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ABSTRACT. In this note, we describe various theoretical results, numerical computations, and spec-
ulations concerning the analytic properties of the Shintani zeta functions associated to the space
of binary cubic forms. We describe how these zeta functions almost fit into the general analytic
theory of zeta and L-functions, and we discuss the relationship between this analytic theory and
counting problems involving cubic rings and fields.

1. INTRODUCTION

In this note we will discuss the analytic theory of the Shintani zeta functions associated to the
space of binary cubic forms. These zeta functions are defined by the equation

(1.1) $\xi^{\pm}(s)$
$:= \sum_{x\in SL_{2}(\mathbb{Z})\backslash V_{Z}}\frac{1}{|Stab(x)|}|$ Disc $(x)|^{-s}$ ,

where the sum is over equivalence classes of integral binary cubic foms (to be described in Section 2).
As we will describe, these zeta functions are unique and therefore interesting from an analytic point
of view. Simultaneously, work of Davenport-Heilbronn [10] and Delone-Faddeev [11] establishes that
$\xi^{\pm}(s)$ are essentially the generating functions for cubic rings, lending arithmetic interest to these
zeta functions as well.

The subject begins with the pioneering work of Shintani [27], who proved that these zeta functions
enjoy an analytic continuation and a functional equation. The shape of this functional equation
(see (3.4)) is a bit unusual, and in particular involves a matrix, so that $\xi^{+}(s)$ and $\xi^{-}(s)$ are
not independent. However, followup work by Datskovsky and Wright [36, 12], Ohno [22], and
Nakagawa [21] illustrated how these zeta functions may be very nearly brought into the existing
analytic framework (see (3.13)), although with a couple of interesting anomalies. In particular, they
do not appear to be related to L-functions with Euler products in any simple way, and, curiously,
their analytic continuations have poles at $s=5/6$ (as well as at $s=1$ ).

Therefore, $hom$ an analytic perspective, the Shintani zeta functions might be regarded as “black
sheep” in the family of zeta functions, which motivated us to further study their analytic properties.
The main objective of this paper is to discuss these zeta functions from an analytic point of view.
In one sense, our investigations were less successful than we hoped: much of the existing analytic
machinery is not sensitive to any particular information about the Shintani zeta function, and so our
answers to some questions will be limited to numerical computations and speculations. However,
we did obtain a couple of interesting theoretical results in this direction, and we will discuss these
as well.

We will also be interested in the relationship between the analytic theory and arithmetic appli-
cations. This subject starts with a famous result of Davenport and Heilbronn [10]. Let $N_{3}^{\pm}(X)$

count the number of cubic fields $K$ with $\pm Disc(K)<X$ . Davenport and Heilbronn proved that

(1.2) $N_{3}^{+}(X)= \frac{1}{12\zeta(3)}X+o(X)$ , $N_{3}^{-}(X)= \frac{1}{4\zeta(3)}X+o(X)$ .
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Although Davenport and Heilbronn did not use Shintani zeta functions in their proof, Datskovsky
and Wright gave such a proof [13], and it extended to counting cubic extensions of any global field.
In the context of their proof, the main terms in (1.2) correspond to the poles of $\xi^{\pm}(s)$ at $s=1$ .

After Davenport and Heilbronn published their results, numerical computations were performed,
and it turned out that the asymptotics in (1.2) were an extremely poor match for the data. Many
speculated that the proof of (1.2) was wrong. However, Datskovsky-Wright [13] and Roberts [24]
observed that this discrepancy is naturally explained by the theory of Shintani zeta functions. As
these zeta functions have poles at $s=5/6$, these authors conjectured that the counting functions
in (1.2) have secondary terms of order $X^{5/6}$ , where the constants are given by appropriate limits
of residues of adelic Shintani zeta functions.

Our conference talk in Tokyo consisted largely of vague and optimistic speculation. However,
after some very productive conversations with Takashi Taniguchi, whom we met at the conference,
we were able to push our ideas further and convert their heuristic into a proof. In particular, we
obtained the conjectured secondary terms of order $X^{5/6}$ in (1.2), with error terms of $o(x^{19/24+\epsilon})$ .
Because this work will appear in [33], we will use this paper to concentrate largely on our earlier
computations and speculations. However, we summarize our proof, and some related results, in
Section 5.

Remark. Roberts’ conjecture was also proved independently by Bhargava, Shankar, and Tsimerman
[5]. Their proof is similar in spirit to Davenport and Heilbronn $s$ original proof, and does not use
the theory of Shintani zeta functions.

Encouraged by our experience in Tokyo, we will engage in some further speculation up hont.
Let $a^{\pm}(n)$ denote the nth coefficient in (1.1). As we will see, $a^{\pm}(n)$ is essentially a bound for the
number of cubic fields of discriminant $n$ . (It is also related to the amount of 3-torsion in the class
group $C1(\mathbb{Q}(\sqrt n\urcorner).)$ What bounds can we prove for $a^{\pm}(n)$?

The best known bound, due to Ellenberg and Venkatesh [16], is

(1.3) $a^{\pm}(n)\ll n^{1/3+\epsilon}$ .
However, one expects the true upper bound to be on the order of $n^{\epsilon}$ , or perhaps still smaller. We
therefore naturally ask: Can one prove a better result using the theory of Shintani zeta functions?

Our question was met with some skepticism, and was the subject of several failed attempts by
the author. Nevertheless, we cautiously hope that such a proof may be possible.

organization of this paper. We begin in Section 2 by defiming the representation $V$ of $SL_{2}(\mathbb{Z})$

referred to in (1.1). We also describe how this representation is related to the problem of counting
cubic rings and fields. In Section 3 we give an introduction to the analytic theory of Shintani zeta
functions, drawing on work of Shintani, Datskovsky-Wright, Ohno, and Nakagawa. In Section 4
we consider problems involving the distribution of the zeroes. This involves a variety of theoretical
results, numerical computations, speculations, and descriptions of failed approaches. Finally, in
Section 5 we discuss how analytic methods can be used to prove results about the distribution of
cubic fields. In particular, we discuss our proof of Roberts’ conjecture, as additional results which
motivated our approach. We also discuss recent work of Taniguchi [30] which is needed in our
proof. As the details will appear elsewhere, we will be brief.

