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Abstract

A bottom tangle is a tangle in a cube consisting of arc components whose boundary
points are placed on the bottom, and every link can be represented as the closure of a
bottom tangle. The universal $sl_{2}$ invariant of n-component bottom tangles takes values
in the n-fold completed tensor power of the quantized enveloping algebra $U_{h}(sl_{2})$ , and
has a universality property over the colored Jones polynomials of n-component links via
quantum traces in finite dimensional representations. In this note, we study the values
of the universal $sl_{2}$ invariant of certain three types of bottom tangles which are called
boundary, ribbon, and brunnian bottom tangles. For each types of bottom tangles, we
give certain small subalgebras in which the universal $sl_{2}$ invariant of bottom tangles
of the type takes values. As applications, it follows that each boundary, ribbon, and
brunnian link has stronger divisibility by cyclotomic polynomials than algebraically split
links for Habiro’s reduced version of the colored Jones polynomials.

1 Introduction
First of all, we recall tangles and bottom tangles. Then we define the three types of
bottom tangles, boundary, ribbon, and brunnian bottom tangles. After that, we will
mention the background of my research.

1.1 Tangles and bottom tangles
A tangle is the image of an embedding

垣 $[0,1] \prod S^{1}arrow S^{3}$

for $m,$ $n\geq 0$ , whose boundary is on the two lines $[0,1] \cross\{\frac{1}{2}\}\cross\{0,1\}$ on the bottom
and on the top of the cube. We equip the image of an embedding both orientation
and framing. In this note, the image of $[0,1]$ (resp. $S^{1}$ ) is called an arc (resp. cycle)
component, see Figure 1 for example, and a point in boundary of arc components is
called endpoint.

A bottom tangle is a tangle satisfying
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Figure 1: A tangle consisting of 3-arc components and 2-cycle components.
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Figure 2: (a) A 3-component bottom tangle $T=T_{1}\cup T_{2}\cup T_{3}$ . $(b)$ A diagram of $T$ in a
rectangle. (c) A closure of $T$ .

(1) there are no cycle components,

(2) every endpoint is on the line $[0,1] \cross\{\frac{1}{2}\}\cross\{0\}$ on the bottom,

(3) two endpoints of each component are adjacent to each other, and

(4) each component runs from its right endpoint to its left endpoint.

For example, see Figure 2 (a). We draw a diagram of a bottom tangle in a rectangle,
see Figure 2 (b). For each $n\geq 0$ , let $BT_{n}$ denote the set of the ambient isotopy classes,
relative to endpoints, of n-component bottom tangles. The closure link cl$(T)$ of $T$ is
defined as the unique isotopy class of links obtained ffom $T$ by closing, see Figure 2 (c).
For every n-component link $L$ , there is an n-component bottom tangle whose closure
is isotopic to $L$ . For a bottom tangle, we can define the linking matrix as that of the
closure link.
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1.2 Boundary, ribbon, and brunnian bottom tangles
A Seifert surface of a knot $K$ is a compact connected orientable surface $F$ in $S^{3}$ bounded
by $K$ . An n-component link $L=L_{1}\cup\cdots\cup L_{n}$ is called a boundary link if it bounds
a disjoint union of $n$ Seifert surfaces $F_{1},$

$\ldots,$
$F_{n}$ in $S^{3}$ such that $L_{i}$ bounds $F_{i}$ for $i=$

$1,$
$\ldots,$

$n$ . For a l-component bottom tangle $T\in BT_{1}$ , there is a knot $L_{T}=(T\cup\gamma)\subset$

$[0,1]^{3}$ where $\gamma$ is the line segment on the bottom $[0,1]^{2}\cross\{0\}$ such that $\partial\gamma=\partial T$ . A
Seifert surface of a l-component bottom tangle $T$ is a Seifert surface of the knot $L_{T}$

in $[0,1]^{3}$ . A bottom tangle $T=T_{1}\cup\cdots\cup T_{n}$ is called a boundary bottom tangle if its
components have disjoint Seifert surfaces $F_{1},$

$\ldots,$
$F_{n}$ in $[0,1]^{3}$ such that $L_{T_{i}}$ bounds $F_{i}$

for $i=1,$ $\ldots,$
$n$ . For every boundary link $L$ , there is a boundary bottom tangle whose

closure is $L$ .

boundary bottom tangle boundary link

An n-component link $L$ is called a ribbon link (cf. [1]) if it bounds the image of an
immersion

$D\cup\cdots\cup Darrow S^{3}$

from a disjoint union of two dimensional disks into $S^{3}$ with only ribbon singularities.
Here a ribbon singularity is a singularity whose preimage consists of two lines one of
which is in the interior of the disks. A ribbon bottom tangle is defined as a bottom tangle
whose closure is a ribbon link.

$H$ —–
$\dashv_{1^{--\vdash^{4}}}^{(_{\lrcorner})}-$

.
$\overline{||}$

ribbon bottom tangle ribbon link ribbon singularity

A link is called brunnian link if its every proper sublink is trivial. Similarly, a
bottom tangle is called brunnian bottom tangle if every proper subtangle is trivial,
where a bottom tangle is said to be trivial if it has the trivial diagram that is copies of
$\cap$ . For each brunnian link $L$ , there is a brunnian bottom tangle whose closure is $L$ .

brunnian borrom tangle brunnian link
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1.3 Back ground
In the $80’ s$ , Jones constructed a polynomial invariant of links by using von Neumann
algebras. Shortly after, Reshetikhin and Turaev [8] defined invariants of hamed links
colored by finite dimensional representations of a ribbon Hopf algebra, which we call
colored link invariants. The quantized enveloping algebra associated to a simple Lie
algebra has a complete ribbon Hopf algebra structure, and Jones polynomial can be
defined as the colored link invariant associated to the universal enveloping algebra $U_{h}$ $:=$

$U_{h}(sl_{2})$ and its 2-dimensional irreducible representation attached to all components of
links. By a colored Jones polynomial, we mean a colored link invariant associated to $U_{h}$ .

For a ribbon Hopf algebra, Lawrence [5, 4] and Ohtsuki [7] defined an invariant of
framed tangle, which is called the universal invariant. By the universal $sl_{2}$ invariant,
we mean the universal invariant associated to $U_{h}$ . In [2], Habiro studied the universal
invariant of bottom tangles associated to an arbitrary ribbon Hopf algebra, and in [3],
he studied the universal $sl_{2}$ invariant of bottom tangles in detail. The universal $sl_{2}$

invariant of an n-component bottom tangle takes values in the n-fold completed tensor
power $U_{h}^{\otimes^{\wedge}n}$ of $U_{h}$ . The universal invariant of bottom tangles has a universality property
such that the colored link invariants of a link $L$ is obtained from the universal invariant
of a bottom tangle $T$ whose closure is isotopic to $L$ , by taking the quantum trace in the
representations attached to the components of the link $L$ . In particular, one can obtain
colored Jones polynomials of links from the universal $sl_{2}$ invariant of bottom tangles.

