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Fourier expansion of Arakawa lifting and central L-values

Atsushi Murase*and Hiro-aki Narita!

Abstract

This note is a write-up of our talk at the RIMS-conference on automorphic forms
held at the University of Tokyo in January 2010. Our results deal with the Fourier
coefficients of Arakawa lifts and central values of some automorphic L-functions. In
our previous paper [M-N-2] we provide an explicit formula for the Fourier coefficients
in terms of toral integrals of some automorphic forms with respect to Hecke characters of
imaginary quadratic fields. After studying explicit relations between the toral integrals
and the central L-values, we explicitly determine the constant of proportionality relating
the square norm of a Fourier coefficient of an Arakawa lift with the central L-value. In
some case we can relate such square norm with the central value of some degree eight
L-function of convolution type attached to the lift and the character. We also discuss
the existence of strictly positive central values of the L-functions in our concern.

1 Reviews on Arakawa lifting and its Fourier expansion.

1.1

In this section we review our results in [M-N-2]. Let B be a definite quaternion algebra
over Q and denote by n its reduced norm. Let G = GSp(1,1) be the Q-algebraic group
defined by
Gq = {9 € Ma(B) | 'gQg = v(9)Q, v(9) € Q"},
01

where @ := (1 O)’ By Zg we denote the center of G.
We put G, := {g € Mx(H) | *gQg = Q}, where H := B%R is the Hamilton quaternion
algebra. Then
—qfa b 1
Koo ._{(b a) |la+beH}

forms a maximal compact subgroup of GL, where H! := {u € H | n(u) = 1}. For a non-
negative integer & we let (0., Vi) be the k-th symmetric tensor representation of GLz(C) and
o, the pull-back of o’ to H* via the standard embedding H C Ma(C) (cf. [M-N-2, (1.4)]).
This induces an irreducible representation (74, Vi) of K by

Tﬁ((‘g Z)):: o(a+b), ((‘; Z) € Ko.).
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Let H and H’ be Q-algebraic groups defined by
Hg = GLy(Q), Hg := B*

respectively.
Fix a maximal order © of B. We denote by dp the discriminant of B and fix a divisor
D of dp. For p|dp let P, be the maximal ideal of the p-adic completion O, of O and let

L {t(opeo,» (v tds or p|D),
P H0 0B (0I1B)

We put K, := {k € Gp | kL, = L,} for each finite prime p and Ky := [[ ., Kp- It
is known that, up to Gp-conjugate, the two groups K, for the two L,’s exhaust maximal
compact subgroups of Gp. For k£ > 4 we then introduce the space S of Vi-valued cusp
forms F on Ga,, satisfying the following:

1. F(27gkgkoo) = Tu(koo) "1 F(g) for (2,7, 9, ks, koo) € Zg,aq X G X Gag X Kf X Koo,

2. for each fixed gy € Ga,, the right translations of the coefficients of Flg1 (g5*) by
goo € G1, generate, as a (g, Koo )-module, quaternionic discrete series with the minimal
Koo-type 7« (cf. [Gr-W]). Here g denotes the Lie algebra of GL..

For a positive integer k we let Sx(D) be the space of elliptic cusp forms of weight k with
level D (cf. [M-N-2, §3.1]) and A, be the space of automorphic forms of weight o with
respect t0 [, <o O (cf. [M-N-2, §3.2]), where O;F denotes the multiplicative group of O,.
Now we can review the definition of Arakawa lifting. By a metaplectic representation of
GSp(1,1)aq X Hag X HAQ, we define the End(Vj)-valued theta function 6(g, h, k') with
some specified End(Vj)-valued Schwartz-Bruhat function on Bffz X Aa (cf. [M-N-1, §3]).
Then, for k > 4, we define the Arakawa lifting by

Sx(D) x Ax 3 (£, f') = L(f, f')(g) € S«

with
L(f, f)(g) = / FR)0x(g, h, k') f'(W)dhdh'.