Notation. For the most part our choice of notation is standard. However, we have adopted the
notation $\xi^{\pm}(s)$ for the basic Shintani zeta functions, although $\xi_{1}(s)$ and $\xi_{2}(s)$ seem to be more
common. We have written $\xi^{add}(s)$ and $\xi^{sub}(s)$ for the diagonahzed Shintani zeta functions defined
in (3.10) and (3.11).
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2. BINARY CUBIC FORMS AND THE DELONE-FADDEEV CORRESPONDENCE

In this section, we define the notation used in (1.1), and describe how this lattice is related to
counting problems involving cubic rings and fields. We refer to Bhargava‘s paper [3] (see also [5])
for an elegant summary and reformulation of this theory, and give only a brief summary.

The lattice $V_{\mathbb{Z}}$ of integral binary cubic forms is defined by

(2. I) $V_{\mathbb{Z}}$ $:=\{au^{3}+bu^{2}v+cuv^{2}+dv^{3} : a, b, c, d\in \mathbb{Z}\}$,

and the discriminant of a cubic form is given by the usual equation

(2.2) Disc$(f)=b^{2}c^{2}-4ac^{3}-4b^{3}d-27a^{2}d^{2}+18abcd$.

Furthermore, there is a natural action of $GL_{2}(\mathbb{Z})$ (as well as $SL_{2}(\mathbb{Z})$ ) on $V_{\mathbb{Z}}$ , given by

(2.3) $(g \cdot f)(u, v)=\frac{1}{\det g}f((u, v)\cdot g)$ .

A cubic form $f$ is irreducible if $f(u, v)$ is irreducible as a polynomial over $\mathbb{Q}$ , and it is nondegenerate
if Disc $(x)\neq 0$ . It is proved in [27] that Stab $(x)$ , the stabilizer of $x$ in $SL_{2}(\mathbb{Z})$ , is an abelian group
of order one or three for any nondegenerate $x$ .

We note that if we consider this group action over $\mathbb{R}$ or $\mathbb{C}$ instead of $Z$ , then $V$ becomes a
prehomogeneous vector space. Namely, the group action is almost transitive, having only finitely
many Zariski open orbits. The theory of general prehomogeneous vector spaces and their associated
zeta functions has been studied by many authors, notably Sato and Shintani [26]. It would be very
interesting to extend the analysis described here to other prehomogeneous vector spaces, such as
those appearing in Bhargava’s recent work [4]. One should see the book of Yukie [37] for some
results in the quartic case.

The space of cubic forms $V$ is lent interest by its relation to cubic rings and fields. This was
established by the work of Delone-Faddeev [11] and Davenport-Heilbronn [10]. We define a cubic
ring to be any ring which is free of rank 3 as a $\mathbb{Z}$-module. The following result was proved by
Delone and Faddeev [11], with an extension to the degenerate case by Gan, Gross, and Savin [17]:

Theorem 2.1 (Delone-Faddeev, 1964). There is a canonical, explicit, discmminant-preserving
bijection between the set of cubic $rvngs$ up to isomorphism and the set of $GL_{2}(\mathbb{Z})$ -equivalence classes
of integral binary cubic forms. Furthermore, under this correspondence, irreducible cubic forms
correspond to orders in cubic fields.

See [3] (among other sources) for an explicit and simple description of the bijection.
The Delone-Faddeev correspondence was also essentially shown by Davenport and Heilbronn [10]

in their proof of (1.2). Their proof, as simplified and streamlined by Bhargava [3], is as follows.
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First of all, one chooses a fundamental domain for the action of $GL_{2}(\mathbb{Z})$ on $V$ with the property that
nearly all of the reducible points are in the cusp. Cutting off the cusp, one proves that the number
of lattice points remaining is asymptotically equal to the volume of the fundamental domain. One
therefore obtains asymptotics for the number of cubic orders of bounded discriminant.

To restrict the count to mastmal orders only, one observes that a cubic order is maximal if and
only if it satisfies a mnimffity condition at each prime $p$ . This condition, in turn, may be checked
by reducing the corresponding cubic form modulo $p^{2}$ . Therefore, for each $p$ , the set of cubic orders
which are maximal at $p$ has a density in the set of all cubic orders, and the product of all these
densities converges to a positive limit. It then follows, at least heuristically, that the number of
maximal cubic orders of bounded discriminant is equal to the product of the previous asymptotic
and this limit, and Davenport-Heilbronn use a sieve to make this argument rigorous.

Remark. The Shintani zeta function counts $SL_{2}(\mathbb{Z})$-orbits of cubic forms rather than $GL_{2}(\mathbb{Z})$-orbits,
and it weights some of them by a factor of 1/3, so it is not exactly the generating series for cubic
rings. The discrepancies depend on the Galois group of the splitting field of the cubic form. If
we hope to count fields, then the counting functions for all Galois groups other than Sym(3) are
extremely well understood, and so these discrepancies will not impede our analysis.

3. SHINTANI ZETA FUNCTIONS

Recall that the Shintani zeta functions are defined by the Dirichlet series

(3.1) $\xi^{\pm}(s)$
$:= \sum_{x\in SL_{2}(Z)\backslash V_{Z}}\frac{1}{|Stab(x)|}|$

Disc $(x)|^{-s}$ ,

where the count is over points of positive or negative discriminant respectively, and the lattice $V_{Z}$

is defined by (2.1). The functional equation will relate $\xi^{\pm}(s)$ to dual zeta functions, defined as
follows: The dual lattice to $V_{Z}$ is

(3.2) $\hat{V}_{\mathbb{Z}}:=\{au^{3}+bu^{2}v+cuv^{2}+dv^{3} : a, d\in \mathbb{Z}, b, c\in 3\mathbb{Z}\}$ ,

and one checks that $SL_{2}(\mathbb{Z})$ acts on $\hat{V}_{Z}$ as well as $V_{Z}$ . The dual Shintani zeta functions are defined
by

(3.3) $\hat{\xi}^{\pm}(s)$

$:= \sum_{x\in SL_{2}(Z)\backslash \hat{V}_{Z}}\frac{1}{|Stab(x)|}|$
Disc $(x)|^{-s}$ .