In this note, we study algebraic properties of the universal $sl_{2}$ invariant of boundary,
ribbon, and of brunnian bottom tangles.

2 The quantized enveloping algebra $U_{h}$ and its sub-
algebras

In this note, we use the following q-integer notations:

$\{i\}_{q}=q^{i}-1$ , $\{i\}_{q,n}=\{i\}_{q}\{i-1\}_{q}\cdots\{i-n+1\}_{q}$ , $\{n\}_{q}!=\{n\}_{q,n}$ ,

$[i]_{q}=\{i\}_{q}/\{1\}_{q}$ , $[n]_{q}!=[n]_{q}[n-1]_{q}\cdots[1]_{q}$ , $\{\begin{array}{l}in\end{array}\}=\{i\}_{q,n}/\{n\}_{q}!$ ,

for $i\in \mathbb{Z},$ $n\geq 0$ .
We denote by $U_{h}$ the h-adically complete $\mathbb{Q}[[h]]$ -algebra, topologically generated by

the elements $H,$ $E$ , and $F$ , satisfying the relations

HE–EH $=2E$ , HF–FH $=-2F$, EF–FE $= \frac{K-K^{-1}}{q^{1/2}-q^{-1/2}}$ ,

where we set

$q=\exp h$ , $K=q^{H/2}= \exp\frac{hH}{2}$ .

We equip $U_{h}$ with a topological $\mathbb{Z}arrow graded$ algebra structure with $\deg E=1,$ $\deg F=$

$-1$ , and $\deg H=0$ . For a homogeneous element $x$ of $U_{h}$ , the degree of $x$ is denoted by
$|x|$ .
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There is a unique complete ribbon Hopf algebra structure on $U_{h}$ as follows. The
comultiplication $\triangle:U_{h}arrow U_{h}\otimes U_{h}\wedge$ , the counit $\epsilon:U_{h}arrow \mathbb{Q}[[h]]$ , and the antipode
$S:U_{h}arrow U_{h}$ are given by

$\Delta(H)=H\otimes 1+1\otimes H$ , $\epsilon(H)=0$ , $S(H)=-H$,
$\triangle(E)=E\otimes 1+K\otimes E$ , $\epsilon(E)=0$ , $S(E)=-K^{-1}E$ ,
$\Delta(F)=F\otimes K^{-1}+1\otimes F$ , $\epsilon(F)=0$ , $S(F)=-FK$.

The universal R-matrix $R\in U_{h}\otimes U_{h}\wedge$ and its inverse are given by

$R=D \sum_{n\geq 0}q^{1}z^{n(n-1)}\tilde{F}^{(n)}K^{-n}\otimes e^{n}$
, (1)

$R^{-1}=D^{-1} \sum_{n\geq 0}(-1)^{n}\tilde{F}^{(n)}\otimes K^{-n}e^{n}$
, (2)

where we set

$D=v^{\frac{1}{2}H\otimes H}= \exp(\frac{h}{4}H\otimes H)\in U_{h}^{\otimes^{\wedge}2}$ ,

$e=(q^{1/2}-q^{-1/2})E$ , $\tilde{F}^{(n)}=F^{n}K^{n}/[n]_{q}!$ ,

for $n\geq 0$ .
The ribbon element $r\in U_{h}$ and its inverse are given by

$r= \sum\overline{R}’K^{-1}\overline{R}’’=\sum\overline{R}’’K\overline{R}’$, $r^{-1}= \sum R’KR’’=\sum R’’K^{-1}R’$ ,

where we set $R= \sum R^{f}\otimes R’’$ , and $R^{-1}=(S \otimes 1)R=\sum\overline{R}’\otimes\overline{R}’’$ .

2.1 Subalgebras of $U_{h}$ and their completions
Let $U_{\mathbb{Z},q}$ denote the $\mathbb{Z}[q, q^{-1}]$ -subalgebra of $U_{\mathbb{Z}}$ generated by $K,$ $K^{-1},\tilde{E}^{(n)}=(v^{-1}E)^{n}/[n]_{q}!$ ,
and $\tilde{F}^{(n)}$ for $n\geq 1$ , and $U_{\mathbb{Z},q}^{ev}$ the $\mathbb{Z}[q, q^{-1}]$-subalgebra of $U_{\mathbb{Z},q}$ generated by the elements
$K^{2},$ $K^{-2},\tilde{E}^{(n)}$ and $\tilde{F}^{(n)}$ for $n\geq 1$ .

Remark 2.1. Let $U_{\mathbb{Z}}$ denote Lusztig’s integral form of $U_{h}$ (cf. [6]), which is defined
to be the $\mathbb{Z}[v, v^{-1}]$ -subalgebra of $U_{h}$ generated by $K,$ $K^{-1},$ $E^{(n)}=E^{n}/[n]!$ , and $F^{(n)}=$

$F^{n}/[n]!$ for $n\geq 1$ , where $[i]= \frac{q^{i/2}-q^{-i/2}}{q^{1/2}-q^{-1/2}}$ for $i\in \mathbb{Z}$ and $[n]!=[n]\cdots[1]$ for $n\geq 0$ . We
have

$U_{\mathbb{Z}}=U_{\mathbb{Z},q}\otimes_{\mathbb{Z}[]}q,q^{-1}\mathbb{Z}[v, v^{-1}]$ .

Let $\overline{U}_{q}$ denote the $\mathbb{Z}[q, q^{-1}]$ -subalgebra of $U_{\mathbb{Z},q}$ generated by the elements $K,$ $K^{-1},$ $e$

and $f=(q-1)FK$, and $\overline{U}_{q}^{ev}$ the $\mathbb{Z}[q, q^{-1}]$-subalgebra of $\overline{U}_{q}$ generated by the elements
$K^{2},$ $K^{-2},$ $e$ and $f$ .

