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ABSTRACT. Recent study of the volume conjecture of knots reveals the re-
lation between $\mathcal{U}_{q}(sl_{2})$ quantum invariants of knots, e.g. the colored Jones
polynomial, and the hyperbolic volume of the complements. The colored
Alexander invariant is a quantum invariant coming from the non-integral
highest weight representations of $\mathcal{U}_{q}(sl_{2})$ at $q=\exp(\pi\sqrt{-1}/N)$ for an in-
teger $N\geq 2$ . In this note, we introduce some derivatives of the colored
Alexander invariant and discuss the relation between them and the hyper-
bolic volume.

INTRODUCTION

The discovery of the Jones polynomial gave rise to various knot invariants,
which are now called the quantum invariants. As one of such invariants, the
colored Alexander invariant of knots and links was introduced in [1] by using
the quantum R-matrix related to the non-integral highest weight representa-
tion of the quantum enveloping algebra $\mathcal{U}_{q}(sl_{2})$ at $q=\exp(\pi\sqrt{-1}/N)$ for an
integer $N\geq 2$ . On the other hand, Kashaev introduced an quantum invari-
ant by using the q-analogue of dilogarithm function, and he observed that his
invariant is related to the hyperbolic volume of the knot complement. Such
relation is verified only for small class of knots and links, but it is expected
also for various generalized cases, and is now called the volume conjecture. In
[22], it is showed that Kashaev $s$ invariant is obtained by certain specializa-
tions of the colored Jones invariant and the colored Alexander invariant. The
relation between the colored Jones invariant with generic parameter $q$ and the
hyperbolic volume is first discussed by Gukov in [13]. The relation between
the colord Alexander invariant and the hyperbolic volume is discussed in [25]
and [4]. In this note, we discuss the relation between some derivation of the
colored Alexander invariant and the hyperbolic volume.

The $6j$-symbol is introduced for studying gravity theory by using the repre-
sentation theory of the Lie algebra $sl_{2}$ . The quantized version of the $6j$-symbol
is introduced in [19], in which the face model of the colored Jones invariants
of knots and links are constructed with the quantum $6j$-symbol instead of
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the quantum R-matrix. The quantum $6j$-symbol is also used to construct
the Turaev-Viro invariant of three manifods in [30], which is a version of the
Witten-Reshetikhin-Turaev invariant [29]. On the other hand, Kashaev con-
structed knot invariants in [16] from quantized dilogarithm functions and ob-
served in [17] that certain limit of his invariants coincide with the hyperbolic
volume of the knot compliment, and it turned out in [22] that the Kashaev
invariant is the colored Jones invariant of spin $\frac{N-1}{2}$ at $q=\xi$ , where $\xi$ is the
primitive $2n$-th root of unity $\exp(\frac{\pi\sqrt{-1}}{2N})$ . In other words, the Kashaev invariant
comes from the $n$ dimensional irreducible representation of $\mathcal{U}_{\xi}(sl_{2})$ .

For the case $q=\xi$ , we have other invariants related to $\mathcal{U}_{\xi}(sl_{2})$ , such as the
colored Alexander invariant [1], [25], [12], the logarithmic invariant [26], and
the Hennings invariant [15]. The colored Alexander invariant relates to the
central deformation of the $n$ dimensional irreducible representation of $\mathcal{U}_{\xi}(sl_{2})$ ,
which is a non-integral highest weight representation. Let $\tilde{\mathcal{U}}_{\xi}(sl_{2})$ be the small
(or restricted) quantum group which is a quotient of $\mathcal{U}_{\xi}(sl_{2})$ . The logarithmic
invariant is defined by using the radical part of a non-semisimple representation
of $\tilde{\mathcal{U}}_{\xi}(sl_{2})$ . The Hennings invariant is an invariant of 3-manifolds coming from
the right integral given by the finite dimensional Hopf algebra structure of

$\tilde{\mathcal{U}}_{\xi}(sl_{2})$ . The logarithmic and Hennings invariants are both related to the
logarithmic conformal field theory [9], and these invariants can be expressed
in terms of the colored Alexander invariant as in [26].

The main purpose of this paper is to investigate several versions of the
quantum $SL(2, \mathbb{C})$ invariants which may relate to the hyperbolic volume. The
author found that the colored Alexander invariant for knots has good relation
with the hyperbolic volume of the knot complements, and here two subjects are
discussed. One is a generalization of the Hennings invariant, and another one
is a generalization of the quantum $6j$-symbols. These are constructed from the
colored Alexander invariant and are expected to have a strong relation to the
hyperbolic volume. For the generalized $6j$-symbol, relation to the hyperbolic
volume is confirmed as in Theorem 4.4. For the generalization of the Hennings
invariant, the relation to the hyperbolic volume is not checked yet, but, if we
consider the case for a knot in $S^{3}$ , this invariant is nothing other than Kashaev’s
invariant nor the logarithmic invariant, and these invariants are specializations
of the colored Alexander invariant. So, for $S^{3}$ case, relation to the hyperbolic
volume is already observed.

To get the $6j$-symbol from the colored Alexander invariant, we first compute
the Crebush-Gordan quantum coefficients (CGQC) of the tensor product of two
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non-integral highest modules, and then combine them to get the corresponding
quantum $6j$-symbols. Since the spin is given as a continuous parameter in the
above construction, it may be natural to associate $SL(2, \mathbb{C})$ , while the usual
one is regarded as the $SU(2, \mathbb{C})$ quantum $6j$-symbol.

The CGQC naturally corresponds to a trivalent vertex of a colored graph,
and the colored Alexander invariant is easily generalized to the invariant of
colored graphs which is essentially equal to the invariant given in [12] for odd
$n$ , and we construct the face model for such invariants by using the $SL(2, \mathbb{C})$

quantum $6j$-symbols along with the method in [19]. This model is a gen-
eralization of those for the Conway function and the Alexander polynomial
constructed by $0$ . Viro [32] using the quantum supergroup $gl(1|1)$ , and we
generalize them concretely by using $\mathcal{U}_{\xi}(sl_{2})$ .

The relation between the Kashaev invariant and the hyperbolic volume of
the knot complement is not proved yet for general case, but a nice geometric
explanation is given by Yokota in [33]. This suggest that the $SU(2, \mathbb{C})$ quantum
$6j$-symbol should relate to the hyperbolic volume and some geometric data of
a hyperbolic tetrahedron, and this leads to the volume furmulae in [28], [31],
[27]. Such idea is also applied in [5], [6] for discussing the relation between
the colored Jones invariant of hyperbolic links in $S^{2}\cross S^{1}$ and the hyperbolic
volumes of their complements. It is observed in [25], [4] that the colored
Alexander invariant relate to the hyperbolic volume of a cone manifold whose
core is the given knot. Here, we show that the $SL(2, \mathbb{C})$ quantum $6j$-symbol
relates to the volume of a truncated tetrahedron as the relation between the
Kashaev invariant and the volume of the complement.