Shintani proved [27] that all of these Dirichlet series converge absolutely for $\Re(s)>1$ , enjoy
analytic continuation to all of $\mathbb{C}$ with poles only at $s=1$ and $s=5/6$ , and satisfy the matrix
functional equation

(3.4)

$( \xi^{+}(1-s)\xi^{-}(1-s))=\Gamma(s-\frac{1}{6})\Gamma(s)^{2}\Gamma(s+\frac{1}{6})2^{-1}3^{6s-2}\pi^{-4s}\cross(\begin{array}{ll}sin2\pi s sin\pi s3sin\pi s sin2\pi s\end{array})( \xi^{\hat{+}}(s)\hat{\xi}^{-}(s))\cdot$

He also explicitly computed all of the residues.
We will give a brief summary of the proof. Shintani defined the completed zeta function

(3.5) $Z(f, s):= \int_{GL_{2}^{+}(R)/SL_{2}(Z)}(\det g)^{6s}\sum_{x\in V_{\acute{Z}}}f(gx)dg$
,

40



ANALYTIC PROPERTIES OF SHINTANI ZETA FUNCTIONS

where $f$ is a suitable test function, and $V_{\mathbb{Z}}’$ consists of those $x\in V_{\mathbb{Z}}$ with nonzero discriminant.1
(The exponent 6 arises because Disc $(gx)=(\det g)^{6}$Disc $(x).$ ) One defines $\hat{Z}(f, s)$ analogously by
summing over $\hat{V}_{\mathbb{Z}}$ .

It is then readily shown that

(3.6) $Z(f, s)= \frac{1}{4\pi}\xi^{+}(s)\int_{V^{+}}|P(x)|^{s-1}f(x)dx+\frac{1}{12\pi}\xi^{-}(s)\int_{V^{-}}|P(x)|^{s-1}f(x)dx$ ,

where $V^{+}$ and $V^{-}$ denote those portions of $V_{\mathbb{R}}=V\otimes \mathbb{R}$ with positive and negative discriminant
respectively.

Shintani then proves the functional equation

(3.7) $Z(f, s)=\hat{Z}(\hat{f,}1-s)$ .

This is proved by Poisson summation, as for the the Riemann zeta function. However, in this
case the zero locus consists of an infinite number of $SL_{2}$-orbits rather than a single point. Shin-
tani evaluates the appropriate integrals by introducing an Eisenstein series, and proving that one
may recover the original integrals by taking an appropriate limit. The Eisenstein series, in turn,
incorporates extra averaging which aUows for the evaluation of the modified integrals.

Shintani also proves that the integrals occuring in (3.6) have analytic continuations and a func-
tional equation similar to (3.4). Put together, these functional equations allow him to prove (3.4)
and the rest of his theorem.

Shintani $s$ work was followed up by Datskovsky and Wright [36, 12, 13], Ohno [22], Nakagawa
[21], and Taniguchi [30], among many others. In Section 5 we will discuss Datskovsky-Wright’s
theory of the adelic Shintani zeta function. Here we will discuss how the functional equation for
the Shintani zeta functions may be brought in line with the general analytic theory of zeta functions.

We begin with an observation of Datskovsky and Wright in [12], that the matrix occuring in
(3.4) has a simple diagonalization. In view of this diagonalization, Ohno [22] performed numerical
computations which led him to conjecture that the standard and dual Shintani zeta functions are
related by the simple equations

(3.8) $\xi^{\hat{+}}(s)=3^{-3s}\xi^{-}(s)$ ,

(3.9) $\hat{\xi}^{-}(s)=3^{1-3s}\xi^{+}(s)$ .
Shortly thereafter, Ohno’s conjecture was proved by Nakagawa [21].

Combining all of these results yields an elegant reformulation of Shintani $s$ functional equation.
Define diagonalized Shintani zeta functions
(3.10) $\xi^{add}(s)$ $:=3^{1/2}\xi^{+}(s)+\xi^{-}(s)$ ,

(3.11) $\xi^{sub}(s)$ $:=3^{1/2}\xi^{+}(s)-\xi^{-}(s)$ ,

and completed zeta functions

(3.12) $\Lambda^{add}(s)$ $:=( \frac{432}{\pi^{4}})^{s/2}\Gamma(\frac{s}{2})\Gamma(\frac{s}{2}+\frac{1}{2})\Gamma(\frac{s}{2}+\frac{1}{12})\Gamma(\frac{s}{2}-\frac{1}{12})\xi^{add}(s)$ ,

$\Lambda^{sub}(s):=(\frac{432}{\pi^{4}})^{s/2}\Gamma(\frac{s}{2})\Gamma(\frac{s}{2}+\frac{1}{2})\Gamma(\frac{s}{2}+\frac{5}{12})\Gamma(\frac{s}{2}+\frac{7}{12})\xi^{sub}(s)$ .

$1_{A}$ technical point: Shintani omits the factor of $\det g$ from his definition of (2.3), in contrast to Bhargava and
Datskovsky-Wright. This choice of normalization is reflected in the functional equation for the completed zeta
function, but not in the final results.
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Then, we have

(3.13) $\Lambda^{add}(1-s)=\Lambda^{add}(s)$ ,

(3.14) $\Lambda^{sub}(1-s)=\Lambda^{sub}(s)$ .
One may compare these zeta functions with the general formalism in, say, Chapter 5 of Iwaniec
and Kowalski $s$ book [20]. For the most part, these diagonalized zeta functions fit this framework.
However, there are a couple of differences. These zeta functions don’t have Euler products, or any
obvious simple relation to Euler products.2 It was suggested to the author that the presence of the
negative number $-1/12$ in (3.12) is perhaps a bit unusual. And, perhaps most significantly, there
is the pole at $s=5/6$ , which is retained in $\xi^{add}(s)$ but disappears in $\xi^{sub}(s)$ .