Let $\mathcal{U}_{q}^{ev}$ denote the $\mathbb{Z}[q, q^{-1}]$ -subalgebra of $U_{\mathbb{Z},q}^{ev}$ generated by the elements $K^{2},$ $K^{-2},$ $e$

and $\tilde{F}^{(n)}$ for $n\geq 1$ .
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We recall from [3] a filtration and a completion of $\mathcal{U}_{q}^{ev}$ . For $p\geq 0$ , let $\mathcal{F}_{p}(\mathcal{U}_{q}^{ev})$ be
the $twc\succ sided$ ideal in $\mathcal{U}_{q}^{ev}$ generated by $e^{p}$ . We define $\tilde{\mathcal{U}}_{q}^{ev}$ as the completion in $U_{h}$ of
$\mathcal{U}_{q}^{ev}$ with respect to the decreasing filtration $\{\mathcal{F}_{p}(\mathcal{U}_{q}^{ev})\}_{p\geq 0}$ , i.e., $\tilde{\mathcal{U}}_{q}^{ev}$ is the image of the
homomorphism

$\lim_{P\geq 0}arrow(\mathcal{U}_{q}^{ev}/\mathcal{F}_{p}(\mathcal{U}_{q}^{ev}))arrow U_{h}$

induced by $\mathcal{U}_{q}^{ev}\subset U_{h}$ . Then $\tilde{\mathcal{U}}_{q}^{ev}$ is a $\mathbb{Z}[q, q^{-1}]$-subalgebra of $U_{h}$ .
For $n\geq 1$ , let $(\tilde{\mathcal{U}}_{q}^{ev})^{\otimes n}\sim$ be the completion of the n-fold tensor product $(\mathcal{U}_{q}^{ev})^{\otimes n}$ of

$\mathcal{U}_{q}^{ev}$ with respect to the decreasing filtration $\{\mathcal{F}_{p}((\mathcal{U}_{q}^{ev})^{\otimes n})\}_{p\geq 0}$ such that

$\mathcal{F}_{p}((\mathcal{U}_{q}^{ev})^{\otimes n})=\sum_{i=1}^{n}(\mathcal{U}_{q}^{ev})^{\otimes(i-1)}\otimes \mathcal{F}_{p}(\mathcal{U}_{q}^{ev})\otimes(\mathcal{U}_{q}^{ev})^{\otimes(n-i)}$ .

It is natural to set

$\mathcal{F}_{p}((\mathcal{U}_{q}^{ev})^{\otimes 0})=\mathcal{F}_{p}(\mathbb{Z}[q, q^{-1}])=\{\begin{array}{l}\mathbb{Z}[q, q^{-1}] if p=0,0 otherwise.\end{array}$

Thus we have
$(\tilde{\mathcal{U}}_{q}^{ev^{-}})^{\otimes 0}=\mathbb{Z}[q, q^{-1}]$ .

For a $\mathbb{Z}[q, q^{-1}]$-subalgebra $A$ of $(\mathcal{U}_{q}^{ev})^{\otimes n}$ , we define the closure $(A^{\backslash }f$ of $A$ in $(\tilde{\mathcal{U}}_{q}^{ev})^{\otimes n}\sim$

as the completion of $A$ with respect to the decreasing filtration $\{\mathcal{F}_{p}((\mathcal{U}_{q}^{ev})^{\otimes n})\cap A\}_{p\geq 0}$ .
Especially, we denote by $(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ the closure of $(\overline{U}_{q}^{ev})^{\otimes n}$ in $(\tilde{\mathcal{U}}_{q}^{ev})^{\otimes n}\sim$ .

3 The universal $sl_{2}$ invariant of bottom tangles
In this section, we define the universal $sl_{2}$ invaniant of bottom tangles (cf. [2]).

3.1 The universal $sl_{2}$ invariant of bottom tangles

In what follows, we write the R-matrix and its inverse as $R^{\pm 1}= \sum_{i\geq 0}R_{i}^{\pm}$ , where we
set

$R_{\eta}\cdot=D(\alpha_{i}^{+}\otimes\beta_{i}^{+})$,
$\alpha_{1}^{+}\otimes\beta_{i}^{+}=q^{1}z^{i(i-1)}\tilde{F}^{(i)}K^{-i}\otimes e^{i}$ ,

$R_{i}^{-}=D^{-1}(\alpha_{\dot{\iota}}^{-}\otimes\beta_{i}^{-})$ , (3)
$\alpha_{i}^{-}\otimes\beta_{i}^{-}=(-1)^{i}\tilde{F}^{(i)}\otimes K^{-i}e^{i}$ . (4)

(We cannot define $\alpha_{i}^{+},$ $\beta_{i}^{+},$
$\alpha_{i}^{-}$ , or $\beta_{i}^{-}$ , independently.)

Remark 3.1. In [9], we used different notations $R_{i}^{+}=q^{1}z^{i(i-1)}\tilde{F}^{(i)}K^{-i}\otimes e^{i}$ and $R_{i}^{-}=$

$(-1)^{i}\tilde{F}^{(i)}\otimes K^{-i}e^{i}$ .
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$J$

Figure 3: Fundamental tangles. The orientations of the strands are arbitrary.

$K^{-1}$ $(S’\otimes S^{f})(R_{\overline{s(}c)})$

Figure 4: How to attach elements on the fundamental tangles.

We use diagrams of tangles obtained from copies of the fundamental tangles, as
depicted in Figure 3, by pasting horizontally and vertically. For a bottom tangle $T=$

$T_{1}\cup\cdots\cup T_{n}$ , we define the universal $sl_{2}$ invariant $J_{T}\in U_{h}^{\otimes^{\wedge}n}$ of $T$ as follows. We choose
a diagram $P$ of $T$ . We denote by $C(P)$ the set of the crossings of the diagram. We call
a map

$s:C(P)$ $arrow$ $\{0,1,2, \ldots\}$

a state. We denote by $S(P)$ the set of states of the diagram $P$ .
For each fundamental tangle in the diagram, we attach elements of $U_{h}$ or of $U_{h}^{\otimes 2}$

associated to a state $s\in S(P)$ following the rule described in Figure 4, where $S’$ ”

should be replaced with id if the string is oriented downward, and with $S$ otherwise, see
Figure 5. We define an element $J_{P,s}\in U_{h}^{\otimes^{\wedge}n}$ as follows. The ith component of $J_{P,s}$ is
defined to be the product of the elements put on the component corresponding to $T_{i}$ ,
where the elements are read off along each component reversing the orientation of $P$ ,
and written from left to right. Here we read an element $y= \sum y[1]\otimes y_{[2]}\in U_{h}^{\otimes^{\wedge}2}$ on
arrowed dashed line by assuming that the first tensorand is attached to the startpoint
of the arrow and the second tensorand to the endpoint of the arrow, see Figure 6. (The
result does not depend on how one expresses the element on each dashed line as a sum
of tensors.)

Set
$J_{T}= \sum_{s\in S(P)}J_{P,s}$

.

As is well known [7], $J_{T}$ does not depend on the choice of the diagram, and defines an
isotopy invariant of bottom tangles.

For example, let us compute the universal $sl_{2}$ invariant $J_{C}$ of a bottom tangle $C$

with a diagram $P$ as depicted in Figure 7 $(a)$ , where $c_{1}$ (resp. $c_{2}$ ) denotes the upper
(resp. lower) crossing of $P$ . The diagram attached the elements for a state $s\in S(P)$ is
depicted in Figure 7 $(b)$ , where we set $m=s(c_{1}),$ $n=s(c_{2})$ . We have
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$S’(x)\}$ $=$ $x\}$

Figure 5: The definition of $S’$ .

