be groups whose unit elements are respectively
denoted by 1g and 1p, and let o be a map from § x B to B x S.

Definition 1.1. A triple (S, B,0) is a matched pair of groups [18], iff the
map o0 : S x B> (s,b) — (s —b,s— b) € B x S satisfies:

s—=(t—=b)=(st) =Y (1.1)
(st) — b= (s = (t = b))(t = b); (1.2)
(s = b) — c= s+ (be); (1.3)
s = (bc) = (s = b)((s = b) = ¢); (1.4)
ls = b= (1.5)
s—1gp=s (Vs,t € S,Vb,ce€ B). (1.6)

The Cartesian product B x S is a group with the multiplication

(b,s)(c,t) = (b(s = c), (s <= c)t) ((b,5),(c,t) € B x 5).



To be more precise, the unit element is (1p,1g), and the inverse of the
element (b,s) € Bx Sis (s71 —=b71,s71 «—p71).

Definition 1.2. A pair (G,0) of a group Gandamapoc:GxG —- GxG
is a braided group, iff:

(1) (G, G, o) is a matched pair of groups;
(2) if (y/,2') = o(z,y), then y'z’ = zy (z,y,2', ¢ € G).
In {12], Lu, Yan, and Zhu showed

Theorem 1.3. If (G,0) is a braided group, then o satisfies the braid rela-
tion.

(0 xidg) o (idg x o) o (0 X idg) = (idg x 0) o (¢ X idg) o (idg X 0).

We can rephrase the definition of the matched pair of groups by using
category theory.

Let Iset denote the set {e} of one element. We write mg and mp for
the multiplications of the groups S and B, respectively. We define the maps
Ns : Iset — S and np : Iset — B by

ns(e) = 1s;na(e) = 1B.

The above equations (1.1)-(1.6) are equivalent to:

(idp x mg) o (0 x idg) o (ids X ¢) = o o (mg % idp); (1.7)
(mp xidg) o (idp x 0) o (¢ x idg) = o o (ids X mp); (1.8)
(idp X mg) o (0 x idg) o (ng x idpxs) = lBxs; (1.9)
(mp x idg) o (idp X ) o (idpxs X NB) = rBxS- (1.10)

Here, the maps Igxs : Iset X BXS — Bx S and rgxs : BXSxIget — BXx S
are defined by

IBxs(e,b,s) = (b,s);rexs(b,s,e) = (b,s) (Iset ={e},b€ B,s€S).

It is natural to try to solve the braid relation in another tensor category
similarly.

The aim of this article is to make an analogy between the Yang-Baxter
maps and dynamical Yang-Baxter maps (Definition 2.1) [14], solutions to
the braid relation in a tensor category Sety [15] defined in the next sec-
tion. We construct the dynamical Yang-Baxter maps by means of dynamical
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braided monoids in Definition 4.2. Torsors [9, 11}, also known as the princi-
pal homogeneous spaces, are important in this construction.

The organization of this article is as follows.

In Section 2, we briefly sketch a tensor category Sety. Section 3 ex-
plains monoids in Sety. After introducing dynamical braided monoids, our
main results are stated and proved in Sections 4 and 5. The crucial fact is
that the dynamical braided monoid satisfying (3.1) is exactly a torsor (See
Proposition 5.6).

2 Tensor category Sety and dynamical Yang-Baxter

maps

This section explains the tensor category Sety (cf. the tensor category Vy
in [5, Section 3]), in which we will focus on the braid relation (For the tensor
category, see [10, Chapter XI}).

Let H be a nonempty set. Sety is a category whose object is a pair
(X,-x) of a nonempty set X and amap -x : HxX > (\z)—» A-xz€H
and whose morphism f : (X,-x) — (Y,y) isamap f: H — Map(X,Y)
satisfying that

Ay fQ)z)=A-xz (YA€ H,Vz € X). (2.1)

To simplify notation, we will often use the symbol Az instead of A -x z.
The identity id and the composition o are defined as follows: for objects
X,Y,Z and morphisms f: X =Y, g:Y — Z,

idx(\)(z) =2z (A€ H,zeX);(gof)(N)=g(N)of(}) (AeH).