The analytic properties of these zeta functions invite a variety of philosophical questions. For
example, is some conceptual way of predicting that the linear combinations in (3.10) and (3.11) are
those which should enjoy simple functional equations? And is there some reason that $\xi^{add}(s)$ has
a pole at $s=5/6$ but $\xi^{sub}(s)$ does not? Still more questions are posed in Datskovsky and Wright’s
papers. Unfortunately, we are currently unable to offer any answers.

4. THE DISTRIBUTION OF THE ZEROES

Now that we have described four interesting zeta functions (Shintani‘s original zeta functions,
and the diagonalized functions), we decided to investigate them further $hom$ an analytic point of
view. In particular, we investigated the distribution of their zeroes. A standard formula establishes
that the number of zeroes with $|\Im(s)|<T$ is given by

(4.1) $N(T)= \frac{T}{\pi}\log(\frac{432T^{4}}{(2\pi e)^{4}})+O(\log T)$ .

Should these zeroes all lie on the half line, or even within the critical strip?

4.1. Epstein zeta functions and their relatives. We began by looking for some reasonable
basis for making guesses. Most interesting examples of zeta and L-functions have Euler products,
and the existence of an Euler product is generally expected to affect the distribution of the zeroes.
Accordingly we turned to the theory of Epstein zeta functions, which don’t have Euler products.

The Epstein zeta functions are defined by

$\zeta_{Q}(s)=\sum_{(u,v)\neq(0,0)}(au^{2}+buv+cv^{2})^{-s}$
,

where $Q(u, v)=au^{2}+buv+cv^{2}$ is a positive definite quadratic form. These enjoy analytic contin-
uation to the whole complex plane, with the functional equation

$( \frac{\sqrt{|D|}}{2\pi})^{s}\Gamma(s)\zeta_{Q}(s)=(\frac{\sqrt{|D|}}{2\pi})^{1-s}\Gamma(1-s)\zeta_{Q}(1-s)$ ,

where $D=b^{2}-4ac<0$ is the discriminant of $Q$ . Furthermore, if $a,$ $b,$ $c\in \mathbb{Z}$ , then $\zeta_{Q}(s)$ constitutes
one piece of the Dedekind zeta function $\zeta_{\mathbb{Q}(\sqrt{D})}(s)$ , corresponding to an element of the class group,
and $\zeta_{Q}(s)$ only has an Euler product if $h(D)=1$ . However, $\zeta_{Q}(s)$ does have a representation as
a finite linear combination of Hecke L-functions. So we should expect any analogy with Shintani
zeta functions to be inexact.

$2_{However}$ , see [12] for an interesting expression for these zeta functions as infinite sums of Euler products, which
is valid for $\Re(s)>1$ .
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However, the zeroes of Epstein zeta functions have been studied by a variety of authors, and
we hoped that the analogy might prove fruitful. Our basic reference is the excellent survey article
by Hejhal [19]. (We also recommend Hejhal $s$ article for an interesting foray into the history of
computational number theory: the remarkable CRAY-I supercomputers which they used had over
seven million bytes of memory.)

Some of the results discussed in [19] are as follows. All asymptotics refer to the number of zeroes
of a fixed Epstein zeta function $\zeta_{Q}(s)$ with integral coefficients, such that $|\Im(s)|<T$ .. (Potter and Titchmarsh [23]) At least $\gg T$ zeros lie on the critical line.. (Voronin [35]) At most $O(T)$ zeros lie to the right of any fixed line $Re(s)=\sigma>1/2$ .. (Davenport and Heilbronn [9]) Unless $\zeta_{Q}(s)$ is the Dedekind zeta function of a quadratic

field, at least $\gg T$ nontrivial zeros are outside the critical strip.. (Bombieri and Hejhal [6]) Under certain hypotheses on the Hecke L-functions associated to
$\mathbb{Q}(\sqrt{D})$ (including, but not limited to, GRH), almost all zeroes of $\zeta_{Q}(s)$ lie on the critical
line.

These sorts of results are interesting in their own right, and they are also related to interesting
arithmetic questions. For example, in [29] Stark discusses the relationship between these results
and the class number one problem. If $D$ is a negative integer, then [9] implies that $\zeta_{Q}(s)$ has zeroes
outside the critical strip if and only if $h(D)=1$ . Therefore, an independent characterization of
those $Q$ for which $\zeta_{Q}(s)$ has such zeroes would lead to a new solution of the class number one
problem.

Stark proposes that it would be desirable to FIND A PURELY ANALYTIC PROOF3 of this
characterization. He suggests that such a proof might extend to other fixed class numbers, and (if
we were really lucky”) perhaps even effectively approach the strength of Siegel $s$ theorem.

Although we have not answered Stark $s$ challenge, it did add motivation to our related investi-
gations. We began with some numerical experiments. We reconstructed a list of the first million
coefficients of the Shintani zeta functions from a table of cubic fields computed by Belabas [1]. We
then availed ourselves of the ComputeL and $L$ computational packages, by Dokchitser [14, 15] and
Rubinstein [25] respectively. These packages implement algorithms to compute L-functions and
their derivatives inside or outside the critical strip. They are quite effective near the real axis, even
if only a few hundred Dirichlet coefficients are known. As one moves away from the real axis, the
computational complexity of these algorithms grows quickly, both in terms of running time and
number of Dirichlet coefficients required. Using a typical desktop computer, Rubinstein‘s software
allowed us to run computations up to approximately $\Im(s)=1000$ in a reasonable amount of time.