RZ (Hx H')Q\(Hx H')ag

1.2

We now review the Fourier expansion of L(f, f') described in [M-N-2, §1.3]. We let B~ :=
{z € B| tr(z) = 0} and have

LU= D L o)
¢eB-\{0}

where

(g 7)ol nteaas

L(f, Felg) = /
AQ



with the standard additive character ¢ on Q\Ag. Here we normalize the measure dz so
that the volume of B~\Bj, is one. For { € B~ \ {0} we let E¢ := Q(§), which is isomorphic

to an imaginary quadratlc field, and X, be the set of unitary characters on AQEX\AEE
The Fourier expansion is then refined as follows:

LEMN@= D, D LEE9)

§eB~\{0} x€X¢

with
NX(q) := X AX\ AX y=1 1 ) -14s.
LU, 1) = vol(REAG\AE) ™ [ g, ST 90 e

1.3

To review our explicit formula for £(f, f/ )2‘ , we let (f, f) € Sk(D) x Ax and assume the
following two:

(1) The two forms f and f’ are Hecke eigenforms and have the same eigenvalue for the
“Atkin-Lehner involution”. More precisely, for each p|D, let €, (resp. €,) be the eigenvalue

for the involutive action of ( 0 1) (resp. a prime element wp, € By) on f (resp. .

Then
€p = €.
Otherwise L(f, f’) =0 (cf. [M-N-1, Remark 5.2 (ii)]).
Op (p fdp or p|D)

(2) We assume that £ € B~ \ {0} is primitive. Namely, letting ap := ‘
CER =% 0%

for each finite prime p,

£ € ap \ pap.
For the second assumption we note that, in general, a Fourier coefficient F¢ of an automor-
phic form F on Ga, satisfies

R =F(} })9)=Fel) (e Q")

We then see that the problem determining Fp is reduced to the case where £ is primitive.

1.4
For each £ € B~ \ {0}, d¢ denotes the discriminant of E := E¢. We put

_ {m/—n(é‘)\/EE (Ggisodd) o @
v-n(é) \/CTE (dg is even) ! 4

With these a and b we define ¢¢ : EX — GLy(Q) by

e@+ye)=c Loty (2 %) @ye.
1 & |
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Put 0 :=r~1({ - %) with r = 1@ € Q*. Then {1, 6} forms a Z-basis of the integer ring

Ok of E. We can rewrite ¢ as

~rNgo(f
wwru)= (5, T ) e

The completion Ey, of E at oo is identified with C by
0¢:Exwdx+yE— z+yy/—n(§) €C (z,y €R).
For a Hecke character x = [],<o, xv of RYEX\AE, we let woo(x) € Z be such that

Xoo(w) = (6¢(w)/|8¢(w)])“> ) (u € Eoo).
Furthermore, for each prime v = p < 0o, we let p*(X) be the conductor of x at p and

ord,(2£)? — ordp(d)
ﬂp = 2 k)
which coincides with ord,(r). We now state the following (cf. [M-N-2, Theorem 5.1.1]):

Proposition 1.1. L(f, f’)? = 0 unless ip(x) = 0 for any pldg and weo(X) = —k.

1.5

In what follows, we assume that x satisfies the assumption in the proposition above. We
need further notations to recall our formula for L(f, f ')2‘
We define 10 = (Y0,p)p<o0 € Hag and 715 = (Y0p)p<o0 € H , as follows:

((1 o
(b ) @
12 (p|D and p is inert in E),

Y,p = <

1 1

(O O) ( 01 0) (p|D and p ramifies in E),
p —

| nar(e/2)dn(N©)Y4)  (p= o),

1 0
’Y('Jp = J (0 p—up+i,,(x)) (» fdB),

Here recall that wp, denotes a prime element of B, (cf. §1.3).
In addition, we introduce the following local constants:

PP 00(1 ~ 6(ip(x) > 0)en(B)p™") (p fdB),

1 (%),

2€p (p|D and p is inert in E),
(p+ 1)1 (p|D and p ramifies in E),

Cp(f?E’X) =



where
—1 (pis inert in E),
ep(E) =40  (pramifies in E),
1  (psplitsin E).

For (f, f') € Sk(D) x A« we introduce their toral integrals with respect to x (cf. [Wa]).

Fue(Ix() s, P(f5H) = [ e TR X
+5¢ \AE,

Pfi)= [

X X
RYE \Ag,

where (h, k') € GLy(Ag) X BK@. As in [M-N-2, §2.4] we normalize the measure ds of Ag
so that

vol(Og ) = 1 for any p < oo, vol(EL) = 1.
We denote by h(E) and w(E) the class number of E and the number of the roots of unity
in E respectively. Then we are able to state our formula for £(f, f')%< (cf. [M-N-2, Theorem
5.2.1]).