This Sety is a tensor category: the tensor product X ® Y of the objects
X = (X, x)and Y =(Y,y) is a pair (X x Y,-) of the Cartesian product
X xY and the map - : H x (X xY) — H defined by

A("1:"!!):(’\)(:17)Yy (AEH)(xvy)GXXY)a (22)

the tensor product of the morphisms f: X — X’ and g: Y — Y’ is defined
by (f ® 9)(N)(z,y) = (F(M)(2),9(Az)(y)) (A € H,(z,y) € X xY).

The other ingredients of the tensor category Sety are: the associativity
constraint axyz(\)((z,y),2) = (z, (y,2)); the unit I = ({e}, 1), a pair of
the set {e} of one element and the map ; defined by A-;e = A; the left and
the right unit constraints Ix(\)(e,z) = z = rx(A)(z, €).

In what follows, the associativity constraint will be omitted.

82



- Definition 2.1. A morphism ¢: X @ X — X ® X of Sety is a dynamical
Yang-Baxter map (14, 15], iff o satisfies the following braid relation in Sety.
(c®idx)o(idx ®0)o (0 ®idx) = (idx ® o) o (¢ ®idx) o (idx ® 7). (2.3)

Remark 2.2. (1) If H is a set of one element, the tensor category Sety is
exactly the tensor category Set consisting of nonempty sets, and the
dynamical Yang-Baxter map is a Yang-Baxter map.

(2) The dynamical Yang-Baxter maps satisfying suitable conditions can
produce bialgebroids, each of which gives birth to a tensor category
of its dynamical representations [16]. Note that the definition of the
tensor product in [16] is slightly different from that in this section.

3 Monoids in Sety

In this section, we introduce the monoid in Sety (See [13, VIL3]).
Let X be an object of the tensor category Sety and let mx : XX — X
and nx : I — X be morphisms of Sety.

Definition 3.1. The triple (X, mx,nx) is a monoid, iff:
mx o (mx ®idx) = mx o (idxy ® mx);
mx o (nx ®idx) = lx;
mx o (id®nx) =rx.

We explain a construction of the monoid in Sety, which is due to Mit-
suhiro Takeuchi. Let X be an object of Sety. Suppose that

Y\, N € H,3;2 € X such that Az = X. (3.1)
We will denote by A\ the unique element z € X.
Proposition 3.2. X satisfying (3.1) is a monoid, together with the mor-
phisms mx and nx: '
mx(A)(z,y) = A\((Az)y);nx(A)(e) =A\N (A€ H,z,y € X,I = {e}).
Furthermore, this monoid structure is unique.

Proof. We give the proof only for the uniqueness of the morphism mx.
Suppose that mx : X ® X — X is a morphism of Sety. It follows from
(2.1) and (2.2) that Amx(N)(z,y) = AM(z,y) = (\z)y (A € H,z,y € X). By
taking (3.1) into account, mx(A\)(z,y) is uniquely determined. a

Example 3.3. The set H with the map A-g X = X (\, ) € H) is an object
of Sety, and obviously satisfies (3.1); hence, H = (H, -g) is a monoid.
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4 Dynamical braided monoids

After introducing dynamical braided monoids in Sety, we show in this
section that each dynamical braided monoid satisfying (3.1) gives birth to
the dynamical Yang-Baxter map.