This paper is organized as follows. Various versions of the volume conjec-
ture for quantum invariants are explained in the first section. In the second
section, we generalize Henning invariant coming from the right integral of the
small quantum group to invariants of a knot in a 3-manifold. One of these
invariants can be thought as a generalization of Kashaev $s$ invariant. In sec-
tion 3, we extend the colored Alexander invariant to an invariant of colored
graphs. We introduce the Crebsch-Gordan quantum coefficient (CGQC) ac-
tually to define the invariant at the trivalent vertex. By using representation
theory, CGQC is defined uniquely up to a scalar multiple, and here we give
a suitable normalization so that the invariant has a good symmetry around
the vertex. Combining CGQC and certain R-matrix, we define an invariant
of oriented colored graphs. In the last section, we actually give the $6j$-symbol
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coming from the above invariant by using CGQC. We also discuss the relation
between the $6j$-symbol and the hyperbolic volume.

The contents of sections 3 and 4 are obtained by a joint work with F.
Costantino and the detail is given in [8].

1. VOLUME CONJECTURES OF KNOTS

In $1990’ s$ , R. Kashaev [16] introduced new knot invariants $K_{N}(L)$ for a knot
$L$ in $S^{3}$ by using the q-analogue of the dilogarithm function for every integer
$N\geq 2$ . Then he conjectured the following relation between his invariant and
the hyperbolic volume in [17] which is checked for three hyperbolic knot $4_{1},5_{2}$

and $6_{1}$ .

Kashaev $s$ Conjecture

$\lim_{Narrow\infty}\frac{2\pi\log|K_{N}(L)|}{N}=Vol(S^{3}\backslash L)$ ,

where $Vol(S^{3}\backslash L)$ is the hyperbolic volume of the complement of $L$ .
H. Murakami and the author showed in [22] that $K_{N}(L)$ is equal to the

colored Jones invariant corresponding to the $n$ dimensional irreducible repre-
sentation of the quantum group $\mathcal{U}_{q}(sl_{2})$ whose parameter $q$ is specialized to the
$2n$-th root of unity $\exp(\pi\sqrt{-1}/N)$ , and is also equal to the colored Alexander
invariant in [25] which is introduced in [1] whose parameter is specialized to
the $2n$-th root of unity, too. Moreover, Kashaev $s$ conjecture is generalized to
the following volume conjecture.

Volume Conjecture

$\lim_{Narrow\infty}\frac{2\pi\log|K_{N}(L)|}{N}=v_{3}V_{G}(S^{3}\backslash L)$ ,

where $V_{G}$ means the Gromov) $s$ simplicial volume and $v_{3}$ is the volume of the
regular ideal tetrahedron, i.e. $v_{3}=1.01\ldots$ .

The avobe two conjectures are for the absolute value of $K_{N}(L)$ , and $K_{N}(L)$

itself is a complex number in general. For a hyperbolic link $L$ , the following
conjecture is proposed in [23].

Complexified Volume Conjecture

$\lim_{Narrow\infty}\frac{2\pi\log|K_{N}(L)|}{N}=Vol(S^{3}\backslash L)+\sqrt{-1}$ CS $(S^{3}\backslash L)$ ,

where CS $(S^{3}\backslash L)$ is the Chern-Simons invariant of the complement of $L$ .
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On the other hand, S. Gukov considered the case that the parameter $q$ is
deformed around the $2n$-th root of unity $\exp(\pi\sqrt{-1}/N)$ in [13]. Let $\alpha$ be a
complex number close to 1 and let $q=\exp(\alpha\pi\sqrt{-1}/N)$ . Then the following
is conjectured.

Parametrized Volume Conjecture

$2 \pi\alpha\lim_{narrow\infty}\frac{V_{L}^{N}(e^{2\pi\alpha\sqrt{-1}/N})}{N}=$

$Vol(K_{\alpha})+\sqrt{-1}$ CS $(K_{\alpha})+$ correction terms,

where $V_{L}^{N}(q)$ is the colored Jones invariant corresponding to the N-dimensional
irreducible representation of $\mathcal{U}_{q}(sl_{2})$ , and $K_{\alpha}$ is a deformation of the hyperbolic
structure of $S^{3}\backslash K$ corresponding to the parameter $\alpha$ . The correction term is
explicitly given by H. Murakami and Y. Yokota in [24].

In the parametrized volume conjecture, the parameter $q$ is deformed and
the representation is fixed. But there is another way of deformation: the
parameter $q$ is fixed to the $2N$-th root of unity and the representation is
deformed. If $q$ is generic, then the irreducible representation of $\mathcal{U}_{q}(sl_{2})$ is rigid,
i.e. there is no way to deform it. However, if $q$ is $2N$-th root of unity and
the dimension of the irreducible representation is $N$ , then the representation
has one-parameter deformation and the knot invariant corresponding to this
representation can be also deformed. The highest weight of the usual N-
dimensional irreducible representation is $(N-1)/2$ , and, the highest weight of
the deformed representation can be any complex number $\lambda$ . Such a deformed
invariant is first constructed in [1] and its relation to the hyperbolic volume
is discussed in [25]. This invariant is called the colored Alexander invariant,
which is a basis of this note, and it is denoted by $\Phi_{\lambda}^{N}(L)$ . For a real $\beta$ , the
limit of $\Phi_{N\beta}^{N}(L)$ is conjectured in [25] as follows.

Volume Conjecture for the colored Alexander invariant

$2 \pi\lim_{Narrow\infty}\Phi_{N\beta}^{N}(L)=V_{0}1(L_{\beta})+\sqrt{-1}$ $CS$ $(L_{\beta})$ ,

where $L_{\beta}$ is the cone manifold with cone angle $2\pi\beta$ . The R-matrix for the
colored Jones invariant and the colored Alexander invariant is similar, and
the resulting knot invariant is also similar. This explains the similarity of the
above conjecture and Gukov’s conjecture.

Another way of generalization is considered for closed 3-manifold. For a
closed 3-manifold $M$ , let $\tau_{N}(M)$ be the Witten-Reshetikhin-Turaev (WRT)
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invariant of $M$ , which is constructed by a linear combination of the colored

Jones invariants. Let us consider the limit $\lim_{Narrow\infty}\frac{2\pi\log\tau_{N}(M)}{N}$ . Since the

absolute value $|\tau_{N}(M)|$ is not of exponential growth with respect to $N$ and

$\lim_{Narrow\infty}\frac{2\pi\log|\tau_{N}(M)|}{N}=0$ .

However, if we apply Kashaev $s$ way of computation to get the limit naively,
in other words, if we apply the saddle point method without considering the
condition which certify that the value at the saddle point gives the limit, some
relation to the volume is observed in [21] for 3-manifolds obtained by surgeries
of the figure eight knot as follows.

Volume Conjecture for closed 3-manifolds

$O-\lim\frac{2\pi\log|\tau_{N}(M)|}{N}Narrow\infty=V_{0}1(M)+\sqrt{-1}$ $CS$ $(M)$ .

Here $0- \lim_{Narrow\infty}\frac{2\pi\log|\tau_{N}(hI)|}{N}$ means the value at the saddle point and is called
the optimistic limit. The quantum invariant $\tau_{N}(M)$ is expressed as a sum of
several parameters and, to tell the true, the range of the parameters is not
wide enough to apply the saddle point method to get the limit.