4.2. Zeroes inside the critical strip. Using this software, we were able to find the low-lying
zeroes of each of the Shintani zeta functions by computing contour integrals of $\xi’(s)/\xi(s)$ over
appropriate rectangles. We observed that none of the Shintani zeta functions satisfy the Riemann
hypothesis, but that all of them had zeroes on the critical line.4

For example, the first few zeroes of $\xi^{+}(s)$ on the critical line are at
$0.5+4.745125599327\cdots i$

$0.5+6.962286575567\cdots i$

$0.5+8.4742944491274\cdots i$

$0.5+10.152261066735\cdots i$ ,

$3_{Indeed}$ , Stark proposes this problem in all capital letters.
$4_{In}$ the case of $\xi^{\pm}(s)$ , we did not check that these zeroes are not simply close to the critical line. In the case of

$\xi^{add}(s)$ and $\xi^{sub}(s)$ , the functional equation forces any zeroes off the line to occur in pairs, so we can be sure that
these zeroes are exactly on the line.
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and $\xi^{+}(s)$ also has a pair of zeroes at

0.18579 $\cdot\cdot$ $\cdot+7.05984\cdots i$ , 0.81420 $\cdots+7.05984\cdots i$ .
The distribution of the zeroes of $\xi^{-}(s)$ is roughly similar, although there is a lower zero at 0.5 $+$

1.32 $\cdots i$ , and the first exception to RH is higher. Soundararajan remarked to the author that the
ordinates of the zeroes of $\xi^{+}(s)$ are very close to one third those of the Riemann zeta function.
However, we have no way of predicting this phenomenon, and it did not seem to hold up as we
computed more zeroes.

We chose to investigate $\xi^{+}(s)$ in more detail, and we used Rubinstein $s$ software to compute the
first 1788 zeroes of $\xi^{+}(s)$ on the critical line, up to a height of $\Im(s)\approx 953$ . We predict that we
have missed roughly 1570 zeroes off the critical line, based on the classical formula

(4.2) $N(T)= \frac{T}{\pi}\log(\frac{432T^{4}}{(2\pi e)^{4}})+O(\log T)$

for the number of zeroes with $|\Im(s)|<T$. In particular, up to $\Im(s)=953$ , roughly 53% of the
zeroes lie on the critical line. Moreover, our data suggests that this percentage is roughly consistent
for $\Re(s)<953$ as well.

Based on Bombieri and Hejhal $s$ work, we are inclined to guess that almost all of the zeroes of
$\xi^{\pm}(s)$ should lie on the critical line as $\Im(s)arrow\infty$ . However, we could easily be wrong. The zeta
functions considered by Bombieri and Hejhal are finite sums of L-functions with Euler products,
and so their analysis does not apply, even heuristically.

With more numerical data, we could conduct a variety of further experiments. For example,
this would allow us to investigate our guess above. To give another example, we could compute
the pair correlation of the zeroes. In the classical setting, work of Montgomery and many other
authors predicts that such pair correlations should be related to distributions of eigenvalues of
random matrices. In the setting of Epstein zeta functions, Farmer and Koutsoliotas (unpublished,
in progress) numerically observed that the zeroes may instead be modeled by those of random self-
reciprocal polynomials. With more data in hand, it would be interesting to see if their observations
carry over to Shintani zeta functions.

It would also be of interest to prove the existence of infinitely many zeroes on the critical line.
However, our attempts were immediately stymied: this has not yet been proven for any zeta or
L-function of degree greater than two, regardless of the existence of an Euler product.

We briefly mention a couple of other unsuccessful investigations. We used ComputeL to compute
a variety of possibly “special” values of the Shintani zeta functions, such as at $s=2$ and $s=1/2$.
However, we did not find any obviously interesting behavior. We also tried to a prove zero density
estimate, along the lines of Voronin‘s theorem, but the methods we tried did not yield any nontrivial
results.

4.3. Zeroes outside the critical strip. We also looked for zeroes outside the critical strip. As
there is no obvious reason for them not to exist (i.e., an Euler product), we expected to find them.
For $\xi^{add}(s)$ and $\xi^{sub}(s)$ , this was quickly accomplished. However, we did not find zeroes of $\xi^{+}(s)$

and $\xi^{-}(s)$ outside the strip.5
However, we still believed they should exist. Motivated by Davenport and Heilbronn‘s work

[9], Soundararajan and the author [28] developed a method which allows us to numerically prove
the existence of zeroes, even if we cannot find them. Although we expect the method to almost

$5_{We}$ did not push our computational tools to their limits, as we found it more interesing to develop a theoretical
approach.
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always work in principle, we cannot always reduce the problem to a manageable computation. In
particular, we proved the existence of zeroes for $\xi^{-}(s)$ but not for $\xi^{+}(s)$ .

Our method is quite general. Suppose we are given a Dirichlet series $A(s)$ $:= \sum_{n}a(n)n^{-s}$ with
real coefficients and abscissa of absolute convergence $\Re(s)=1$ . (Our theorem assumes nothing
about analytic continuation or a functional equation, but these will be needed in our application.)
Our main result is the following:

Theorem 4.1. [28] Suppose that there is a completely multiplicative function $\chi(n)$ , taking values
$in\pm 1$ , such that

(4.3) $A( \sigma, \chi):=\sum_{n}a(n)\chi(n)n^{-\sigma}<0$

for some real $\sigma>1$ . Assume further that if $n_{0}$ is the smallest integer for which $a(n_{0})\neq 0$ , then
$a(n_{0})\chi(n_{0})>0$ .

Then $A(s)$ has infinitely many zeroes outside the critical stnp.

Sketch proof. First of all, an “almost periodicity” argument using Rouch\’e $s$ theorem shows that it
is enough to prove that $A(s)$ has one zero outside the critical strip. Secondly, we show that the
function $\chi(n)$ can be well approximated, uniformly for $n<N$ for any $N$ , by the function $n^{it}$ for
some choice of $t$ .