$\ovalbox{\tt\small REJECT}\backslash \sim y\sim’\urcorner\ovalbox{\tt\small REJECT}$ $=$ $\sum^{y_{[1]}}\ovalbox{\tt\small REJECT}$
$\ovalbox{\tt\small REJECT}$

$y[2]$

Figure 6: How we read an element $y= \sum y_{[1]}\otimes y_{[2]}\in U_{h}^{\otimes^{\wedge}2}$ .

$J_{C}= \sum_{s\in S(P)}J_{P,s}$

$= \sum_{m,n\geq 0}\sum S(D_{1}’\alpha_{m}^{+})S(D_{2}’\beta_{n}^{+})\otimes D_{2}’’\alpha_{n}^{+}D’’\beta_{m}^{+}$

$= \sum_{m,n\geq 0}(-1)^{m+n}q^{-n+2mn}D^{-2}(\tilde{F}^{(m)}K^{-2n}e^{n}\otimes\tilde{F}^{(n)}K^{-2m}e^{m})$
.

where we set $D= \sum D_{1}’\otimes D_{1}^{f/}=\sum D_{2}’\otimes D_{2}’’$ .
The following propositions is fundamental.

Proposition 3.2 ([9]). Let $T$ be an n-component bottom tangle with 0-framing, and $P$

a diagmm of T. We have

$J_{P,s}\in(\mathcal{U}_{q}^{ev})^{\otimes n}$ .

Later, we use the following lemma.

Lemma 3.3. Let $T$ be an n-component bottom tangle with 0-framing, and $P$ a diagmm
of T. Set $|s|= \max\{s(c)|c\in C(P)\}$ . We have

$J_{P,s}\in F_{|s|}((\mathcal{U}_{q}^{ev})^{\otimes n})$ . (5)

3.2 Colored Jones polynomials
If $V$ is a finite dimensional representation of $U_{h}$ , then the quantum trace $tr_{q}^{V}(x)$ in $V$

of an element $x\in U_{h}$ is defined by

tr$qV(x)=$ tr $V(\rho_{V}(K^{-1}x))\in \mathbb{Q}[[h]]$ ,
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$(a)$ $(b)$

Figure 7: $(a)$ A diagram $P$ of $C\in BT_{2}$ . $(b)$ The diagram $P$ attached elements.

where $\rho_{V}:U_{h}arrow$ End(V) denotes the left action of $U_{h}$ on $V$ , and tr $v_{;}$ End$(V)arrow \mathbb{Q}[[h]]$

denotes the trace in $V$ . For every element $y= \sum_{n}a_{n}V_{n}\in \mathcal{R},$ $a_{n}\in \mathbb{Q}(v)$ , we set

$tr_{q}^{y}(x)=\sum_{n}a_{n}tr_{q}^{V_{n}}(x)\in \mathbb{Q}((h))$

for $x\in U_{h}$ . Here $\mathbb{Q}((v))$ denote the quotient field of $\mathbb{Q}[[h]]$ .
The universal $sl_{2}$ invariant of bottom tangles has a universality property to the

colored Jones polynomials of links as the following.

Proposition 3.4 (Habiro [3]). Let $L=L_{1}\cup\cdots\cup L_{n}$ be an n-component, ordered,
oriented, framed link in $S^{3}$ . Choose an n-component bottom tangle $T$ whose closure is
isotopic to L. For $y_{1},$ $\ldots,$

$y_{n}\in \mathcal{R}$ , the colored Jones polynomial $J_{L;y_{1},\ldots,y_{n}}$ of $L$ can be
obtained from $J_{T}$ by

$J_{L;y_{1},\ldots,y_{n}}=(tr_{q^{1}}^{y}\otimes\cdots\otimes tr_{q}^{y_{n}})(J_{T})$.

4 Main results
In this section, we give the main results. The results for boundary bottom tangles,
which was conjectured by Habiro [3], and for ribbon bottom tangles are similar to each
other as follows.

Theorem 4.1. Let $T$ be an n-component boundary bottom tangle with 0-framing. Then
we have $J_{T}\in(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ .

Theorem 4.2 ([9]). Let $T$ be an n-component ribbon bottom tangle with 0-framing.
Then we have $J_{T}\in(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ .

In fact, We have a refinement of each Theorem 4.1 and 4.2 with a smaller subalgebra
$(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge\subset(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ in place of $(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ , see Section 8.2 for the definition of$(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge$ .
Here, we do not know whether the inclusion is proper or not, but the definition of
$(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge$ is more natural than that of $(\overline{U}_{q}^{ev})^{\sim\otimes n}\sim$ in our setting.

The result for brunnian bottom tangles is as follows.
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Theorem 4.3. Let $T$ be an n-component brunnian bottom tangle. Then we have

$J_{T} \in\bigcap_{i=0}^{n}\{(\overline{U}_{q}^{ev})^{\otimes i-1}\otimes U_{Z,q}^{ev}\otimes(\overline{U}_{q}^{ev})^{\otimes n-i}\}^{\wedge}$ .

For a bottom tangle $T=T_{1}\cup\cdots\cup T_{n}$ , let denote by $\check{T}_{i_{1},\ldots i_{m}}$ the subtangle obtained
from $T$ by removing its components $T_{1_{1}},$ $\ldots,T_{i_{m}}$ . In fact, Theorem 4.3 is a corollary of
the following result.

Theorem 4.4. Let $T$ be an n-component bottom tangle with 0-framing whose subtangle
$\check{T}_{i_{1},\ldots i_{m}}$ is trivial. Then we have

$J_{T}\in(A_{1}\otimes A_{2}\otimes\cdots\otimes A_{n}r$

where

$A_{i}=\{\begin{array}{l}U_{Z,q}^{ev} i=i_{1}, \cdots,i_{m}\overline{U}_{q}^{ev} other.\end{array}$

5 Applications
Here, we give an application of each Theorem 4.1, 4.2, and 4.4. For $m\geq 1$ , let $V_{m}$ denote
the m-dimensional irreducible representation of $U_{h}$ . Let $\mathcal{R}$ denote the representation
ring of $U_{h}$ over $\mathbb{Q}(q^{1}\Sigma)$ , i.e., $\mathcal{R}$ is the $\mathbb{Q}(q^{\xi})$ -algebra

$\mathcal{R}=s_{P^{an_{Q(q}};_{)}\{V_{m}}|m\geq 1\}$

with the multiplication induced by the tensor product. It is well known that $\mathcal{R}=$

$\mathbb{Q}(q^{1}z)[V_{2}]$ .
Habiro [3] studied the following elements in $\mathcal{R}$

$\tilde{P}_{l}’=\frac{q3^{l}}{\{l\}_{q}!}\prod_{i=0}^{l-1}(V_{2}-q^{i+^{11}}\tau-q^{-i-B})$

for $l\geq 0$ , which are used in an important technical step in his construction of the
unified Witten-Reshetikhin-Turaev invariants for integral homology spheres. He proved
the following.