Volume formula for hyperbolic tetrahedra
There is another quantum invariant, the Turaev-Viro (TV) invariant in-

troduced in [30], of closed 3-manifolds constructed by using the quantum $6j$

symbol introduced in [19]. This invariant is equal to $|\tau_{N}(M)|^{2}$ and so the
above observation suggests that the optimistic limit of the quantum $6j$ symbol
somehow relate to the volume of a hyperbolic tetrahedron. In [28] and [27],
formulas for the volume of hyperbolic tetrahedron are given by applying this
ideal.

Dihedral angles
In [28], we give a formula by using the dihedral angles of the tetrahedron. In

contrast with the Euclidean case, congruency of hyperbolic tetrahedra is de-
termined by their dihedral angles, and the volume is also uniquely determined
by these angles. Actual formula for a general tetrahedron was first given in
[3], but the formula in [28] has good conformity to the natural symmetry of a
tetrahedron.

Edge lengths
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Of course, congruency of hyperbolic tetrahedra is determined by their edge
lengths as in the case of Euclidean tetrahedra, and the volume is uniquely de-
termined by these lengths. The relation between a volume formula by dihedral
angles and that by edge lengths are given in [20]. By using this method, the
volume formula by edge lengths is given in [27].

Extended tetrahedron
The above formulas are both analytic functions with respect to the param-

eters except at some special values, and these formulas also work some other
types of tetrahedra including spherical tetrahedra and truncated tetrahedra.

In the last cases for closed 3-manifolds and hyperbolic tetrahedra, the vol-
ume comes from the optimistic limit. The aim of my current research is to
construct some quantum things whose limits actually correspond to the hyper-
bolic volume of tetrahedra and closed 3-manifolds. I haven’t succeeded yet to
get such things, but here I would like to propose two thisngs: one is Kashaev‘s
invariant for knots in 3-manifold, which can be computed from the colored
Alexander invariant, and another one is the quantum $6j$ -symbols defined by
the deformed representations of $\mathcal{U}_{q}(sl_{2})$ corresponding to the colored Alexander
invariant also.

2. $KASHAEV’ S$ INVARIANT FOR KNOTS IN 3-MANIFOLDS

In [17], Kashaev $s$ invariant is defined by using R-matrix and is defined for
knots and links in $S^{3}$ . But, in [16], this invariant is defined for a knot in closed
triangulated 3-manifold where the knot is given as aHamiltonian cycle of the
triangulation. Here we give another way to extend Kahsaev $s$ invariant for
knots in $S^{3}$ to knots in a closed 3-manifold by using the left integral of the
small quantum group $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ .

2.1. Quantized enveloping algebra $\mathcal{U}_{q}(sl_{2})$ . Let $q$ be a complex parameter
other than $0$ and $\pm 1$ . We use the following notations.

$\{a\}=\{q^{a}-q^{-a}\}$ $(a\in \mathbb{Z})$ , $\{k\}!=\prod_{j=1}^{k}\{j\}$ $(k\in \mathbb{N})$ , $[a]= \frac{\{a\}}{\{1\}}$ ,

and

$\{\begin{array}{l}ab\end{array}\}=\prod_{j=0}^{a-b-1}\frac{\{a-j\}}{\{a-b-j\}}$ .
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Definition 2.1. For a parameter $q\neq\pm 1$ , let $\mathcal{U}_{q}(sl_{2})$ be the quantized en-
veloping algebra of $sl_{2}$ , which is the Hopf algebra generated by $E,$ $F,$ $K$ and
$K^{-1}$ with relations

$[E, F]= \frac{K^{2}-K^{-2}}{q-q^{-1}},$ $KE=qEK,$ $KF=q^{-1}FK$ ,

$KK^{-1}=K^{-1}K=1$ ,

and the Hopf algebra structure given by
$\triangle(K^{\pm 1})=K^{\pm 1}\otimes K^{\pm 1}$ ,

$\Delta(E)=E\otimes K+K^{-1}\otimes E$ , $\triangle(F)=F\otimes K+K^{-1}\otimes F$ ,

$S(E)=-qE$ , $S(F)=-q^{-1}F$ , $S(K)=K^{-1}$ ,

$\epsilon(E)=\epsilon(F)=0$ , $\epsilon(K)=1$ .

2.2. Colored Jones invariant. Let $\lambda$ be a spin, which is a non-negative
half integer. The irreducible representation of spin $\lambda$ of $\mathcal{U}_{q}(sl_{2})$ is the $2\lambda+1$

dimensional representation $V^{\lambda}$ given by the following construction. Let $e_{0}^{\lambda},$ $e_{1}^{\lambda}$ ,
. . . , $e_{2\lambda}^{\lambda}$ be the basis of $V^{\lambda}$ and the actions of $K,$ $E,$ $F$ are given by

$E(e_{j}^{\lambda})=[j]e_{j-1}^{\lambda}$ , $F(e_{j}^{\lambda})=[2\lambda-j]e_{j+1}^{\lambda}$ , $(e_{-1}^{\lambda}=e_{n}^{\lambda}=0)$

$K(e_{j}^{\lambda})=q^{\lambda-j}e_{j}^{\lambda}$ .

Then, it is well known that we can construct a framed link invariant from
the representation of the universal R-matrix in End $(V^{\lambda}\otimes V^{\lambda})$ . The resulting
invariant is called the colored Jones invariant corresponding to the spin $\lambda$ and is
denoted by $V_{\lambda}(L)$ . Usually, $V_{\lambda}(L)$ is normalized by the framing so that it does
not depend on the framing. In this report, we don’t apply such normalization,
and so $V_{\lambda}(L)$ depends on the framing.

Let $L$ be a p-component framed link with components $K_{1},$ $K_{2}$ , $\cdot\cdot\cdot$ , $K_{p}$ .
Then, assigning spins $\lambda_{1},$ $\lambda_{2},$

$\cdots,$
$\lambda_{p}$ to these components respectively, we get

a link invariant $V_{\lambda_{1},\cdots,\lambda_{p}}(L)$ from the universal R-matrix, which is also called
the colored Jones invariant.

2.3. Witten-Reshetikhin-Turaev invariant. From the colored Jones in-
variant, we can construct a $3$-manifold invariant, which is called the Witten-
Reshetikhin-Trumev $(WRT)$ invariant. Let $N$ be an odd integer greater than
1, and let $q$ be the primitive N-th root of unity $\zeta=\exp(2\pi\sqrt{-1}/N)$ . Let
$lI$ be a 3-manifold obtained by the surgery along a p-component framed link
$L=K_{1}\cup K_{2}\cup\cdots\cup K_{p}$ , and $V_{\lambda_{1},\lambda_{2},\cdots,\lambda_{p}}^{N}(L)$ be the colored Jones invariant with
colors $\lambda_{1},$ $\lambda_{2},$

$\cdots,$ $\lambda_{p}\in\{0,1/2, \cdots, (N-2)/2\}$ assigned to the components
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$K_{1},$ $K_{2},$ $\cdots,$ $K_{p}$ respectively. Then the $SO(3)$ version of the WRT invariant
$\tau_{N}(M)$ be defined by

$\tilde{\tau}_{N}(L)=\sum_{\lambda_{1},\lambda_{2},\cdot\cdot,\lambda_{p}=0}^{(N-.3)/2}(\prod_{i=1}^{p}[2\lambda_{i}+1])V_{\lambda_{1},\lambda_{2},\cdots,\lambda_{p}}^{N}(L)$ ,

$\tau_{N}(L)=\frac{\tilde{\tau}_{N}(L)}{\tilde{\tau}_{N}(o_{+})^{\sigma+(L)}\tilde{\tau}_{N}(o_{-})^{\sigma-(L)}}$ .

where $\sigma_{+}(L)$ and $\sigma_{-}(L)$ are the numbers of the positive eigenvalues and nega-
tive eigenvalues of the linking matrix of $L$ respectively. Then $\tau_{N}(L)$ does not
change by the Kirby moves of types I and II, and this is a invariant of the
3-manifold $M$ , and we denote it by $\tau_{N}(M)$ .