Assuming (4.3), a continuity argument implies that $A(\sigma, \chi)=0$ for some $\sigma$ (hence the require-
ment that $\chi$ and the $a(n)$ be real valued). It then follows that $A(\sigma-it)$ is very close to zero, and
Rouch\’e $s$ theorem implies that $A(s)$ has a zero near $\sigma-it$ . $\square$

The Shintani zeta functions $\xi^{\pm}(s)$ illustrate a typical application of our result. We will show
that the negative discriminant Shintani zeta function

(4.4) $\xi^{-}(s)=\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{7^{s}}+\cdots$

has zeroes outside the critical strip. Define the function $\chi(n)$ by $\chi(3)=1$ , and $\chi(p)=-1$ for $p\neq 3$ .
We compute that

$\sum_{n\leq 10^{6}}a(n)\chi(n)n^{-1.3}=-0.162\ldots$

and

(4.5)
$\sum_{n>10^{6}}|a(n)\chi(n)n^{-1.3}|<\sum_{n>10^{6}}a(n)n^{-1.3}=0.06\ldots$

It follows that $\sum_{n}a(n)\chi(n)n^{-1.3}<0$ , and $we’ re$ done.
Notice that we implicitly used the analytic continuation and functional equation for $\xi^{-}(s)$ . To

compute the tail of the Dirichlet series in (4.5), we needed to compute $\xi^{-}(1.3)$ to very high accuracy.
We did this using Dokchitser‘s ComputeL [15], which uses the analytic continuation and functional
equation in an essential way.

For the positive discriminant series

(4.6) $\xi^{+}(s)=1/3+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\cdots$ ,

we were not able to prove a similar result. Experimenting, we found a choice of $\chi(n)$ for which

$\sum_{n\leq 10^{6}}a(n)\chi(n)n^{-1.1}=-0.11\cdots$
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However, we were unable to obtain a negative value for any substantially larger value of $\sigma$ . We
computed that

$\sum_{n>10^{6}}a(n)n^{-1.1}>7$
,

and although this constitutes some evidence for the existence of zeroes, it falls well fell short of
a proof. By computing, say, the first trillion $a(n)$ , we might be able to produce a proof, but this
seems a bit unreasonable. We hope instead to improve our criterion, perhaps to somehow allow the
use of complex-valued $\chi$ .

5. SIEVE METHODS, ALMOST PRIME DISCRIMINANTS, AND ROBERTS’ CONJECTURE

In this last section, we develop a method to obtain explicit functional equations for variants of
the Shintani zeta function. We also explain how to use these in combination with sieve methods to
obtain a variety of interesting results (including Roberts’ conjecture). This work was carried out
in parallel by Taniguchi [30] and the present author [32, 33], and our manuscripts are currently
in preparation. We hasten to mention our gratitude to Taniguchi for his many comments and
suggestions.

The method begins with the work of Datskovsky and Wright [36, 12, 13], who developed an
adelic version of the Shintani zeta function. Their work was continued by Taniguchi [30], who
made much of Datskovsky and Wright’s work explicit and computed many of the quantities which
appear in the resulting functional equations. The idea is that one may insert a variety of conditions
into the definition of the Shintani zeta function, and $stm$ obtain analytic continuation and explicit
functional equations. We $wiU$ describe the general formalism first, but the reader may wish to skip
to the examples.

To explain our approach, we recall Tate’s work in the classical setting, given in his thesis [31].
Let $f\in S(A_{\mathbb{Q}})$ be a Schwartz function, and define a zeta function

(5.1) $\zeta(f, s):=\int_{A_{Q}^{x}}f(a)|a|^{-\epsilon}d^{x}a$ .

Then $\zeta(f, s)$ has analytic continuation with a functional equation

(5.2) $\zeta(f, s)=\zeta(\hat{f,}1-s)$ ,

where $\hat{f}$ is the Fourier transform of $f$ . One recovers the Riemann zeta function, its analytic
continuation, and the functional equation by choosing $f$ to be the characteristic function of $\mathbb{Z}_{p}$ at
all p-adic places, and $f(x)=e^{-\pi\xi^{2}}$ at the infinite place. In particular, with this choice $\hat{f}=f$ and
$\zeta(f, s)$ is the usual (completed!) Riemann zeta function.

However, (5.2) continues to hold for other choices of $f$ . For example, for any integers $a$ and $q$ , one
obtains analytic continuation and a functional equation for the Dirichlet series $\sum_{n\equiv a}(mod q)^{n^{-s}}$ ,
by making a different choice of $f$ at those $p$-adic places dividing $q$ . The functional equation will no
longer be self-dual, but $wm$ involve an exponential sum over $\mathbb{Z}/n\mathbb{Z}$ .

These facts may be of course proved by other means. But all of this discussion generalizes to
Shintani zeta functions, where other proofs of these facts are not known. This is the work of
Datskovsky-Wright and Taniguchi. The adelic Shintani zeta function (over $\mathbb{Q}$) is defined by

(5.3) $Z(f, s):= \int_{GL_{2}(A_{Q})/GL_{2}(\mathbb{Q})}|\det g|^{-s}(\sum_{x\in V_{\acute{Q}}}f(gx))dg$.
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In [36], Wright proves the functional equation

(5.4) $Z(f, s)=Z(\hat{f,}2-s)$ ,

and in [12] Datskovsky and Wright prove that a standard choice of $f$ recovers the original Shintani
zeta functions.6 However, we may obtain variants of the Shintani zeta function by making other
choices of $f$ .

In particular, for any integer $d$ , suppose $\mathcal{D}$ is any $GL_{2}(\mathbb{Z}/d\mathbb{Z})$-invariant subset of $V_{\mathbb{Z}/d\mathbb{Z}}$ . We
define a restricted Shintani zeta function

(5.5)
$\xi_{\mathcal{D}}^{\pm}(s)=\sum_{n\geq 1}a_{D}^{\pm}(n)n^{-s}$

$:=x( mod d)\in \mathcal{D}\sum_{x\in SL_{2}(\mathbb{Z})\backslash V_{Z}}\frac{1}{|Stab(x)|}$

Disc $(x)|^{-s}$ .