Theorem 1.2. Let (f, f') be Hecke eigenforms and £ € B~ \ {0} be primitive. Suppose
that x satisfies the assumption in Proposition 1.1 and that (1) and (2) in §1.8 hold. We
then have the following formula:

LU, £)¥(do.sdo (/7))
— in(eyi2E). (»H Cy(f, €, x)) %+ exp(—4my/n(€)nso) P( i 70) P(f'3%0)-

h(E) o

Here 1o € RX and go,7 = (9o,p)p<co € Ga, 15 given by

djag(pip(X)—#p’pz(ip(X)_lip), l,pip(X)_lip) (p /{’dB),
9o,p =
1o (pldB)

Remark 1.3. According to Sugano [Su, Theorem 2-1], the Fourier coefficient L(f, f/ )? is

determined by the evaluation at gg ¢ (‘ g°° 770 _1).
o0

2 Relation with central L-values.

2.1

Let (f, f') be Hecke eigenforms and assume that f is a primitive form (for the definition, see
[Mi, §4.6]). Let m(f) (resp. 7(f’)) be the irreducible automorphic representation generated
by f (resp. f'), and let m(JL(f’)) be the irreducible automorphic representation generated
by the Jacquet-Langlands lift JL(f’) of f’. It is known that w(f) and w(JL(f")) (resp. w(f"))
decompose into restricted tensor products over v < oo of irreducible admissible represen-
tations of GLy(Q,) (resp. BYX). By my, m, and 7/ we denote the v-component of m(f),
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7(JL(f')) and m(f’) respectively. According to such decomposition of (f) and n(f'), f
and f’ admit decompositions into pure tensor products

o) =TI £ /=TI £

v<oo v<oo

where we fix an isomorphism p (resp. p') between m(f) and ®,¢, 7y (resp. ( f) and
®7<o0Ty)- We denote by II (resp. IT') the quadratic base change of 7(f) (resp. 7(JL(f')))
to GLy (Ag). These IT and IT' also decompose into the restricted tensor products ®v<°°Hv
and ®v<°o1'I’ respectively, where each I, or IT, is a local base change lift of m, or m, at

every place v respectively.

2.2 Review on the adjoint L-functions and the L-functions of base change
lifts for GL,.

Let L(m, s) be the standard L-function for an automorphic representation 7 of GL2(Aq) in
the sense of Jacquet-Langlands [J-L]. We denote by L(II,x~!,s) (resp. L(I',x"1,s)) the
L-function of II (resp. IT') with x~!-twist, and let L(n(f), Ad, s) (resp. L(w(JL(f")), Ad, 5))
be the adjoint L-function of 7 (f) (resp. w(JL(f"))).

We describe the local factors of L(II,x~1,s) and L(IT',x~},s) (resp. L(w(f),Ad,s)
and L(7r(JL( ), Ad, s)), following Jacquet [J] (resp. Gelbart-Jacquet [G-J]). We note that
7p (resp. m, =~ ;) is a unitary unramified principal series representation for each finite
prime p (resp p AdB) This is due to the Ramanujian conjecture for holomorphic cusp
forms on GL,. In addition, we remark that, for p|dg, rr;,’ is written as

B) 3 b 8, -n(b) € {£1},

with a character 6, of Q) of order two. For pldB, 7r is thus the special representation
of GLy(Qp) glven by the 1rreduc1b1e subquotient of the induced representation Ind(dp - | *

|p, I *|p 2) (cf. [J-L, Theorem 4.2 (iii)]), where | * |, is the p-adic absolute value. We
furthermore note that, when p is inert or ramified in F and x, is unramified, xp, can be
written as

Xp = Wp ' NE,/Qp
with a character w, of Q) of order two and the norm ng,/q, of Ep. In fact, wp =1
when p is inert. In add1t1on, at the Archimedean place, T, and 7. are the discrete series
representations with weight x and « + 2 respectively (see [Sh, §6]).

We let Ty, be a unitary unramified principal series representation of GL2(Qp) with
Satake parameter (cp,a;!) and the trivial central character, and let msp be the special
representation of GL, (Qp) corresponding to m,. We denote by ITy (resp. Ilsp) the base
change lift of my, (resp. msp) to GLo(Ep).

We first deal with the local L-functions of 7y, and Il;.