Now let us consider a knot $K$ in the 3-manifold $M$ . Then $K$ is given by a
knot $K_{0}$ in $S^{3}$ having no intersection with the link $L$ , and let

$\tilde{\tau}_{N}^{\lambda}(L, K_{0})=\sum_{\lambda_{1},\lambda_{2},\cdots,\lambda_{p}=0}^{(N-3)/2}(\prod_{i=1}^{p}[2\lambda_{i}+1])V_{\lambda,\lambda_{1},\lambda_{2},\cdots,\lambda_{p}}^{N}(K_{0}\cup L)$ ,

and
$\tau_{N}^{\lambda}(M, K)=\frac{\tilde{\tau}_{N}^{\lambda}(L,K_{0})}{\tilde{\tau}_{N}(o_{+})^{\sigma+(L)}\tilde{\tau}_{N}(O-)^{\sigma-(L)}}$ ,

Then $\tau_{N}(\Lambda l, K)$ is an invariant of $K$ in $M$ and it is called the colored Jones
invariant of the knot $K$ in $M$ .

2.4. Left integral of $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ . Let $N$ be a odd integer greater than 1 and $\zeta$

be a primitive N-th root of 1. The small quantum group $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ is a quotient
of $\mathcal{U}_{\zeta}(sl_{2})$ by the two-sided ideal generated by $E^{N},$ $F^{N}$ and $K^{N}-1$ . Then

$\hat{\mathcal{U}}_{\zeta}(sl_{2})$ is a finite dimensional Hopf algebra with dimension $N^{3}$ , and there is a
left integral $\lambda$ which is a linear functional from $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ to $\mathbb{C}$ satisfying

(2.1) $(id\otimes\lambda)\triangle(x)=\lambda(x)id$ : $\hat{\mathcal{U}}_{\zeta}(sl_{2})arrow\hat{\mathcal{U}}_{\zeta}(sl_{2})$ .

This functional $\lambda$ is actually given by

$\lambda(F^{a}K^{b}E^{c})=\delta_{a,n-1}\delta_{b,1}\delta_{c,n-1}$ .

2.5. Hennings invariant. Let $M$ be a 3-manifold determined by a framed
link $L$ , and $T_{L}$ be a string link of $T$ . The relation (2.1) of $\lambda$ is similar to the
second Kirby move KII and the Hennings invariant of 3-manifold is defined by
using $\lambda$ as follows.

$\psi_{\zeta}(M)=\frac{\lambda\otimes\cdots\otimes\lambda(\Gamma_{\zeta}(T_{L}))}{\lambda(\Gamma_{\zeta}(T_{O+}))^{\sigma+(L)}\lambda(\Gamma_{\zeta}(T_{O-}))^{\sigma-(L)}}$ .
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The relation between the Henings invariant and the WRT invariant is given in
[2] as follows.

Theorem 2.2. (Q. Chen-S.Kuppum-P.Srinivasan) If $\zeta$ is a complex root of
unity of odd order greater than 1, then

$\psi_{\zeta}(M)=h(M)_{\mathcal{T}_{N}}(M)$ ,

where $h(M)$ is the order of $H_{1}(M)$ if it is finite and $0$ otherwise.

2.6. Center of $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ . Let $Z(\hat{\mathcal{U}}_{\zeta}(sl_{2}))$ be the center of $\hat{\mathcal{U}}_{\zeta}(sl_{2})$ . It contains
the Casimir element

$C=( \zeta-\zeta^{-1})EF+\frac{\zeta K+\zeta^{-1}K^{-1}}{\zeta-\zeta^{-1}}$ .

Let $b_{j}=(\zeta^{2j+1}+\zeta^{-2j-1})/(\zeta-\zeta^{-1})$ and

$\phi(x)=\prod_{i=0}^{N-1}(x-b_{i})$ .

Set

$\phi_{j}(x)=\prod_{0\leq i\leq N-1b_{i}\neq b_{j}},(x-b_{i})$
, $0\leq j\leq(N-1)/2$ .

Since $b_{j}=b_{N-1-j},$ $\deg(\phi_{j})=N-2$ for $1\leq j<(N-1)/2$ and $\deg(\phi_{(N-1)/2})=$

$N-1$ . Let

$P_{j}= \frac{1}{\phi_{j}(b_{i})}\phi_{j}(C)-\frac{\phi_{j}’(b_{j})}{\phi_{j}(b_{j})^{2}}(C-b_{j})\phi_{j}(C)$ , $0\leq j\leq(N-1)/2$ ,

$N_{j}= \frac{1}{\phi_{j}(b_{j})}(C-b_{j})\phi_{j}(C)$ , $0\leq j<(N-1)/2$ ,

$\pi_{j}=\frac{1}{N}\sum_{i=1}^{N}\zeta^{2ij}K^{i}$ , $0\leq N-1$ ,

$T_{j}= \sum_{i=j+1}^{N-1-j}\pi_{i}$ , $0\leq j<(N-1)/2$ ,

and
$N_{j}’=T_{j}N_{j}$ , $0\leq j\leq(N-1)/2$ .

Then
$\{P_{i}, N_{j}, N_{j}’, 0\leq(N-1)/2, 0\leq j<(N-1)/2\}$

is the basis of $Z(\hat{\mathcal{U}}_{\zeta}(sl_{2}))$ and $\dim Z(\hat{\mathcal{U}}_{\zeta}(sl_{2}))=(3N-1)/2$ . These basis
elements satisfy the following commutation relations.

$P_{i}P_{j}=\delta_{ij}P_{i}$ , $P_{i}N_{j}=\delta_{ij}N_{j}$ , $P_{i}N_{j}’=\delta_{ij}N_{j}’$ ,
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$N_{i}N_{j}=N_{i}N_{j}’=N_{i}’N_{j}’=0$ .

2.7. Logarithmic invariant of a knot in 3-manifolds. For a knot $K$ in
the 3-manifoled $M$ , let

$\psi_{\zeta}(M, K)=\frac{id\otimes\lambda\otimes\cdots\otimes\lambda(\Gamma_{\zeta}(T_{K\cup L}))}{\lambda(\Gamma_{\zeta}(T_{O+}))^{\sigma+(L)}\lambda(\Gamma_{\zeta}(T_{O-}))^{\sigma-(L)}}$ .

Then $\psi_{\zeta}(M, K)$ is an element of $Z(\hat{\mathcal{U}}_{\zeta}(sl_{2}))$ and it is expressed as a linear
combination of $\{P_{i}, N_{j}, N_{j}’\}$ as follows.