As Datskovsky-Wright and Taniguchi proved, these Shintani zeta functions also enjoy analytic
continuation and a functional equation. To describe the functional equation, let $\Phi_{\mathcal{D}}(x)$ be the
characteristic function of $\mathcal{D}$ . Its dual is defined by the equation

(5.6)
$\hat{\Phi}_{D}(x):=\frac{1}{d^{4}}\sum_{y\in V_{Z/d\mathbb{Z}}}\Phi_{\mathcal{D}}(y)\exp(2\pi i[x, y]/d)$

,

where

(5.7) $[x, y]:=x_{4}y_{1}- \frac{1}{3}x_{3}y_{2}+\frac{1}{3}x_{2}y_{3}-x_{1}y_{4}$ ,

is the alternating bilinear form used to identify $V$ with $\hat{V}$ , and $x_{i}$ and $y_{j}$ are the coordinates of $x$

and $y$ respectively.
This dual may be regarded as a cubic Gauss sum, and originates as a product of p-adic Fourier

transforms of the function $\Phi_{D}$ . This integral reduces naturally to the finite sum above. We also
note that $\mathcal{D}$ is multiplicative in the natural sense.

Fortuitously, these Gauss sums are typically quite small. Moreover, they typically enjoy nice
formulas. These sums are analyzed in Taniguchi $s$ work [30]. Thus far, Taniguchi has computed
these sums in the cases of interest to us, and it appears that his method will allow us to compute
$\hat{\Phi}_{\mathcal{D}}$ for a variety of choices of $\mathcal{D}$ .

We are now prepared to state the functional equation, essentially following [30]:

(5.8) $( \xi^{\frac{\mathcal{D}}{\mathcal{D}}}(1-s)\xi^{+}(1-s))=\Gamma(s-\frac{1}{6})\Gamma(s)^{2}\Gamma(s+\frac{1}{6})2^{-1}3^{6s-2}\pi^{-4s}(\begin{array}{ll}sin2\pi s sin\pi s3sin\pi s sin2\pi s\end{array})( \hat{\xi}^{\frac{\mathcal{D}}{D}}(s)\xi^{\hat{+}}(s))$ ,

where

(5.9) $\hat{\xi}_{\mathcal{D}}^{\pm}(s)$ $:=$ $\sum$ $\frac{I}{|Stab(x)|}\hat{\Phi}_{\mathcal{D}}(x)(|$ Disc $(x)|/d^{4})^{-s}$ .
$x\in SL_{2}(\mathbb{Z})\backslash \hat{V}_{Z}$

Notice that the shape of the functional equation is completely uniform, all $\mathcal{D}$-dependence having
been incorporated into the definition (5.9). This means in particular that $\xi_{\mathcal{D}}^{\pm}$ may be diagonalized
in exactly the same way as described before.

$6_{Datskovsky}$ and Wright relate $Z(f, s)$ to $\xi^{\pm}(s/2)$ .
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We can apply this to counting problems using standard analytic methods. We begin with Pemon’s
fomula, which establishes that

(5.10) $\sum_{n<X}a_{D}^{\pm}(n)=\int_{2-i\infty}^{2+i\infty}\xi_{D}^{\pm}(s)X^{s}\frac{ds}{s}$ .

To estimate this, in principle we shift to the contour to the left, pick up main terms $hom$ the
residues at $s=1$ and $s=5/6$, use the functional equation to rewrite the integrand in terms of
(5.9), and estimmate the resulting error. In practice, the integral will not converge at infimity, so one
must either truncate the integral or incorporate a smoothing and unsmoothing process. We will
use the latter approach, following work of Chandrasekharan and Narasimhan [8].

One expects, and in typical cases can prove,

(5.11) $\sum_{n<X}a_{D}^{\pm}(n)={\rm Res}_{\epsilon=1}\xi_{D}^{\pm}(s)X+\frac{6}{5}{\rm Res}_{s=5/6}\xi_{D}^{\pm}(s)X^{5/6}+O(\max(S^{2/5}X^{3/5}, SX^{3/8}))$,

where

(5.12)
$S= \sum_{x\in V_{Z/dZ}}|\hat{\Phi}_{\mathcal{D}}(x)|$

.

A straightforward reading of [8] leads one to expect an error term of $SX^{3/5}$ , but a closer inspection
reveals that one can do better. The residues in (5.11) can be computed from Taniguchi‘s tables [30].
This kind of estimate is already interesting, and we may combine it further with sieve methods to
study the distribution of cubic rings.

We now illustrate our construction with two examples.

5.1. The d-divisible Shintani zeta function. We define the d-divisible Shintani zeta function
by

(5.13)
$\xi_{d}^{\pm}(s):=x\in SL_{2}(Z)\backslash V_{Z}\sum_{d|Disc(x)}\frac{1}{|Stab(x)|}|Disc(x)|^{-s}$

,

which is the usual Shintani zeta function with the additional divisibility condition. The discussion
above establishes analytic continuation and the functional equation for $\xi_{d}^{\pm}(s)$ .

As we claimed in our Tokyo lecture, we can use this zeta function to prove statements about
prime and almost-prime cubic field discriminants. We have not yet finished this (and the current
paper was subject to a deadline). Accordingly, this section will describe what we are reasonably
confident that we can prove; the details will appear soon.

First of all, for squarehee $d$ we have the bound [30]

(5.14)
$\sum_{x\in V_{z/ae}}|\hat{\Phi}(x)|\ll d^{1+\epsilon}$

.

By (5.11), the number of (irreducible) cubic orders with $\pm Disc(x)<X$ and $d|$Disc $(x)$ is, for
squarehee $d\ll X^{3/8}$ ,

(5.15) $\frac{1}{2}\alpha^{\pm}X\prod_{p|d}(\frac{1}{p}+\frac{1}{p^{2}}-\frac{1}{p^{3}})+\frac{3}{5}\gamma^{\pm}X^{5/6}\prod_{p|d}(\frac{1}{p}+\frac{1}{p^{4/3}}-\frac{1}{p^{7/3}})+O(d^{2/5+\epsilon}X^{3/5})$,
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where

(5.16) $\alpha^{+}=\pi^{2}/36$ , $\alpha^{-}=\pi^{2}/12$ , $\gamma^{+}=\frac{\Gamma(1/3)^{3}\zeta(1/3)}{4\sqrt{3}\pi}$ , $\gamma^{-}=\sqrt{3}\gamma^{+}$ .