Lemma 2.1. (1)
Ly(mury 8) = (1 — 0p™*) "1 (1 — 0 1p™1) 7L,
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(%)
Lp(ﬂ'un Adas) = (1 - p—s)-l(l - aﬁp_s)_l(l - agzp—s)—l'

(3)
Lp(Hur,Xg.;l,s) =

[Tic12(1 = apxp(wps) ~1p™*) 71 (1 0‘;1Xp(wp,i)—lp’s)_1

(p:split, ip(x) = 0),

(1- af,p‘Zs)‘l(l - a;zp’z“’)‘1 (p:inert, ip(x) = 0),
(1- apo(wp)—lp—s)—l(l - a;1Xp(wp)_1p—s)_1 (p:ramified, ip(X) = 0),
1 (1p(x) > 0),

where wy; € E, with i = 1,2 (resp. wy, € Ep) denote two distinct prime elements dividing
p (a prime element dividing p) when p is split (resp. p is ramified).

We next deal with the case of msp and Ilgp.

Lemma 2.2. We have

Ly(mep, 8) = (1 — 6,(p)p~C+9) 71, 2.1)
LP(WSP)Ada 5) = (1 _p—-(s+1))—1’ (22)
(1 —p~ @ttt (p:inert),

1- 51:(1’)%(1’)?—(”%))"1 (p:ramified). (23)

Ly(p, X 8) = {

For a positive integer k > 2 we let 7 be the discrete series representation with weight
k and II; denote its base change. We give their Archimedean local L-functions as follows.

Lemma 2.3. We have
k-1

Les(me,s) = Te(s + £22), (2.4)

Leo(mk, Ad, s) = Tr(s + L)I'c(s + k — 1), (2.5)
_ fTc(s+ 552 + 1I)Te(s — &2 + 1) (11 > 55%)

Leollle 1, 9) = {Fc(3+ Bl T+ o) (Hesh OO

where [ € %Z.

2.3 Relation between P, (f;7) and L(II,x7}, 3).

By 1 we denote the quadratic character attached to the quadratic extension E/Q. We let
L(n, s) be the L-function defined by n and L, (n,, s) the local factor of L(n, s) at a place v.
Let T;Ff = X£f for p|D (for the definition of 7%, see [Mu, 2.4]) and let

Sy = {p < oo | p|D, p is inert in E},
8% := {p < 0o | p|D, p ramifies in E, xp(wp)A} = 1},
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where w, denotes a prime element of E, (cf. Lemma 2.1). Note that S USy US; coincides
with §(D) := {p < oo | p|D}. We furthermore put A(x) := [[, <0 pe(X),
Let us introduce the Petersson norm

(. f) == / (9)%dg
Z(AQ)GLa(Q)\CLa(Aq)

of f, where Z denotes the center of GL,. Keeping the assumption on x in Proposition 1.1
we can quote [Mu, Theorem 1.1] with a modification.

Proposition 2.4. We have

|Py(£i%0)P a1l
=R = CUOL@XT 5),

with
{2'5(")'Idell'lp|A(x) Lo(np,1)° (S1=85=0)

4D¥ A(x)L(n(f),Ad,1)
0 (otherwise).

C(f,x) :=

2.4 Relation between P,(f’;v}) and L(IT',x7 1, 1).

Next we provide an explicit relation between || P, (f'; 75)||? and the central L-value L(IT', x 1, 3),

which we prove in §3. To write down the relation we need several notations. We denote by r,,
1 :non-ramified

the ramification index of p for the quadratic extension E/Q, i.e. rp := (p ) ) .
2 (pramified)

We set
(o, f) = / (F/(b), £(5))wdb,
2/(A)BX\B},

where Z' denotes the center of BX and (*, *), stands for an inner product of V. By (¥, *)oo
we denote an inner product of 7. As this inner product we can take

(Rooy Kl oo = /Hl (hoo(), Ko (W))kdu  (heo, hly € mh =~ Vi),

where du denotes the invarient measure of H! normalized so that vol(H!) = 1. Let v ¢ be a
highest weight vector of V with respect to o, (R(£)*)-action, and let vg . € Vi be the dual
of vk With respect to (¥, *)oo. We set fo «(boo) := (féo(boo), Vg g)ootn ¢ for boo € B, The
notation ¢(s) = [[ <., (v(s) stands for the Riemann zeta function with a local factor ¢y (s)
at each place v. With the assumption on x in Proposition 1.1 we then have the following:

Proposition 2.5.