$\psi_{\zeta}(M, K)=\sum_{i=0}^{(N-I)/2}a_{i}(M, K)P_{i}+\sum_{j=0}^{(N-3)/2}(b_{j}(M, K)N_{j}+b_{j}’(M, K)N_{j}’)$ .

The coefficients $a_{i}(M, K),$ $b_{j}(M, K)$ and $b_{j}’(M, K)$ are invariants of $K$ , and
$a_{i}(M, K)$ is a constant multiple of $h(M)\tau_{N}^{i}(M, K)$ if $i<(N-1)/2$ . The
invariants $b_{j}(M, K)$ and $b_{J}’(M, K)$ are generalizations of the logarithmic in-
variant of a knot in $S^{3}$ given in [26].

Let $M_{K}$ be the $3$-manifold obtained from $M$ by the surgery along $K$ , then
the Hennings invariant is given by

$\psi_{\zeta}(M_{K})=\lambda(\phi_{\zeta}(M, K))$ .

However, it is known that

$\lambda(P_{i})=\lambda(N_{j})=0$ ,

and we get

$\psi_{\zeta}(M, K)=\sum_{j}c_{j}b_{j}’(M, K)$
,

where $c_{j}$ is a constant which does not depend on $K$ nor $M$ . It means that $b_{j}’$

is a constant multiple of $h(M_{L})\tau_{N}^{j}(M, K)$ .
Hence, $a_{i}(M, K),$ $b_{i}’(M, K)(0\leq i<(N-1)/2)$ are related to $\tau_{N}^{i}(M, K)$ .

But, $b_{i}(M, K)$ and $a_{(N-1)/2}(M, K)$ are not expressed by $\tau_{N}^{i}(M, K)$ . If $M=$

$S^{3},$ $b_{i}(S^{3}, K)$ is expressed in [26] by using the colored Alexander invariant,
and $a_{(N-1)/2}(S^{3}, K)$ is Kashaev $s$ invariant. So it may be natural to say that
$a_{(N-1)/2}(M, K)$ is a generalization of Kashaev $s$ invariant, and $b_{i}(M, K)$ is a
generalization of the logarithmic invariant.

Question 2.3. To define an invariant, Kashaev first uses triangulated 3-
manifold in [16] and then reformulated to use the R-matrix in [17]. So it
is a pmblem whether the invariant $a_{(N-1)/2}(\Lambda l, K)$ coincides with Kashaev’s
invariant or not.
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3. THE COLORED ALEXANDER INVARIANT OF GRAPHS

In this section, we generalize the colored Alexander invariant to an invariant
of oriented colored graphs. Such generalization is given in [12], and here we give
another construction starting from the Crebsch-Gordan quantum coefficients
(CGQC).

3.1. Highest weight representations of $\mathcal{U}_{q}(sl_{2})$ . Let $N\in \mathbb{N}$ and let $\xi$ be
the primitive $2N$-th root of unity $\exp(\frac{\pi\sqrt{-1}}{N})$ . For a complex number $a,$ $\xi^{a}$

means $\exp(\frac{\pi\sqrt{-1}a}{N})$ . From now on, we assume that $q=\xi$ , and adding to the
notations in \S 2.1, let

$\{a\}=\{\xi^{a}-\xi^{-a}\}$

for any complex number $a$ , and, if $a-b\in N\cup\{0\}$ , let

$\{\begin{array}{l}ab\end{array}\}=\prod_{j=0}^{a-b-1}\frac{\{a-j\}}{\{a-b-j\}}$.

Lemma 3.1. For each $a \in \mathbb{C}\backslash \frac{1}{2}\mathbb{Z}$ there is a simple representation $V^{a}$ of
$U_{\xi}(sl_{2})$ of dimension $n$ whose basis is $\{e_{0}^{a}, e_{1}^{a}, \cdots, e_{N-1}^{a}\}$ and on which the
actions of $E,$ $F$ and $K$ are given by

$E(e_{j}^{a})=[j]e_{i-1}^{a},$ $F(e_{j}^{a})=[2a-j]e_{i+1}^{a},$ $K(e_{j}^{a})=\xi^{a-j}e_{j}^{a}(e_{-1}^{a}=e_{N}^{a}=0)$ .

Two such representations $V^{a}$ and $V^{b}$ are isomorphic iff $a-b\in 2n\mathbb{Z}$ . The
representation $(V^{a})^{*}$ is isomorphic to $V^{N-1-a}$ , a duality pairing realizing this
isomorphism being:

(3.1) $\bigcap_{a,b}(e_{i}^{a}, e_{j}^{b})=\delta_{b,N-1-a}\delta_{i,N-1-j}\xi^{-(a-i)(N-1)}$ .

Similarly, an invariant vector in $V^{a}\otimes V^{b}$ is given by:

(3.2) $\bigcup_{a,b}=\delta_{b,N-1-a}\sum_{i=0}^{N-1}\xi^{(b-N+1+i)(N-1)}e_{i}^{a}\otimes e_{N-1-i}^{b}$ .

The basis $\{e_{0}^{a}, e_{1}^{a}, \cdots, e_{N-1}^{a}\}$ of $V^{a}$ is called the weight basis of $V^{a}$ .

3.2. Crebsch-Gordan quantum coefficients. Let us consider the tensor
product $\pi_{\alpha}\otimes\pi_{\beta}$ . By using standart argument about the weight space decom-
position, we get the following decomposition of the tensor product.

Proposition 3.2. Let $V_{\alpha},$ $V_{\beta}$ be highest weight representations of non-half-
integer pammeters $\alpha,$

$\beta$ . If $\alpha+\beta$ is not a half-integer, then

(3.1)
$V^{a} \otimes V^{b}=\bigoplus_{a+b-c=0,1,,N-1}\ldots V^{c}$

.
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The weight basis $e_{t}^{c}$ of $V_{c}$ is a linear combination of the tensors $e_{u}^{a}\otimes e_{v}^{b}$ of
the weight basis of $V^{a}$ and $V^{b}$ . Referring to [7], we get the following.

Theorem 3.3 (Clebsch-Gordan decomposition). If $a+b-c\in\{0,1,$ $\cdots$ ,
$N-1\}$ , any $\mathcal{U}_{\xi}(sl_{2})$ module map $\iota_{\gamma}^{\alpha,\beta}$ : $V^{c}arrow V^{a}\otimes V^{b}$ is a scalar multiple of
the inclusion map $Y_{c}^{a,b}:V^{c}arrow V^{a}\otimes V^{b}$ given by

$Y_{c}^{a,b}(e_{t}^{c})= \sum_{u+v-t=a+b-c}C_{u,v,t}^{a,b,c}e_{u}^{a}\otimes e_{v}^{b}$
,

where

(3.2)

$C_{u,v,t}^{a,b,c}=\sqrt{-1}^{c-a-b}(-1)^{(v-t)}\xi^{\frac{v(2b-v+1)-u(2a-u+1)}{2}}\{\begin{array}{ll} 2c2c -t\end{array}\}\{\begin{array}{ll}2c a+b+c-N +1\end{array}\}$

$\sum_{z+w=t}(-1)^{z}\xi^{\frac{(2z-t)(2c-t+1)}{2}}\{\begin{array}{l}a+b-cu-z\end{array}\}$ $\{\begin{array}{l}2a-u+z2a-u\end{array}\}\{\begin{array}{l}2b-v+w2b-v\end{array}\}$ .