Let (X, mx,nx) be a monoid in the tensor category Sety. Suppose that
a morphism 0 : X ® X — X ® X of Sety satisfies:

(idx ®mx) o (0 ®idx) o (idx ® o) =o o (mx ®idx); (4.1)
(mx ®idx)o (idx ® o) o (¢ ®idx) =0 o (ildx ®mx); (4.2)
(idx®mx)0(0'®idx)0(77x®id)(®x) = lx®X; (4.3)
(mx ®idx)o (idx ® o) o (ildxex ® Nx) = rxex- (4.4)

We define the morphisms mxgx : (X ® X)® (X ® X) - X ® X and
nxex : I — X ®X by:

mxex = (mx ® mx) o (idx ® ¢ ® idx); nxex = (nx ®nx) o i *.
A straightforward computation shows
Proposition 4.1. (X ® X, mxgx,nxex) S a monoid.

Definition 4.2. (X, o) is a dynamical braided monoid, iff the morphism o
satisfies (4.1)-(4.4).

Remark 4.3. (1) By taking (1.7)-(1.10) into account, the conditions (4.1)-
(4.4) correspond to (1) in Definition 1.2, while (2) in Definition 1.2
corresponds to (2.1) for the morphism o. If the monoid X satisfies
(3.1), then mx(\)(z,y) = A\((Az)y) (A € H,z,y € X) because of
Proposition 3.2, and (2.1) for the morphism o is equivalent to that
mx oo = my, which is similar to (2) in Definition 1.2.

(2) Let (X,mx,nx) and (Y, my,ny) be a monoid in the tensor category
Sety. Suppose that a morphism o : X®Y — Y ® X of Set g satisfies:
(idy ® mx)o(c®idx) o (iddx ®0) =0 o (mx ® idy);
(my ®idx) o (idy ®g) o (¢ ®idy) = o o (idx ® my);
(idy ® mx) o (¢ ®idx) o (nx ® idyex) = lvex;
(my ®idx) o (idy ® 0) o (idygx ® ny) =Tyex-
We define the morphisms mygx : (Y ® X)® (Y ® X) - Y ® X and
Nyex : I — Y ® X by:

myex = (my ® mx) o (idy ® 0 @ idx); nyex = (v ®nx) o 7 L.
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Then (Y ® X, mygx,Nygx) is a monoid, which is called a matched
pair of monoids.

The following theorem is an analogue of Theorem 1.3.

Theorem 4.4. If a dynamical braided monoid (X, o) satisfies (3.1), then o
is a dynamical Yang-Bazter map (Definition 2.1).

We give a proof of this theorem in the néxt section.

5 Torsors (Principal homogeneous spaces)

This section is devoted to proving Theorem 4.4, in which the notion of a
torsor [11, Section 4.2] plays an essential role.

Definition 5.1. A pair (M, ) of a nonempty set M and a ternary operation
p:MXxMxM— M is called a torsor, iff u satisfies:

p(u,v,v) = u = p(v,v,u); (5.1)

w(nlu, v, w),2,9) = p(u, v, 4w, 2,y))  (Vu,0,w,3,y € M). (5.2)

Remark 5.2. (1) A Mal’cev operation is a ternary operation satisfying
(5.1) [9, Section 1]; moreover, an associative Mal’cev operation is a

ternary operation satisfying (5.1) and (5.2). The torsor is also called
a herd, a Schar (in German), a flock, and a heap [17, Section 1].

(2) For a pair (M, p), the following conditions are equivalent (cf. [6, Sec-
tion 2.1]):
(a) (5.1) and (5.2);
(b) (5.1) and (5.3).

p(p(u,v,w), z,y) = pu, p(z, w,v),y) = p(y, v, p(w, z,y))
(Vu,v,w,z,y € M). (5.3)

In fact, (5.1) and (5.2) induce (5.3), because
pu, v, u(w, z,y)) = plu,v, p(w,z, p(u(z, w,v), 4z, w,v),y)))
= w(u,v, p(p(w, z, p(z, w, v)), u(z, w,v),y))
= “(uavaﬂ(va“(w’w’v)ay))
= M(N(U,U,v)aﬂ(waw,v),y)
= p(w, p(z, w,v),y)-
Thus, a pair (M, u) satisfying (5.1) and (5.3) is exactly a torsor.
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(3) The torsor (M, ) is a principal homogeneous space [11, Section 4.2].
Let u(a,b) (a,b € M) denote the map from M to itself defined by
u(a,b)(c) = u(a,b,c) (c € M). The set G = {u(a,b);a,b € M} is
a subgroup of Aut(M), which makes M a G-principal homogeneous
space. Conversely, the principal homogeneous space gives birth to a
torsor.