P12 JOU LM, x71,5) (m »Ex = Xp when p divides dp and is ramified in E),
L o (otherwise),
where
\/l—d_(li-}- 1) (foomfooﬁ> ¢(2)
U= Spang L Bw 08 Lm0 208 i ad

plA(x) pldp
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2.5 Main result (first form)
Theorem 1.2, Proposition 2.4 and Proposition 2.5 imply the theorem as follows:

Theorem 2.6. Under the assumption in Theorem 1.2 we have

1£G£ £ (go)lI*
(f PUF 1)

where, if T, | gx = Xp for pldp ramified in E and $1 = 8f =0, O(f, f',6,x) =

926+8(D)I=9 (k4 1)n(€)5 [d5|2w H Ly(mp 1)* [T o1 = p7Y) T Colf.6.%)°
Th(E)2A(x)?D? PIA(X) plds peee

_37|-\/E(—5_) . (féo,m féo,re>°0 ) C(2)
(foor foodoo  L(m(f), Ad, 1)L(m(JL(f)), Ad,1)’

and C(f, f',&,x) = 0 otherwise.

O, £ &L X, 3) LT, X, 5),

X e

2.6 Main result (second form)

We introduce the degree eight L-function attached to £(f, f’) and X, and relate its central
value to the square norm ||L(f, f')¥(go)||> when D = 1.

We now recall that £(f, f') belongs to S, (cf. §1.1). Before introducing the degree eight
L-function, we define the spinor L-function for a Hecke eigenform F € S,. In [M-N-1, §5.1]
we introduced three Hecke operator Tz with 0 < ¢ < 2 for p /fdp. Let Az be the Hecke
eigenvalue of ’J’i for F with 0 <3 < 2. For p Jdp we put

Qrp(t) = 1 — p~3ALt + p~2(A2 4 p? + 1)t2 — p~ FALES + ¢4,

For this we note that Qpp,(p~°)~! coincides with the local spinor L-function for an un-
ramified principal series of the group of Q,-rational points for the split symplectic Q-group
GSp(2) of degree two with similitudes. Here recall that GSp(2) is defined by

“g(ofz (1,2>9— v(g) (_Of2 (1,2) v(g) GQ"}.

On the other hand, in [M-N-1, §5.2], we introduced two Hecke operators T;i with0<:<1
for p|dp. Let A'; be the Hecke eigenvalue of ’Z;f for F with 0 < ¢ < 1. For p|dg we put

GSpl2)q = {7 ¢ 6L

Qrplt) = (1 — p~ 3 (A} — (pr — YAD)E +¢2)(1 — Aop~3t),

where Ay, := {1 Epél))) This is due to Sugano [Su, (3.4)].
b
We define the spinor L-function L(F,spin, s) of F' by

L(F,spin, s) H L, (F,spin, s),

<00
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where
, Qrp(P~*) 7} (v=p < ),
L,(F, ,8) 1= ’
v(F>epin, ) {I‘c(s-l— =1Te(s + 551) (v = co).
This is a modification of the definition in [M-N-1, §5.3]. We can then reformulate [M-N-
1, Corollary 5.3] when D = 1.

Proposition 2.7. The spinor L-function for L(f, f') decomposes into
L(L(f, f"),spin, s) = L(n(f), s) L(n(JL(S")), 5)-

Of course, when D = 1, we see that L(L(f, f'),spin, s) has the meromorphic continu-
ation and satisfies the functional equation between s and 1 — s since so do L(w(f), s) and

L(r(JL(f")), 5)-

We now introduce the L-function

L(F, X—I,S) = H Lv(F’ X—I,S)

v<oo

of degree eight for a Hecke eigenform F' € S and x. Here the local factors L,(F, x71,s)
are given as '

Qrp(eFp™*) ' Qrp(BFp~*) ! (x is unramified at v = p < o0)
Ly(F,x™",8) =1 (x is ramified at v = p < 00),
Te(s+x—3e(s+3)le(s+x+3)Te(s+3) (v=o00),
where
(Xp(wp,l)-.la)(p(wpﬂ)-l) (v = p: split),
(o, B%) = § (xp(@) ™!, —xp(p)™!) = (1,—1) (v =p: inert),
(xXp(w@p)~1,0) (v = p: ramified)

with prime elements @, 1, @p2 and w, introduced in Lemma 2.1.
Proposition 2.8. Let D = 1. We have
L(L(f, ), x718) = L x 71, ) LI, x 71, 8).
This has meromorphic continuation to C and satisfies the functional equation
L(L(f, f1)x 7t 8) = (T, x 7 De(I, x HLL(S, 1), x 711 - 9),
where €(I1,x~1) (resp. (I, x~!) denotes the e-factor of L(I,x™1,s) (resp. L(I',x7!,s)).