Theorem 5.1 (Habiro [3]). Let $L$ be an n-component, algebraically-split link with 0-
framing. We have

$J_{L;\tilde{P}_{\iota_{1}^{J}},\ldots,\tilde{P}_{t_{n}}’} \in\frac{\{2l_{j}+1\}_{q,l_{j}+1}}{\{1\}_{q}}\mathbb{Z}[q, q^{-1}]$ ,

for $l_{1},$
$\ldots,$

$l_{n}\geq 0$ , where $j$ is an integer such that $l_{j}= \max\{l_{i}\}_{1\leq i\leq n}$ .
Habiro [3] proved that Theorem 4.1 implies the following result.
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Theorem 5.2. Let $L$ be an n-component boundaw link with 0-framing. We have

$J_{L;\tilde{P}/_{1},\ldots,\tilde{P}_{l_{n}}’} \in\frac{\{2l_{j}+1\}_{q,l_{j}+1}}{\{1\}_{q}}\prod_{1\leq i\leq n,i\neq j}I_{l_{i}}$

for $l_{1},$
$\ldots,$

$l_{n}\geq 0$ , where $j$ is an integer such that $l_{j}= \max\{l_{i}\}_{1\leq i\leq n}$ . Here, for $l\geq 0$ ,
$I_{l}$ is the ideal in $\mathbb{Z}[q, q^{-1}]$ genemted by the elements $\{l-k\}_{q}!\{k\}_{q}!$ for $k=0,$ $\ldots,$

$l$ .
Remark 5.3. For $m\geq 1$ , let $\Phi_{m}(q)\in \mathbb{Z}[q]$ denote the mth cyclotomic polynomial. It
is not difficult to prove that $I_{l},$ $l\geq 0$ , is contained in the principle ideal generated by
$\prod_{m}\Phi_{m}(q)^{f(l,m)}$ , where $f(l, m)= \max\{0, \lfloor\frac{l+1}{m}\rfloor-1\}$ . Here for $r\in \mathbb{Q}$ , we denote by $\lfloor r\rfloor$

the largest integer smaller than or equal to $r$ .
Similarly, we have the following.

Theorem 5.4. Let $L$ be an n-component ribbon link with 0-fmming. We have

$J_{L;\tilde{P}_{\downarrow 1}’,\ldots,\tilde{P}_{l_{n}}’} \in\frac{\{2l_{j}+1\}_{q,l_{j}+1}}{\{1\}_{q}}\prod_{1\leq i\leq n,i\neq j}I_{l_{i}}$ ,

for $l_{1},$
$\ldots,$

$l_{n}\geq 0$ , where $j$ is an integer such that $l_{j}= \max\{l_{i}\}_{1\leq i\leq n}$ .
For a link $L=L_{1}\cup\cdots\cup L_{n}$ , we denote by $\check{L}_{i_{1},\ldots i_{m}}$ the sublink obtained from $L$

by removing its components $L_{i_{1}},$
$\ldots,$

$L_{i_{m}}$ . In a similar way in which Habiro proved
Theorem 5.2 by assuming Theorem 4.1, we can prove the following.

Theorem 5.5. Let $L=L_{1}\cup\cdots\cup L_{n}$ be a link with 0-framing whose sublink $\check{L}_{i_{1},\ldots i_{m}}$ is
trivial. We have

$J_{L;\tilde{P}_{t_{1}}’,\ldots,\tilde{P}_{l_{n}}’} \in\frac{\{2l_{j}+.1\}_{q}!}{\{1\}_{q}\{l_{i_{1}}\}_{q}!\cdot\cdot\{l_{i_{m}}\}_{q}!}\prod_{1\leq i\leq n,i\neq j,i_{1},\ldots,i_{m}}I_{l_{i}}$ ,

for $l_{1},$
$\ldots,$

$l_{n}\geq 0$ , where $j$ is an integer such that $l_{j}= \max\{l_{i}|1\leq i\leq n, i\neq i_{1}, \ldots i_{m}\}$ .
Corollary 5.6. Let $L$ be an n-component brunnian link with 0-framing. We have

$J_{L;\tilde{P}_{t_{1}}’,\ldots,\tilde{P}_{\iota_{n}}’} \in\frac{\{2l_{j}+1\}_{q}!}{\{1\}_{q}\{l_{i_{k}}\}_{q}!}\prod_{1\leq i\leq n,i\neq j,k}I_{l_{i}}$ ,

for $l_{1},$
$\ldots,$

$l_{n}\geq 0$ , where $j$ is an integer such that $l_{j}= \max\{l_{i}|1\leq i\leq n\}$ and $k$ is an
integer such that $l_{k}= \min\{l_{i}|1\leq i\leq n\}$ .

6 The universal $sl_{2}$ invariant of boundary, ribbon,
and of brunnian bottom tangles

In this section, we study the universal $sl_{2}$ invariant of boundary, ribbon, and of brunnian
bottom tangles. We recall Habiro’s formulas for the universal invariant of boundary
bottom tangles and of ribbon bottom tangles, which we used in a proof of Theorem 4.1
and 4.2. (We do not write the proofs in this note.) For brunnian bottom tangles, we
prove Theorem 4.4.
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Figure 8: A bottom tangle $T\in$ $BT_{i+j+2}$ and the bottom tangles $(Y_{b})_{(i,j)}(T)$ ,
$(\mu_{b})_{(i,j)}(T)\in BT_{i+j+1}$ . We depict only the $(i+1),$ $(i+2)$th components of $T$ , and
the $(i+1)$th components of $(Y_{b})_{(i,j)}(T),$ $(\mu_{b})_{(i,j)}(T)$ .

6.1 The universal $sl_{2}$ invariant of boundary bottom tangles
Let $Y:U_{h}\otimes U_{h}\wedgearrow U_{h}$ be the $U_{h}$-module homomorphism defined by

$Y(x\otimes y)=\sum x_{(1)}\beta_{k}S((\alpha_{k}\triangleright y)_{(1)})S(x_{(2)})(\alpha_{k}\triangleright y)_{(2)}$

for $x,$ $y\in U_{h}$ .
Remark 6.1. The morphism $Y$ is equal to $Y_{\underline{H}}$ for $H=U_{h}$ in [2, Section 9.3].