Later, we may also be able to handle the case where $d$ is not squarefree.
The formula (5.15) takes the shape of a common assumption in the theory of sieve methods (see,

e.g., [18] or [20] $)$ . This allows us to now prove results on prime and almost prime cubic discriminants
using standard methods. It follows by the theory of the Selberg sieve that the number of cubic
fields of prime discriminant $<X$ is $\ll X/\log X$ , where the implied constant can be made explicit.
It follows by Brun’s theory of the combinatorial sieve that that the number of cubic fields of
discriminant $<X$ , whose prime factors are all greater than $X^{\alpha}$ , is equal to $(C^{\pm}/ \alpha+o_{\alpha}(1))\frac{X}{\log X}$ ,
where $C^{\pm}$ is an explicit constant, and the error term $o(1)$ can be made more precise. In particular,
this implies the existence of infinitely many cubic fields whose discriminants have a bounded number
of prime factors.

The precise details will be worked out in a forthcoming paper.

5.2. Nonmaximal rings and Roberts’ conjecture. We conclude by returning to the Davenport-
Heilbronn theorem. We will sketch our proof of the following conjecture of Datskovsky-Wright [13]
and Roberts [24]:

Theorem 5.1. We have

(5.17) $N_{3}^{\pm}(X)=C_{\pm} \frac{1}{12\zeta(3)}X+K_{\pm}\frac{4\zeta(1/3)}{5\Gamma(2/3)^{3}\zeta(5/3)}X^{5/6}+O(X^{19/24+\epsilon})$ ,

where $C_{-}=3,$ $c_{+}=1,$ $K_{-}=\sqrt{3}$ , and $K+=1$ .
Roberts’ conjecture was also proved independently, with an error term of $o(x^{39/48+\epsilon})$ , by Bhar-

gava, Shankar, and Tsimerman [5]. Their proof uses a very geometric approach, and does not use
the theory of Shintani zeta functions. In contrast, our proof is similar to the heuristic argument of
Datskovsky-Wright and Roberts, which we now review.

We may count cubic fields by counting their corresponding maximal orders. We recall that
Davenport and Heilbronn proved that a cubic order is maximal if it satisfies a maximality condition
at each prime $p$ , which may be detected by reducing the coefficients of the corresponding cubic form
modulo $p^{2}$ .

These maximality conditions may be detected by appropriate adelic test functions. It then
follows by (5.11), and Taniguchi‘s formulas for the relevant residues and cubic Gauss sums, that
the number of cubic orders which are maximal at all primes less than $P$ is equal to

(5.18) $\frac{1}{2}\alpha^{\pm}X\prod_{p<P}(1-\frac{1}{p^{2}})(1-\frac{I}{p^{3}})+\frac{3}{5}\gamma^{\pm}X^{5/6}\prod_{p<P}(1-\frac{1}{p^{5/3}})(1-\frac{1}{p^{2}})+O((\prod_{p<P}p)^{1+\epsilon}X^{3/8})$ ,

where the constants are as in (5.16). Formally taking alimit as $Parrow\infty$ , and ignoring the nightmare
error term7, we obtain the two main terms of (5.17).

To prove Roberts’ conjecture, we adapt an observation of Belabas, Bhargava, and Pomerance
[2]. They obtained the main term in (5.17) with an error term of $X^{7/8+\epsilon}$ , by writing

(5.19)
$N_{3}^{\pm}(X)= \sum_{q\geq 1}\mu(q)N^{\pm}(q, X)$

,

$7_{Recal1}$ that the error term is in fact the larger of the term listed and $o(( \prod_{p<P}p)^{2/5+\epsilon}X^{3/5})$ , but the error term

above will be larger except for extremely small $P$.
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where $N^{\pm}(q, X)$ counts the number of cubic orders which are not maximal at any prime dividing
$q$ . As $N^{\pm}(q, X)\ll X/q^{2-\epsilon}$ (an indispensibly useful fact), we may truncate the sum in (5.19) to
$q\leq Q$ with error $O(X/Q^{1-\epsilon})$ . They then estimated $N(q, X)$ using geometric methods.

We departed from their approach by estimating $N(q, X)$ using adelic Shintani zeta functions, as
described above. However, the observant reader will note that this approach will not work exactly
as stated. There are two reasons for this. The first is that the Shintani zeta function is not exactly
the generating function for cubic orders. To deal with this problem, we replaced the quantity
$N^{\pm}(q, X)$ with the analogous partial sum of the Shintani zeta functions, and at the end corrected
for the final contribution from the various discrepancies. In particular, our estimates included the
contribution from quadratic fields, which we could then simply subtract.

The second reason is that the approach described above only yields an error term of $o(x^{5/6+\epsilon})!$

(One takes $Q=X^{1/6}$ to equalize the errors coming from the tail of (5.19) and from (5.11).)
We improved this error term by incorporating the summation in (5.19) into our analytic method.
Following [8], we estimated weighted versions of the quantities $N^{\pm}(q, X)$ (or, more precisely, the
analogous quantities described above), where a discriminant $n$ has the weight $(X-n)^{3}$ . With this
weighting, the application of Perron $s$ formula in (5.10) is much smoother and yields better error
terms. It is then proved in [8] that the original quantities $N^{\pm}(q, X)$ may be recovered as finite
differences of the weighted quantities, within manageable error terms.

We improved our error term by using this weighting to our advantage. In particular, the error
made in unweighting one term $N^{\pm}(q, X)$ is comparable to that made in unweighting the entire sum
in (5.19). Accordingly, we postponed this unweighting until the very end, allowing us to prove a
better error term than the sum of the error terms in (5.11) over $q\leq Q$ .

We conclude by remarking that our methods seem likely to have further applications. For
example, we may be able to count quartic or quintic extensions, or extensions over base fields other
than $\mathbb{Q}$ . Furthermore, if we are content with formulas for smoothed versions of these counting
functions, we may be able to obtain secondary terms in these counting functions as well. We look
forward to investigating these and other applications in the near future.
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