In view of Proposition 2.4, Proposition 2.5 and Proposition 2.8, the central value
L(L(f, f),x71, ) is meaningful when D = 1. We are now able to reformulate Theorem
2.6 as follows:

Theorem 2.9. Let the assumption be as in Theorem 1.2 and let D = 1. We have

I PR o
<f7f><f/,f/) _C(fhf)E,X)L(['(faf)’X ,5 .




2.7 Main result (third form)

Note that the group G = GSp(1,1) is an inner form of the symplectic Q-group GSp(2)
of degree two with similitudes. As is well-known, the Langlands principle of functoriality
[Lg-1] suggests that the L-function for a Hecke eigenform F € S should be an L-function
for some automorphic form (or automorphic representation) of GSp(2)a,-

T. Okazaki [O] has recently constructed cusp forms on GSp(2)a,, which contain forms
whose spinor L-functions coincide with those of L(f, f')’s. More precisely his construction
uses a theta lifting from GL(2)aq X GL(2)aq to GSP(2)aq (or from GO(2,2)aq to GSD(2)ag)
and follows the formulation of Harris-Kudla [H-K]. He specifies an appropriate Schwarts-
Bruhat function on M2(Ag)®? to construct the theta kernel for the lifting. We denote this
lifting by Lgsp(2)- His result is then stated as follows:

Theorem 2.10 (Okazaki). For two non-zero primitive cusp forms (f1,f2) € Sk, (N1) X
Ska(N2), Lgsp)(f1,f2) is a non-zero generic cusp form on GSp(2)aq with the following
properties:

1. it is a paramodular form of level N1 Na, namely, at a prime p|N := N1Na, it is right
invariant by a paramodular group

z, 2, N7z, Z,
NZ, Z, Z, Zp
NZ, NZ, Z, NZ,
NZ, Z, Z, Zp

N GSp(Z)Qp,

2. at the Archimedean place, the highest weight of Lgsp(2)(f1, f2) is

(’{'1+52 _IK'l —KQI)
2 2 ’

The global spinor L-function of Lgsp)(f1, f2) (in the sense of Novodvorsky [No]) decom-
poses into

L("r(fl)v S)L(ﬂ’(f2)v S)'

Also for Lggp(2)(f1, f2) and a Hecke character x we can similarly define the degree eight
L-function L(Lgsp(2)(f1, f2), x~1,s). For a Hecke eigenform f’ € Ax we have put JL(f')
to be the Jacquet-Langlands lift of f/ (cf. §2.1) and note that JL(f’) is primtive (cf. [E-
1], [E-2], [Sh, §6]). From the theorem just mentioned and Proposition 2.8 we deduce the
following:

Proposition 2.11. Let (f, ') € Sk(1) x Ax be Hecke eigenforms with L(f, f') 0. Then
we have

L(E(fa fl)1 spin, 5) = L(‘CGSp(2)(fa JL(f,))a spin, 3)3

L(‘C(f’ f’)a X-,—la S) = L(ﬁGSp(Z) (f7 JL(fI)), X-li 3)'
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We thus know that Theorem 2.9 is restated as follows:

Theorem 2.12. Let the assumption be as in Theorem 1.2 and let D = 1. We have

@I o
(f, f)(fl, fl) - C(f?f 75’ X)L(‘CGSP(2)(f, JL(f ))’ X5, 2)

Remark 2.13. (1) This theorem is compatible with the conjecture of Furusawa-Martin
[F-M] and Furusawa-Shalika [F-S], which are inspired by Bocherer [B].

(2) The example of the functorial correspondence above is essentially predicted by T.
Ibukiyama in his study of automorphic forms on the compact inner form of GSp(2) (cf. [I}).
We can expect that automorphic forms in Sk (cf. §1.1) with D = 1 should functorially
correspond to paramodular forms on GSp(2)a, of level dp.