For $T\in BT_{i+j+2},$ $i,j\geq 0$ , let $(Y_{b})_{i,j}(T)\in BT_{i+j+1}$ and $(\mu_{b})_{(i,j)}(T)\in BT_{i+j+1}$

denote the bottom tangles as depicted in Figure 8.
In what follows, we use a notation

$f_{i,j}=$ id$\otimes i\otimes f\otimes$ id$\otimes j_{;}U_{h}^{\otimes^{\wedge}i+j+k}arrow U_{h}^{\otimes^{\wedge}i+j+l}$

for $f:U_{h}^{\otimes^{\wedge}k}arrow U_{h}^{\otimes^{\wedge}l}$ .
Lemma 6.2 (Habiro [2]). For a bottom tangle $T\in BT_{i+j+2},$ $i,j\geq 0$ , we have

$J_{(Y)(T)}b:,j=Y_{i,j}(J_{T})$ , (6)
$J_{(\mu)(T)}b:,j=\mu_{i,j}(J_{T})$ . (7)

where $\mu:U_{h}\otimes U_{h}\wedgearrow U_{h}$ is the multiplication of $U_{h}$ .
Let $T=T_{1}\cup\cdots\cup T_{n}$ be a boundary bottom tangle and $F_{1},$

$\ldots,$
$F_{n}$ a disjoint com-

pact, oriented surfaces such that $\partial F_{i}=T_{i}$ for $i=1,$ $\ldots,$
$n$ . We can arrange the surfaces

$F_{1},$
$\ldots,$

$F_{n}$ as depicted in Figure 9, where Double(T’) is the tangle obtained from a bot-
tom tangle $T’$ by duplicating and then reversing the orientation of the inner component
of each duplicated components. This implies the following proposition, which is implicit
in [2, Theorem 9.9].
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Figure 9: An arranged Seifert surfaces of the bottom tangle $T$ .
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Figure 10: A bottom tangle $T\in BT_{2g}$ and the bottom tangle $Y_{b}^{\otimes g}(T)\in BT_{g}$ .

Proposition 6.3. For an n-component bottom tangle $T$ , the following conditions are
equivalent.

(1) $T$ is a boundary bottom tangle.

(2) There is a bottom tangle $T’\in BT_{2g},$ $g\geq 0$ , and there are integers $g_{1},$ $\ldots,$
$g_{n}\geq 0$

satisfying $g_{1}+\cdots+g_{n}=g$ , such that

$T=\mu_{b}^{[g_{1},\ldots,g_{n}]}Y_{b}^{\otimes g}(T’)$ , (8)

where
$Y_{b}^{\otimes g}:BT_{2g}arrow BT_{g}$

is as depicted in Figure 10, and

$\mu_{b}^{[g_{1},\ldots,g_{n}]}:BT_{g_{1}+\cdots+g_{n}}arrow BT_{n}$

is as depicted in Figure 11.

If (8) holds, then we call $(T’;g_{1}, \ldots, g_{n})$ a boundary data for $T$ .
For $n\geq 1$ , let

$\mu^{[n]}:U_{h}^{\otimes^{\wedge}n}arrow U_{h}$ , $x_{1}\otimes\cdots\otimes x_{n}\mapsto x_{1}x_{2}\cdots x_{n}$
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Figure 11: A bottom tangle $T\in BT_{k}$ and the bottom tangle $\mu_{b}^{[g_{1},\ldots,g_{n}]}(T)\in BT_{n}$ .
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Figure 12: A bottom tangle $T\in BT_{i+j+2}$ and the bottom tangles $(ad_{b})_{(i,j)}(T)$ . We
depict only the $(i+1),$ $(i+2)$ th components of $T$ , and the $(i+1)$th components of
$(ad_{b})_{(i,j)}(T)$ .

denote the n-input multiplication. For integers $g_{1},$ $\ldots,g_{n}\geq 0,$ $g_{1}+\cdots+g_{n}=g$ , set

$\mu^{[g_{1},\ldots,g_{n}]}=\mu^{[g_{1}]}\otimes\cdots\otimes\mu^{[g_{n}]}:U_{h}^{\otimes^{\wedge}k}arrow U_{h}^{\otimes^{\wedge}n}$ .
Lemma 6.2 and Proposition 6.3 imply the following.
Proposition 6.4 (Habiro [2]). Let $T$ be an n-component boundary bottom tangle and
$(T’\in BT_{2g};g_{1}, \ldots,g_{n})$ a boundary data for T. Then we have

$J_{T}=\mu^{[g_{1},\ldots,g_{n}]}Y^{\otimes g}(J_{T’})$ .

6.2 The universal $sl_{2}$ invariant of ribbon bottom tangles
Habiro [3] studied the universal $sl_{2}$ invariant of l-component ribbon bottom tangles.
We generalize those to n-component ribbon bottom tangles for $n\geq 1$ .

We use the left adjoint action ad: $U_{h}\otimes U_{h}arrow U_{h}$ defined by

$ad(a\otimes b)=\sum a’bS(a’’)$ ,

for $a,$ $b\in U_{h}$ , where we set $\Delta(a)=\sum a’\otimes a’’$ . We also use the notation $a\triangleright b=$ ad$(a\otimes b)$ .
For $T\in BT_{i+j+2},$ $i,j\geq 0$ , let $(ad_{b})_{i,j}(T)\in BT_{i+j+1}$ denote the bottom tangle as

depicted in Figure 12. We use the following lemma.
Lemma 6.5 (Habiro [2]). For a bottom tangle $T\in BT_{i+j+2},$ $i,j\geq 0$ , we have

$J_{(ad)(T)}b:.j=ad_{i,j}(J_{T})$ .
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Figure 13: A bottom tangle $T\in BT_{2k}$ and the bottom tangle $ad_{b}^{\otimes k}(T)\in BT_{k}$ .

For a $2k$-component bottom tangle $W=W_{1}\cup\cdots\cup W_{2k}\in BT_{2k},$ $k\geq 0$ , set

$W^{ev}= \bigcup_{i=1}^{k}W_{2i}\in BT_{k}$ , and $W^{odd}= \bigcup_{i=1}^{k}W_{2i-1}\in BT_{k}$ .

For a diagram $P$ of $W$ , let $P^{ev}$ (resp. $P^{odd}$ ) denote the part of the diagram $P$ corre-
sponding to $W^{ev}$ (resp. $W^{odd}$ ). We say a bottom tangle $W\in BT_{2k}$ is even-trivial if
$W^{ev}$ is a trivial bottom tangle. For example, see Figure 14. We also say a diagram $P$

of $W$ is even-trivial if and only if $P^{ev}$ has no self crossings. Note that a bottom tangle
$W$ has an even-trivial diagram if and only if $W$ is even-trivial.

The following Proposition is almost the same as [2, Theorem 11.5].

Proposition 6.6. For an n-component bottom tangle $T$ , the following conditions are
equivalent.

(1) $T$ is a ribbon bottom tangle,

(2) There is an even-trivial bottom tangle $W\in BT_{2k},$ $k\geq 0$ , and there are integers
$N_{1},$

$\ldots,$
$N_{n}\geq 0$ satisfying $N_{1}+\cdots+N_{n}=k$ , such that

$T=\mu_{b}^{[N_{1},\ldots,N_{n}]}ad_{b}^{\otimes k}(W)$ , (9)

where
$ad_{b}^{\otimes k}:BT_{2k}arrow BT_{k}$

is as depicted in Figure 13.