Each group G produces a torsor. Define the ternary operation ug on G
by
pa(a,b,c) =ab™lc (a,b,c € Q). (5.4)
The pair (G, p) is a torsor.

Remark 5.3. Every torsor (M, u) is isomorphic to (5.4) [17, Section 1.6]. We
first fix any element e € M. The nonempty set M, together with the binary

operation
M x M > (a,b) — p(a,e,d) € M,

is a group [9, Section 1}; in fact, the unit element is e, and the inverse of the
element a is u(e,a,e). This group M gives birth to the torsor (5.4), which
is isomorphic to (M, u).

Let H = (H, -y) denote the object of the category Sety in Example 3.3.
Here, A\ -y X = X (\, X € H). Suppose that an object X of Sety satisfies
(3.1). We define the map i : H — Map(H, X)) by

iA)(uw)=AN\u (A\u€ H).
Proposition 5.4. The map i is an isomorphism of Sety from H to X.
In fact, its inverse is as follows. |
i'(\)(z) =Xz ()€ H,z € X).

Let 0 : X ® X — X ® X be a morphism of Sety. By virtue of (2.1) for
the morphism i1 ® i loooi®i: HQH - H® H,

Proposition 5.5. The second component of (i"! ® i} 0 0 01 ® i)(A)(u,v)
(Au,ve€ H) isw.

We define the ternary operation x4 on the set H by the first component
of iT!®i7! 0001 ®1i)(A\)(u,v); that is,

(iT'@itoooi®i)(N)(u,v) = (u(A,u,v),v) (A u,v € H).
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Proposition 5.6. (H,p) is a torsor, if and only if (X,0) is a dynamical
braided monoid.

Proof. We first observe (4.1) is equivalent to that
pw(u, v, (v, w,x)) = p(u,w,z) (Yu,v,w,z € H). (5.5)
On account of Proposition 5.4, the morphism o satisfies (4.1), if and only if

(idy ® (it omy 0i®1%)o(((T'®iloooi®i)®idy)
o(idg ® ("' ®@i oo oi®i))
=('®iloooi®i)o((i"lomx 0i®i)@idy). (5.6)

Because (i™! omx 01 ®1)(\)(u,v) = v (\,u,v € H), (5.5) and (5.6) are
equivalent.
Similar argument implies to: (4.2) is equivalent to that

/J'(M(ua 'U,’LU),’LU,.’B) = #(U,U, x) (Vu,v,w,m € H)a (57)

(4.3) is equivalent to that u(v,v,u) = u (Yu,v € H); and (4.4) is equivalent
to that u(u,v,v) = u (Vu,v € H).

An easy computation shows that (5.2) is equivalent to (5.5) and (5.7), if
p satisfies (5.1); in fact, (5.5) and (5.7) induce (5.2), because

p(p(u, v, w), z,y) = p(u(y, v,w), w, p(w, z,y)) = py, v, p(w, ,y)).

Hence, (H,u) is a torsor, if and only if (X,0) is a dynamical braided
monoid. O

Proof of Theorem 4.4. Let (X, o) be a dynamical braided monoid satisfying
(3.1). From (3.1) and Proposition 5.6, (H, u) is a torsor. If (H, p) is a torsor,
then the morphism (i"! ® i 1) oo o (i®i): H® H — H ® H satisfies the
braid relation (2.3), and so does the morphism o. Thus, o is a dynamical
Yang-Baxter map (Definition 2.1). O
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