The coefficient $C_{u,v,t}^{a,b,c}$ defined above is called the Crebsch-Gordan quantum
coefficient (CGQC). In order to get invariants of graphs, the operators $L_{a,b}^{c}$

and $R_{a,b}^{c}$ in Figure 1 must be equal, and we define $Y_{a,b}^{c}$ by $Y_{a,b}^{c}=L_{a,b}^{c}$ . The
equality of $L_{a,b}^{c}$ and $R_{a,b}^{c}$ comes from the following lemma.

$c$ $c$ $c$

$Y_{a,b}^{c}$ $L_{a,b}^{c}$ $R_{a,b}^{c}$

FIGURE 1. The first equality is the definition of $Y_{a,b}^{c}$ , the second
is Lemma 3.4.

Lemma 3.4. It holds that

$C_{N-1-u,t,v}^{N-1-a,c,b}\xi^{-a(N-1)}\xi^{(N-1)u}=C_{t,N-1-v,u}^{c,N-1-b,a}\xi^{-(N-1-b)(N-1)}\xi^{(N-1)(N-1-v)}$ .

By using Lemma 3.4 three times, we get the following.

117



Proposition 3.5. The projection $Y_{a,b}^{c}:V^{a}\otimes V^{b}arrow V^{c}$ is given by

(3.3) $Y_{a,b}^{c}(e_{u}^{a}\otimes e_{v}^{b})=C_{N-1-v,N-1-u,N-1-t}^{N-1-b,N-1-a,N-1-c}(e_{t}^{c})$ .

3.3. The R-matrix. The R-matrix corresponding to the colored Alexander
invariant is given in [1], and is also used in [25]. The construction of the
representation of $\mathcal{U}_{\xi_{n}}(sl_{2})$ is a little bit different from that in [25], and we
define $abR:V^{a}\otimes V^{b}arrow V^{b}\otimes V^{a}$ as follows:

(3.4) $abR(e_{u}^{a}\otimes e_{v}^{b})=$

$\sum_{m\geq 0}\{m\}!\xi_{n}^{2(a-u)(b-v)-m(a-b-u+v)-\frac{m(m+1)}{2}}\{\begin{array}{l}uu-m\end{array}\}\{\begin{array}{l}2b-v2b-v-m\end{array}\}e_{v+m}^{b}\otimes e_{u-m}^{a}$.

We denote ab $u$
$R^{h},t$ the coefficient of $R(e_{u}^{a}\otimes e_{v}^{b})$ with respect to $e_{h}^{b}\otimes e_{k}^{a}$ .

Proposition 3.6. The morphism $abR$ given above is the R-matrix of the non-
integml representations, in other words, $abR$ satisfies
(3.5) $ab$ $R\triangle(x)=\triangle(x)_{a}^{b}R$

as mappings from $V^{a}\otimes V^{b}$ to $V^{b}\otimes V^{a}$ for any $x\in \mathcal{U}_{\xi}.(sl_{2})$ , and

(3.6) $(_{b}^{c}R\otimes$ $id$ $)($ $id$ $\otimes_{a}^{c}R)(_{a}^{b}R\otimes$ $id$ $)=($$id$ $\otimes_{a}^{b}R)(_{a}^{c}R\otimes$ $id$ $)($ $id$ $\otimes_{b}^{c}R)$

as mappings from $V^{a}\otimes V^{b}\otimes V^{c}$ to $V^{c}\otimes V^{b}\otimes V^{a}$ .

The R-matrix given by (3.4) is represented graphically as follows.

aklbRij : $(_{a}^{b}R^{-1})_{kl}^{ij}$ :

$k$ $l$ $k$ $l$

3.4. Invariants of trivalent planar graphs. Let now $\Gamma$ be a framed oriented
connected trivalent graph in $S^{3}$ and let us fix once and for all a natural number
$N\geq 2$ as well as a root $\xi=\exp(\frac{\pi\sqrt{-1}}{N})$ .

Definition 3.7 (Coloring). A coloring on $\Gamma$ is a map col: $\{edges\}arrow \mathbb{C}\backslash \frac{1}{2}\mathbb{Z}$

such that for each three uple of edges $e_{1},$ $e_{2},$ $e_{3}$ sharing a vertex $v$ (possibly
two edges coincinding) it holds:

$f_{v}(e_{1})+f_{v}(e_{2})+f_{v}(e_{3})\in\{0,1, \ldots N-1\}$ ,

where $f_{v}(e_{i})$ is col $(e_{i})$ if $v$ is the end of $e_{i}$ and $N-1-$ col $(e_{i})$ otherwise.
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Given an trivalent graph $\Gamma$ embedded in $S^{3}$ equipped with an orientation of
its edges, a framing and a coloring (such a datum will be from now on called
colored oriented graph), we can associate to it a complex number which we
shall denote $\langle\Gamma$ , col $\rangle_{N}$ by the following construction.

(1) Choose an edge $e_{0}$ of $\Gamma$ and cut $\Gamma$ open along $e_{0}$ .
(2) Move by an isotopy $\Gamma$ so to put it in a (1, 1)-tangle diagram and so that

the two open strands initially contained in $e_{0}$ are directed towards the
bottom.

(3) Assigning $\cap$ operators to the maximal points, $\cup$ operators to the min-
imal points, R-matrices to the crossing points and the Crebsh-Gordan
operators $Y_{a}^{b,c}$ and $Y_{a,b}^{c}$ to the trivalent vertices as in [19], we associate
to the diagram $D$ of $\Gamma$ obtained in (3) an operator op$(D)$ : $V^{co1(eo)}arrow$

$V^{co1(e_{0})}$ and hence, by Schur $s$ lemma, a scalar $\lambda(D)\in \mathbb{C}$ .

(4) Define the scalar associated to $D$ as $i(D)=\lambda(D)\{\begin{array}{l}2col(e_{0})+N2col(e_{0})+1\end{array}\}$

Theorem 3.8. The scalar $i(D)$ is independent on all the choices of the above
construction and is therefore an invariant $<\Gamma$ , col $>_{N}\in \mathbb{C}$ of the colored ori-
ented graph embedded in $S^{3}$ .

The invariance under the Reidemeister moves is proved as usual quantum
invariants. The extra thing is to show the invariance under the choice of edge

$e_{0}$ to cut the graph open. The factor $[2co1(e_{0})+N2co1(e_{0})+1]^{-1}$ is added for this

purpose and the following lemma assures the invariance.

Lemma 3.9. Let $\theta(a, b, c)$ be a $\theta$ -graph embedded in the standard way in the
plane, colored by $a,$ $b,$ $c \in \mathbb{C}\backslash \frac{1}{2}\mathbb{Z}$ and such that the edges colored by $a,$

$b$ have
the same source, while that colored by $c$ has a different source. Then, letting
$\theta_{a}(a, b, c)$ be the diagmm obtained by cutting open $\theta$ along the a-colored edge it
holds that

(3.7) $\lambda(\theta_{a}(a, b, c))=\{\begin{array}{l}2a+N2a+1\end{array}\}$ ,

and so we get $i(\theta_{a}(a, b, c))=i(\theta_{b}(a, b, c))=1$ .

This lemma comes from the following relation.