If (9) holds, then we call $(W;N_{1}, \ldots, N_{n})$ a ribbon data for $T$ . For example, the
ribbon bottom tangle $\mu^{[1,2,0]}(ad_{b})^{\otimes 3}(W)\in BT_{3}$ with the ribbon data $(W\in BT_{3};1,2,0)$ ,
where $W$ is the bottom tangle in Figure 14, is as depicted in Figure 15.

Lemma 6.5 and Proposition 6.6 imply the following.

Proposition 6.7. Let $T$ be an n-component ribbon bottom tangle and $(W\in BT_{2k};N_{1}, \ldots, N_{n})$

a ribbon data for T. Then we have
$J_{T}=\mu^{[N_{1},\ldots,N_{n}]}ad^{\otimes k}(J_{W})$ ,

where $ad^{\otimes k}:U_{h}^{\otimes^{\wedge}2k}arrow U_{h}^{\otimes^{\wedge}k}$ is the k-fold tensor power of the adjoint action.
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$W=$

Figure 14: An even-trivial bottom tangle $W\in BT_{6}$ . Here $W^{ev}$ is depicted with thick
lines.

$\mu^{[1,2,0]}(ad_{b})^{\otimes 3}(W)=$

Figure 15: The ribbon bottom tangle $\mu^{[1,2,0]}(ad_{b})^{\otimes 3}(W)\in BT_{3}$ for the even-trivial
bottom tangle $W\in BT_{3}$ in Figure 14.
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Figure 16: A diagram of the Borromean tangle $P=P_{1}\cup P_{2}\cup P_{3}$ , where $P_{2}\cup P_{3}$ is the
trivial diagram.

6.3 The universal $sl_{2}$ invariant of brunnian bottom tangles
We prove Theorem 4.4. We only have to prove the following claim.

Claim: There is a diagram $P$ of $T$ , such that every state $s\in S(P)$ , we have

$J_{P,s}\in A_{1}\otimes\cdots A_{n}$ . (10)

By Lemma 3.3 and (10), we will have
$J_{P,s}\in(A_{1}\otimes\cdots A_{n})\cap F_{|s|}((\mathcal{U}_{q}^{ev})^{\otimes n})$ .

It will imply that

$J_{T}= \sum$
$\sum_{p\geq 0s\in S(P),|s|=p}J_{P,s}\in(A_{1}\otimes\cdots A_{n}\lambda$

We prove (10). By definition, the subtangle $T_{i_{1},\ldots,i_{m}}$ has the trivial diagram, hence
$T$ has a diagram $P=P_{1}\cup\cdots\cup P_{n}$ whose subdiagram $P_{i_{1},\ldots,i_{m}}$ corresponding to $T_{i_{1},\ldots,i_{m}}$

is the trivial diagram. Figure 16 is an example with the Borromean tangle that is a
3-component brunnian bottom tangle, whose closure is Borromean rings. Note that $P$

has two kinds of crossings:
$\bullet$ Crossings between $P_{i_{1},\ldots,i_{m}}$ and $P_{j},j\neq i_{1},$

$\ldots,$
$i_{m}$

$\bullet$ Self crossings of $P_{i_{1},\ldots,i_{m}}$

Let calculate $J_{P,s}$ for a state $s\in S(P)$ . We modify the elements attached to crossings
as follows. Let $c$ be a crossing of the diagram with strands oriented downward, and set
$m=s(c)$ . As depicted in Figure 17, we replace the two dots labeled by $R_{m}^{\pm}$ with two
black dots labeled by $D^{\pm 1}$ and two white dots labeled by $\alpha_{m}^{\pm}\otimes\beta_{m}^{\pm}$ . Similarly, we modify
the dots on the other crossings. We have completed the modffication. We have

$R=D \sum_{n\geq 0}q^{\frac{1}{2}n(n-1)}\tilde{F}^{(n)}K^{-n}\otimes e^{n}$

$=D \sum_{n\geq 0}q^{n(n-1)}f^{n}K^{-n}\otimes\tilde{E}^{(n)}$
,

$R^{-1}=D^{-1} \sum_{n\geq 0}(-1)^{n}\tilde{F}^{(n)}\otimes K^{-n}e^{n}$

$=D^{-1} \sum_{n\geq 0}(-1)^{n}q^{1}\varpi^{n(n-1)}f^{n}\otimes K^{-n}\tilde{E}^{(n)}$
.
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$\alpha_{m}^{+}\otimes\beta_{m}^{+}$

$D^{-1}$

Figure 17: The modification process of elements on positive and negative crossings.

Figure 18: How we treat $\alpha_{m}\otimes\beta_{m}$ .

Hence we have

$\alpha_{m}^{\pm}\otimes\beta_{m}^{\pm}\in(U_{Z,q}\otimes\overline{U}_{q})\cap(\overline{U}_{q}\otimes U_{Z,q})\subset U_{Z,q}\otimes U_{Z,q}$ .
Hence for a crossings between $P_{i_{1}\ldots,i_{m}}$ and $P_{j},$ $j\neq i_{1},$

$\ldots,$
$i_{m}$ , we can assume that the

element on the white dot on $P_{i_{1}\ldots,i_{m}}$ is in $U_{\mathbb{Z},q}$ and that on $P_{j}$ is in $\overline{U}_{q}$ , and for a self
crossing of $P_{i_{1}\ldots,i_{m}}$ , we can assume the element on the white dot is in $U_{\mathbb{Z},q}$ , see Figure
18. We slide the elements $D^{\pm 1}$ on the black dots to the heads of tensorands of $J_{P,s}$ by
using the formula

$(1\otimes x)D=D(K^{|-x|}\otimes x)$ (11)

where $x$ is a homogeneous element of $U_{h}$ , see Figure 19. Since $T$ is with 0-framing,
those $D^{\pm 1}s$ are cancelled. Hence, $i_{1},$

$\ldots,$
$i_{m}$th tensorands of $J_{P,s}$ are contained in $U_{Z,q}$

and others in $\overline{U}_{q}$ . In the view of Proposition 3.2, $J_{P,s}$ is contained in even part of the
subalgebra, hence we have the assertion.

7 Examples
The Borromean tangle $B\in BT_{3}$ is the bottom tangle depicted in Figure 16, which we
can depict as in Figure 20 as well. Note that $B$ is a 3-component, algebraically-split,
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Figure 19: The sliding process of $D$ .

Figure 20: The Borromean tangle $B\in BT_{3}$ .