(3) At the Archimedean place L(f, f’) generates the quaternionic discrete series with mini-
mal Koo-type Tx, while Lgspo)(f, JL(f')) generates the large discrete series with the Blat-
tner parameter (k + 1,—1). The latter is due to Przebinda [P, Chap.III, §3]. These two
discrete series representations have the same infinitesimal character. That is, the functorial
correspondence of these two global theta lifts is compatible with the Archimedean local
functorial correspondence established by Langlands [Lg-2].

2.8 Strictly positive central L-values

As an application of our main results we show the existence of strictly positive central
values for the L-functions in our concern. In this subsection we fix the quaternion algebra
B and a maximal order O of B as

B=Q+Q i+Qj+Q k (*=j5=-1, ij=—ji=k),

D=Z-1+H2_J+k

We note that dp = 2 for this B. In [M-N-2, §14] we have shown the following:

+Z-i+Z j+Z- k.

Proposition 2.14. Suppose that & = /2 and x is unramified at every finite prime, i.e.
ip(x) = 0 for any finite prime p. Let D € {1,2} and k > 12 (resp. k > 8) be divisible
by 4 (resp. by 8) when D =1 (resp. D = 2). Then there exzist Hecke eigenforms (f, f') €
Sk(D) x Ax such that Py(f,v0)Px(f',%) # O (which implies L(f, f')f #0).

We now assume that D = 1 and x is unramified at every finite prime. From Proposition
2.4, Proposition 2.5 and this proposition we deduce the following:

Theorem 2.15. Under the assumption in Proposition 2.14 there exist Hecke eigenforms
(f, f') € Sk(1) x A such that

1 1
L(H,X—17 5) > O’ L(HI’X_lﬁ 5) > 0.

The point of our proof for this theorem is to show the positivity of the constants C(f, x)
and C(f’,x) for (f, f') in Proposition 2.14. As an immediate consequence of this theorem
and Proposition 2.11 we have obtained the theorem as follows:



Theorem 2.16. Keeping the assumption in Proposition 2.14, there are Hecke eigenforms
(f, f) € Sc(1) x Ag such that
/ -1 1 / -1 1
L(E(f,f )aX 15 = L(‘CGSp(2)(fa JL(f ))aX ’ '2') > 0.
Remark 2.17. We remark that there are several results on the non-negativity of the
central-values of the L-functions in Theorem 2.15 and Theorem 2.16 (cf. [Gu], [J-C], [Lp]
etc.).

3 Outline of the proof of Proposition 2.5

In order to verify Theorem 2.6 and Theorem 2.9 it remains to show Proposition 2.5. In this
section we choose the measure of Aa so that

vol(Z, ) = 1 for any p < co.

For the proof of the proposition we need two formulas. The first formula is due to Wald-
spurger [Wa, Proposition 7]. In order to review it we need several remarks. We first remark
that every 7,/ is unitary and thus equipped with a unitary inner product. When v =p fdp
we embed E into B) = GL2(Qp) by t¢ (cf. §1.4). Recall that, for the quadratic character
n attached to the quadratic extension E/Q, we have let L(n,s) be the L-function defined
by n and Ly(ny, s) the local factor of L(n, s) at a place v (cf. §2.3).

Proposition 3.1 (Waldspurger). For b= (by)y<oo € Ba

I[B(£50)2 _ /] CLAT:x"3)
?f@f’) ~ "8r L(x(JL(f)),Ad, 1) L H ot (fs Xv» bw),

where

av(f{n Xvs bv) =

Lo(mo DEu(my A1) [ (w(tho) flumh(bo)fi)e
( )L (HmX’;l’%) >/Q,u \Eu <fv’fv) XU(t) dt

with an inner product (%, %), of m, for each place v.
Here we note that the normalization of our measure dt¢ differs from that of [Wa] by

Y 4|7r5| -multiple, and furthermore note that the toral integral in the sense of [Wa] is replaced
by ours under the normalization of the measure of Aa mentionted above.
The second formula is the well-known explicit formula for zonal spherical functions by

Macdonald [Ma, Chap.V, §3, (3.4)]. We put

(my (9) fos fuodv x
¢u(g) = 52— (9€B))
0= g, eh
for each place v. We note that 7, at p fdp, which is isomorphic to 7. Ty, 18 a unitary unramified
pr1nc1pal series representatlon of GLy(Qp) with a spherical vector f’ The Satake parameter
of 7} is of the form (ap, ;1) € (CX)? with |op| = 1. We see that ngp(g) is a zonal spherical
functlon on GLy(Qp) for v =p fdp.
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Proposition 3.2 (Macdonald). Let p be a finite prime not dividing dg. For apm =

m
(p 0 (1)) with m > 0 we have

¢p(am) = p — (g’ 1- a2 a™ 1-—a2 )

This formula is useful to evaluate the local integrals involved in o, (f}, Xv,bv) forv=p
not dividing dp. The evaluation of such local integrals at other places is settled by a direct
calculation. We furthermore note that ay(f), xv,bv)’s have factors contributed by ratios
of local L-functions, which are computed by Lemma 2.1, Lemma 2.2 and Lemma 2.3. We

now state the following formula.