$\{\begin{array}{l}2a+N2a+1\end{array}\}=\sum_{t=0}^{N-1+c-b-a}C_{a+b-c+t,N-1-t,N-1}^{b,N-1-c,N-1-a}C_{t,N-1+c-a-b-t,0}^{c,N-1-b,a}$ .

To prove this relation, we need the following lemma.
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$arrow$

FIGURE 2. On the left $\theta_{a}(a, b, c)$ ; on the right $\theta_{b}(a, b, c)$ .

Lemma 3.10. For any pammeter $a,$
$b$ and a non-negative integer $c$ , we have

(3.8) $\sum_{s=0}^{c}q^{\pm(a+b-c+2)s}\{\begin{array}{l}a-sa-c\end{array}\}$ $\{\begin{array}{l}b+sb\end{array}\}=q^{\pm(b+1)c}\{\begin{array}{ll}a+b +1a+b-c +1\end{array}\}$

For generic $q$ , this relation is true for the case that $a$ and $b$ are non-negative
integers by (51) in [18]. The both sides of (3.8) are Laurent polynomials with
respect to the variable $q^{a},$ $q^{b}$ , and they are equal for any positive integers $a$

and $b$ . Therefore, these two polynomials are equal and the both sides of (3.8)
coinside for any $a$ and $b$ for generic $q$ . Then we can specialize $q$ to the $2N$-th
root of unity and we get (3.8).

The formula (3.7) implies that

$Y_{c}^{a,b}Y_{a,b}^{c}Y_{c}^{a,b}Y_{a,b}^{c}=\{\begin{array}{l}2c+N2c+1\end{array}\}Y_{c}^{a,b}Y_{a,b}^{c}$.

Hence, $\{\begin{array}{l}2c+N2c+l\end{array}\}Y_{c}^{a,b}Y_{a,b}^{c}$ is the identity on the subspace of $V^{a}\otimes V^{b}$ iso-

morphic to $V^{c}$ . Therefore, the decomposition of $V^{a}\otimes V^{b}$ is expressed by $Y_{c}^{a,b}$

and $Y_{a,b}^{c}$ as follows.

(3.9) id $= \sum_{c;a+b-c=0,1,\cdots,n-1}\{\begin{array}{l}2_{C}+N2c+1\end{array}\}Y_{c}^{a,b}Y_{a,b}^{c}$ .

Remark 3.11. Colored graphs include colored links, and the invariant defined
above is the colored Alexander invariant given in [1] and discussed in [12], [25].
Lemma 3.9 gives a new proof for the independence of the string to cut to make
a (1, 1)-tangle. It is first proved in [1] by computation, and then refined in
[12] for more general cases theoretically. Comparing with the proof in [12], we

see that $\{\begin{array}{l}2a+N2a+1\end{array}\}$ corresponds to $d(a)$ in Definition 2.3 of [12] expressing

the virtual degree” of the representation $V^{a}$ .
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4. $SL(2,$ $\mathbb{C})$ QUANTUM $6j$ -SYMBOLS

4.1. Construction. The quantum $6j$-symbol is defined by the relation in
Figure 3. The left diagram means that the composition of two inclusions
$V_{i}arrow V_{j_{12}}\otimes V_{j_{3}}$ and $V_{j_{12}}arrow V_{j_{1}}\otimes V_{j_{2}}$ and the right diagram means that the
composition of two inclusions $V_{j}arrow V_{j_{1}}\otimes V_{j_{23}}$ and $V_{j_{23}}arrow V_{j_{2}}\otimes V_{j_{3}}$ . Let

$\iota_{l}:V_{j}arrow V_{j_{12}}\otimes V_{j_{3}}arrow(V_{j_{1}}\otimes V_{j_{2}})\otimes V_{j_{3}}$

$($ resp. $\iota_{r}$ : $V_{j}arrow V_{j_{1}}\otimes V_{j_{23}}arrow V_{j_{1}}\otimes(V_{j_{2}}\otimes V_{j_{3}}))$

be the inclusion corresponding to the left (resp. right) diagram. Then Figure
3 means that

$\iota_{l}(v)=\sum_{j_{23}}\{\begin{array}{lll}j_{1} j_{2} j_{12}j_{3} j j_{23}\end{array}\} \iota_{r}(v)$

for $v\in V_{j}$ . The quantum $6j$-symbol for non-integral highest weight represen-
tations are given as follows.

$= \sum_{j_{23}}\{\begin{array}{l}j_{1}j_{3}\end{array}$

$j$

$j_{2}$

$j$

$j$

FIGURE 3. The quantum $6j$-symbol

Theorem 4.1. For $a,$ $b,$
$\cdots,$ $f$ satisfying $a+b-e,$ $a+f-c,$ $b+d-f,$ $d+e-c\in \mathbb{Z}$ ,

(4.1) $\{\begin{array}{lll}a b ed c f\end{array}\}=$

$(-1)^{N-1+B_{afc}} \{\begin{array}{l}2f+N2f+1\end{array}\}\frac{\{B_{dec}\}!\{B_{abe}\}!}{\{B_{bdf}\}!\{B_{afc}\}!}\{\begin{array}{lll} 2e A_{abe} +1- N\end{array}\} \{\begin{array}{l}2eB_{ecd}\end{array}\}$

$z= \max(0,-B_{bdf}+B_{dec}),B_{afc})\sum^{\min(B_{dec}}(-1)^{z}\{\begin{array}{ll}A_{afc} +12c+z +1\end{array}\} \{\begin{array}{l}B_{acf}+zB_{acf}\end{array}\}\{\begin{array}{l}B_{bfd}+B_{dec}-zB_{bfd}\end{array}\}\{\begin{array}{l}B_{dce}+zB_{dfb}\end{array}\}$ ,

where

(4.2) $A_{xyz}=x+y+z$ , $B_{xyz}=x+y-z$ .
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Remark. Such $6j$-symbol is already given in [10] for the case that $n$ is odd.

This theorem is proved as follows. Using the value of the theta graph (3.7),
we have the relation in Figure 3. This gives the following expression of the
quantum $6j$-symbol.

(4.3) $[2f:n2f1]\{\begin{array}{lll}a b ed c f\end{array}\}=$

$(C_{mm,m}^{a,f,c_{1}}2,3)^{-1} \sum_{m_{4},m_{5},m6}C_{m_{5},m_{4}}^{b,d,f},{}_{m_{1}}C_{m_{2},m}^{a,b,e_{5}},{}_{m_{6}}C_{m_{6},m,m3}^{e,d,c_{4}}$
.

Let us put $m_{1}=0,$ $m_{3}=0,$ $m_{4}=\alpha$ , then $m_{2}=a+f-c,$ $m_{5}=b+d-f-\alpha$ ,

$b$

$c$

$c$ $c$

$\{\begin{array}{l}a bdc\end{array}$

$c$

FIGURE 4. Another expression of the quantum $6j$-symbol

$m_{6}=e+d-c-\alpha$ . By (3.2), we have

$\{\begin{array}{l}2f+N2f+1\end{array}\}\{\begin{array}{lll}a b ed c f\end{array}\}=$

$\{\begin{array}{lll}a f cB_{afc} 0 0\end{array}\}\sum_{\alpha}\{\begin{array}{lllllllll}N -1- d N-l- b N -1- fN -1- \alpha N -1- B_{bdf}+\alpha N-1 \end{array}\}$

$\{\begin{array}{lll}a b eB_{afc} B_{bdf}-\alpha B_{dec}-\alpha\end{array}\}\{\begin{array}{lll}e d cB_{dec}-\alpha \alpha 0\end{array}\}$

By using (3.8) and other simpler relations for quantum binomials, we get (4.1).