0-framed bottom tangle, and the closure of $B$ is the Borromean rings $L_{B}$ . It is well
known that $L_{B}$ is not a ribbon link. In [3], the formulas of the universal $sl_{2}$ invariant
of $B$ is observed:

$J_{B}= \sum_{m_{1},m_{2},m_{3},n_{1},n_{2},n_{3}\geq 0}q^{m_{3}+n_{3}}(-1)^{n_{1}+n_{2}+n_{3}}q^{\Sigma_{i=1}^{3}(-\frac{1}{2}m_{i}(m_{i}+1)-n.+m_{i}m_{i+1}-2m_{i}n_{i-1)}}$

$\tilde{F}^{(n_{3})}e^{m_{1}}\tilde{F}^{(m_{3})}e^{n_{1}}K^{-2m_{2}}\otimes\tilde{F}^{(n_{1})}e^{m_{2}}\tilde{F}^{(m_{1})}e^{n_{2}}K^{-2m_{3}}\otimes\tilde{F}^{(n_{2})}e^{m_{3}}\tilde{F}^{(m_{2})}e^{n_{3}}K^{-2m_{1}}$

$\not\in(\overline{U}_{q}^{ev})^{\wedge\otimes 3}\wedge$ ,
(12)

where the index $i$ should be considered modulo 3. The following is also observed in [3];

$J-=L_{B};\tilde{P}_{i}’,P_{j}’,\tilde{P}_{k}’\{\begin{array}{ll}(-1)^{i}q^{-i(3i-1)}\{2i+1\}_{q,i+1}/\{1\}_{q} if i=j=k,0 otherwise.\end{array}$ (13)

Since $\frac{\{2i+1\}_{q.i+1}}{\{1\}_{q}}\not\in\frac{\{2i+1\}_{q.i+1}}{\{1\}_{q}}I_{i}I_{i}$ for $i\geq 1$ , each of (12) and (13) implies that the
Borromean rings $L_{B}$ is not a boundary or a ribbon link.

For $n\geq 3$ , Milnor’s link $L_{M.n}$ is the n-component brunnian link as depicted in Figure
21. Note that $L_{M,3}$ is the Borromean rings $L_{B}$ . For $m\geq 1$ , recall that $\Phi_{m}(q)$ is the
mth cyclotomic polynomial in $q$ . We have

$J_{L_{M,nj}\tilde{P}_{1}’,\ldots,\tilde{P}_{1}’}=(-1)^{n-2}q^{-2n+4}\Phi_{4}(q)^{n-3}\Phi_{3}(q)\Phi_{2}(q)^{n-2}\Phi_{1}(q)^{n-2}\not\in \mathbb{Z}[q, q^{-1}]\Phi_{1}(q)^{n}$.

Hence, for all $n\geq 3,$ $L_{M,n}$ is not a boundary or a ribbon link.
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$n$

Figure 21: Milnor’s link $L_{M.n}$ .

8 Completion for $\overline{U}_{q}^{ev}$

8.1 Filtrations of $\overline{U}_{q}^{ev}$

In this subsection, we define two filtrations $\{A_{p}\}_{p\geq 0}$ and $\{C_{p}\}_{p>0}$ of $\overline{U}_{q}^{ev}$ , which are
cofinal with each other. We give four equivalent definitions for $\{A_{p}\}_{p\geq 0}-$ , and two for
$\{C_{p}\}_{P\geq 0}$ .

For a subset $X\subset\overline{U}_{q}^{ev}$ , let $(X\rangle_{idea1}$ denote the two-sided ideal of $\overline{U}_{q}^{ev}$ generated by
X. For $p\geq 0$ , set

$A_{p}=\langle U_{Z,q}\triangleright e^{p}\rangle_{idea1}$ , $A_{p}’=\langle U_{Z,q}\triangleright f^{p}\rangle_{idea1}$ ,
$B_{p}=\langle K^{p}(U_{Z,q}\triangleright K^{-p}e^{p})\rangle_{idea1}$ , $B_{p}’=\langle K^{p}(U_{Z,q}\triangleright f^{p}K^{-p})\rangle_{idea1}$ ,

$C_{p}=( \sum_{p\geq p}(U_{Z,q}\tilde{E}^{(p’)}\triangleright\overline{U}_{q}^{ev})\rangle_{idea1},$ $C_{p}’= \langle\sum_{p\geq p}(U_{Z,q}\tilde{F}^{(p’)}\triangleright\overline{U}_{q}^{ev})\rangle_{idea1}$
.

Proposition 8.1 ([9]). (i) $\{A_{p}\}_{p\geq 0}$ is a decreasing filtmtion.
(ii) For $p\geq 0$ , we have

$A_{p}=A_{p}’=B_{p}=B_{p}’$ .

Proposition 8.2 ([9]). (i) For $p\geq 0$ , we have $C_{p}=C_{p}’$ .

(ii) For $p\geq 0$ , we have $C_{2p}\subset A_{p}$ .
(iii) If $p\geq 0\dot{u}$ even, then we have $C_{2p}=A_{p}$ .

Corollary 8.3. For $p\geq 0$ , we have

$C_{2p}\subset h^{p}U_{h}$ .

Proof. Since $e^{p}\in h^{p}U_{h}$ , we have $A_{p}\subset h^{p}U_{h}$ . Then the assertion follows from Proposi-
tion 8.2 (iii). 口

8.2 The completion $(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge$ of $(\overline{U}_{q}^{ev})^{\otimes n}$

In this subsection we define the completion $(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge$ of $(\overline{U}_{q}^{ev})^{\otimes n}$ . Let $(\overline{U}_{q}^{ev})^{\wedge}$ denote the
completion in $U_{h}$ of $\overline{U}_{q}^{ev}$ with respect to the decreasing filtration $\{C_{p}\}_{p\geq 0}$ , i.e., $(\overline{U}_{q}^{ev})^{\wedge}$ is
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the image of the homomorphism

$\lim_{p}arrow(\overline{U}_{q}^{ev}/C_{p})arrow U_{h}$
.

induced by the inclusion $\overline{U}_{q}^{ev}\subset U_{h}$ , which is well defined since $C_{2p}\subset h^{p}U_{h}$ for $p\geq 0$ .
For $n\geq 1$ , we define a filtration $\{C_{p}^{(n)}\}_{p\geq 0}$ for $(\overline{U}_{q}^{ev})^{\otimes n}$ by

$C_{p}^{(n)}= \sum_{j=1}^{n}\overline{U}_{q}^{ev}\otimes\cdots\otimes\overline{U}_{q}^{ev}\otimes C_{p}\otimes\overline{U}_{q}^{ev}\otimes\cdots\otimes\overline{U}_{q}^{ev}$,

where $C_{p}$ is at the jth position. Define the completion $(\overline{U}_{q}^{ev})^{\wedge\otimes n}\wedge$ of $(\overline{U}_{q}^{ev})^{\otimes n}$ as the image
of the homomorphism

$\lim_{p}arrow((\overline{U}_{q}^{ev})^{\otimes n}/C_{p}^{(n)})arrow U_{h}^{\otimes^{\wedge}n}$ .

For $n=0$ , it is natural to set

$C_{p}^{(0)}=\{\begin{array}{ll}\mathbb{Z}[q, q^{-1}] if p=0,0 otherwise.\end{array}$

Thus, we have

$(\overline{U}_{q}^{ev})^{\wedge\otimes 0}=\mathbb{Z}[q, q^{-1}]\wedge$ .
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