ON THE KOTTWITZ-SHELSTAD NORMALIZATION OF TRANSFER FACTORS FOR AUTOMORPHIC INDUCTION FOR GL_n (JOINT WORK WITH K. HIRAGA)

ATSUSHI ICHINO

This note is a report on a joint work with Kaoru Hiraga. Details will appear elsewhere.

Automorphic induction for GL_n over a p-adic field is an example of endoscopic transfer and its character identity was established by Henniart and Herb [2], up to a constant. We discuss a relation of this constant to the Kottwitz-Shelstad transfer factor [5], in particular, to the normalization using ε -factors.

Let F be a non-archimedean local field of characteristic zero. Let $G = GL_n(F)$ and $\mathbf{a} \in H^1(W_F, Z(\hat{G}))$, where W_F is the Weil group of F and $Z(\hat{G})$ is the center of the dual group of G. Let (H, \mathcal{H}, s, ξ) be an endoscopic data for $(G, \mathrm{id}, \mathbf{a})$ (see [5]). Then we have a map

$$\operatorname{Tran}_{H}^{G}: \{(\text{stable}) \text{ invariant distributions on } H\} \longrightarrow \{\text{twisted invariant distributions on } G\}$$

defined as follows.

Let ω be the character of F^{\times} associated to \mathbf{a} . We write $\omega(g) = \omega(\det g)$ for $g \in G$. For a (strongly) regular semisimple element $\gamma \in G$ such that $G_{\gamma} \subset \ker \omega$ and $f^{G} \in C_{c}^{\infty}(G)$, put

$$O_{\gamma}^{\omega}(f^G) = \int_{G_{\gamma}\backslash G} \omega(g) f^G(g^{-1}\gamma g) dg,$$

where G_{γ} is the centralizer of γ in G. Similarly, for a (strongly) Gregular semisimple element $\gamma_H \in H$ and $f^H \in C_c^{\infty}(H)$, put

$$O_{\gamma_H}(f^H) = \int_{H_{\gamma_H} \setminus H} f^H(h^{-1}\gamma_H h) \, dh,$$

where H_{γ_H} is the centralizer of γ_H in H. Here we choose suitable Haar measures on G, G_{γ} , H, and H_{γ_H} . By a result of Waldspurger [7], for

each $f^G \in C_c^{\infty}(G)$, there exists $f^H \in C_c^{\infty}(H)$ such that

$$O_{\gamma_H}(f^H) = \sum_{\gamma} \Delta(\gamma_H, \gamma) O_{\gamma}^{\omega}(f^G)$$

for all G-regular semisimple elements $\gamma_H \in H$. Here the sum is taken over a set of representatives for the conjugacy classes of $\gamma \in G$ whose norm is γ_H and Δ is a transfer factor (see [5]). Since G is quasi-split over F, we can normalize Δ using Whittaker data and ε -factors as in [5, §5.3]. For an invariant distribution D on H, we define a twisted invariant distribution $\operatorname{Tran}_H^G(D)$ by

$$\operatorname{Tran}_H^G(D)(f^G) = D(f^H)$$

for $f^G \in C_c^{\infty}(G)$.

On the other hand, by a result of Henniart and Herb [2], for each irreducible tempered admissible representation π_H of H, there exist an irreducible tempered admissible representation π of G and a constant $c \in \mathbb{C}^{\times}$ such that $\pi \otimes \omega \cong \pi$ and

$$\operatorname{Tran}_{H}^{G}(\Theta_{\pi_{H}}) = c \cdot \Theta_{\pi}^{\omega}.$$

Here $\Theta_{\pi_H}(f^H) = \operatorname{trace}(\pi_H(f^H))$ for $f^H \in C_c^{\infty}(H)$ and $\Theta_{\pi}^{\omega}(f^G) = \operatorname{trace}(\pi(f^G) \circ \mathcal{A}_{\omega})$ for $f^G \in C_c^{\infty}(G)$, where $\mathcal{A}_{\omega} : \pi \otimes \omega \to \pi$ is an isomorphism as vector spaces. Since π is generic, we can normalize \mathcal{A}_{ω} using Whittaker functionals. By a result of Henniart and Lemair [3], the constant c does not depend on the representations.

Our main result is as follows.

Theorem 1. We have

$$c = 1$$
.

Remark 2. An analogous result for $F = \mathbb{R}$ was proved by Henniart [1].

REFERENCES

- [1] G. Henniart, Induction automorphe pour $GL(n, \mathbb{C})$, preprint.
- [2] G. Henniart and R. Herb, Automorphic induction for GL(n) (over local non-Archimedean fields), Duke Math. J. 78 (1995), 131–192.
- [3] G. Henniart and B. Lemaire, Formules de caractères pour l'induction automorphe, preprint.
- [4] K. Hiraga and H. Saito, On L-packets for inner forms of SL_n , preprint.
- [5] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque **255** (1999).
- [6] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219–271.

[7] J.-L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), 852–896.

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E-mail address: ichino@sci.osaka-cu.ac.jp