4.2. Relations among the quantum $6j$-symbols. From the definition of
$SL(2, \mathbb{C})$ quantum $6j$-symbols, they satisfy the following relations.

Orthogonarity relation:

$\sum_{f}\{\begin{array}{lll}a b ed c f\end{array}\} \{\begin{array}{lll}d b fa c g\end{array}\}=\delta_{eg}$ .
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FIGURE 5. Colored oriented tetrahedral graph

Pentagon relation:

$\sum_{h}\{\begin{array}{lll}a b fg c h\end{array}\} \{\begin{array}{lll}a h ge d i\end{array}\}\{\begin{array}{lll}b c hd i j\end{array}\}= \{\begin{array}{lll}f c gd e j\end{array}\}\{\begin{array}{lll}a b fj e i\end{array}\}$

4.3. Values of tetrahedra. The value $\{\begin{array}{lll}a b ed c f\end{array}\}$ of the colored oriented

graph corresponding to a tetrahedron in Figure 5 is given as follows.

Theorem 4.2. Assume that none of the colors $a,$ $b,$ $c,$ $d,$ $e,$ $f$ is a half-integer
and they satisfy the admissibility condition for triples $(a, f, c),$ $(a, b, e),$ $(b, d, f)$

and $(e, d, c),$ $i.e$ .

$0\leq a+f-c,$ $a+b-e,$ $b+d-f,$ $e+d-c\leq N-1$ ,

$a+f-c,$ $a+b-e,$ $b+d-f,$ $e+d-c\in \mathbb{Z}$ .

Then $\{\begin{array}{lll}a b ed c f\end{array}\}$ is given as follows.

(4.4)

$\{\begin{array}{lll}a b ed c f\end{array}\}=(-1)^{N-1+B_{afc}}\frac{\{B_{dec}\}!\{B_{abe}\}}{\{B_{bdf}\}!\{B_{afc}\}}!\{\begin{array}{lll} 2e A_{abe} +1- N\end{array}\} \{\begin{array}{ll}2e B_{ec}d !\end{array}\}$

$z= \max(0,-B_{bdf}+B_{dec}),B_{afc})\sum^{\min(B_{dec}}(-1)^{z}[_{2c+z+1}A_{afc}+1]\{\begin{array}{l}B_{acf}+zB_{acf}\end{array}\}\{\begin{array}{l}B_{bfd}+B_{dec}-zB_{bfd}\end{array}\}\{\begin{array}{l}B_{dce}+zB_{dfb}\end{array}\}$ ,

Here $A_{xyz}=x+y+z$ and $B_{xyz}=x+y-z$ as in (4.2).

Remark 4.3. From the above formula, $\{\begin{array}{lll}a b ed c f\end{array}\}$ is a Laurent polynomial

for the parameters $\xi^{a},$ $\xi^{b},$ $\xi^{c},$ $\xi^{d},$ $\xi^{e}$ and $\xi^{f}$ .

4.4. Relations of the values of the tetrahedra. From the relations of the
$SL(2, \mathbb{C})$ quantum $6j$-symbols, we have the following relations.
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Orthogonal relation:

$\{\begin{array}{l}f+Nf+1\end{array}\}\{\begin{array}{l}g+N+g1\end{array}\}\{\begin{array}{l}ad\end{array}$

Pentagon relation:

$cb$ $fetet\{\begin{array}{lll}d b fa c g\end{array}\}=\delta_{eg}$ ,

$\sum_{h}\{\begin{array}{l}h+Nh+1\end{array}\}\{\begin{array}{lll}a b fg c h\end{array}\} \{\begin{array}{lll}a h ge d i\end{array}\}\{\begin{array}{lll}b c hd i j\end{array}\}=$

$\{\begin{array}{lll}f c gd e j\end{array}\}\{\begin{array}{lll}a b fj e i\end{array}\}$

Symmetry: Since the change of the orientation of an edge colored by $i$

corresponds to the change of the color $i$ to $\overline{i}=N-1-i$ , we have the following
symmetry.

(4.5) $\{\begin{array}{lll}a b ed c f\end{array}\}=\{\begin{array}{ll}b\overline{e}\overline{a} fc d\end{array}\}= \{_{b}^{c}\overline{fe}\frac{a}{d}\}_{tet}=$

$\{\begin{array}{lll}d e c\overline{a}f b\end{array}\}=\{\frac{e}{f}ad\frac{c}{b}\}_{tet}=\{\begin{array}{ll}f\overline{b} ace d\end{array}\}$

4.5. Volume of a truncated tetrahedron. Let $T$ be the truncated tetra-
hedron with dihedral angles $\theta_{a},$ $\theta_{b},$ $\theta_{c},$ $\theta_{d},$ $\theta_{e},$ $\theta_{f}$ .

$\ldots$ , $f_{N}=\{$

Theorem 4.4. Let $T$ be the truncated tetrahedmn with oriented labeled edges
as in Fignre 5, and let $0<\theta_{a},$ $\theta_{b},$ $\theta_{c},$ $\theta_{d},$ $\theta_{ez}\theta_{f}<\pi$ be the dihedral angles at
the edges. If $\theta_{i},$ $\theta_{j},$ $\theta_{k}$ are three dihedml angles meeting at the same vertex,
then they satisfy $\theta_{i}+\theta_{j}+\theta_{k}<\pi$ since $T$ is a truncated tetmhedmn. Put

$a_{N}= \lfloor(1-\frac{\theta_{a}}{\pi})\frac{N-1}{2}\rfloor$ , $(1- \frac{\theta_{f}}{\pi})\frac{N-1}{2}\rfloor$ ,

and $\overline{a}_{N}=N-1-a_{N},$ $\cdots,$ $\overline{f}_{N}=N-1-f_{N}$ . Using these pammeters, the
volume of $T$ is given as follows.

$Vol(T)=\lim_{Narrow\infty}\frac{\pi}{2N}\log(\{\begin{array}{lll}a_{N} b_{N} e_{N}d_{N} c_{N} f_{N}\end{array}\} \{\begin{array}{lll}\overline{a}_{N} \overline{b}_{N} \overline{e}_{N}\overline{d}_{N} \overline{c}_{N}\overline{f}_{N} \end{array}\})$ .

Remark 4.5. $\{\begin{array}{lll}a_{N} b_{N} e_{N}d_{N} c_{N} f_{N}\end{array}\}$ is defined for tetrahedron with oriented edges,

and it is not symmetric with respect to the natural symmetry of the tetrahe-
dron. However, the limit of the above sum becomes symmetric.

The above theorem is proved by using the Schl\"afli differential equality and
Ushijima’s edge length formula in [31].
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Question 4.6. In [11], a 3-manifold invariant is constructed from such 6j-
symbols. Explain the relation between this invariant and the hyperbolic volume
of the 3-manifold.
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