Proposition 3.3. (1) For p [dp,

’ /Y — (i (x) = 0),
ap(fp?XP”YO,P) - {p_iP(X)Lp(np, 1)2 (Z:(X) > 0)

(2) When p|ldp we have

ap(fp Xpr W0p) = rp(1=p~") (p is inert or p is ramified and w, = 6p),
pUp) Xp» 10, 0 (p is ramified and wy # 6p),

where rp is the ramification indez of p for the quadratic extension E/Q (cf. §2.4 ).
(8) When v = oo we have

K/+ 1 <féo,n’féo,,g>oo
aoo(foo,X 7/000) 1 (f(f)o, 7

20) 00

’

where see §2.4 for fi, ..

As a result of Proposition 3.1 and Proposition 3.3 we have proved Proposition 2.5.

References

[B] S. Bocherer, Bemerkungen iiber die Dirichletreihen von Koecher und Maass, Math.
Gottingensis, Schriftenr. d. Sonderforschungsbereichs Geom. Anal. 68, (1986).

[E-1] M. Eichler, Uber die Darstellbarkeit von Modulformen durch Thetareihen, J. Reine
Angew. Math., 195, (1955) 156-171.

[E-2] M. Eichler, Quadratische Formen und Modulfunktionen, Acta Arith., 4 (1958) 217-
239.

[F-M] M. Furusawa and K. Martin, On central critical values of the degree four L-functions
for GSp(4): the fundamental lemma II, to appear in Amer. J. Math.



[F-S] M. Furusawa and J. Shalika, On central critical values of the degree four L-functions
for GSp(4): The fundamental lemma, Mem. Amer. Math. Soc., vol.164, No.782 (2003).

[Gr-W] B. Gross and N. Wallach, On quaternionic discrete series representations, and their
continuations, J. Reine. Angew. Math., 481 (1996), 73-123.

[Gu] J. Guo, On the positivity of the central critical values of automorphic L-functions for
GL(2), Duke Math. J., 83 (1996) 157-190.

[H-K] M. Harris and S. Kudla, Arithmetic automorphic forms for the non-holomorphic
discrete series of GSp(2), Duke Math. J., 66 (1992) 59-121.

[] T.Ibukiyama, Paramodular forms and compact twist, Automorphic forms on GSp(4),
Proceedings of the 9th Autumn workshop on numbertheory, (2006) 37-48.

[J] H. Jacquet, Automorphic forms on GL(2), Part II, Lecture Notes in Math., 278,
Springer-Verlag, (1972).

[J-C] H. Jacquet and Nan Chen, Positivity of quadratic base change L-functions, Bull. Soc.
Math. France, 129 (2001) 33-90.

[J-L] H. Jacquet and R. Langlands, Automorphic forms on GL(2), Lecture Notes in Math.,
114, Springer-Verlag, (1970).

[Lg-1] R. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math.,
170, Springer-Verlag, (1970) 18-86.

[Lg-2] R. Langlands, On the classification of irreducible representations of real algebraic
groups, Representation theory and harmonic analysis on semisimple Lie groups, Math.
Surveys Monogr., 31 Amer. Math. Soc., Providence, RI (1989), 101-170.

[Lp] E. Lapid, On the nonnegativity of Rankin-Selberg L-functions at the center of sym-
metry, Internat. Math. Res. Notices, (2003) no.2, 65-75.

[Ma] I. Macdonald, Spherical functions and Hall polynomials, Oxford University Press,
(1979).

[Mi] T. Miyake, Modular forms, Springer-Verlag, (1989).

[Mu] A. Murase, CM-values and central L-values of elliptic modular forms (II), Preprints
of MPIM, MPIM2008-30.

[M-N-1] A. Murase and H. Narita, Commutation relations of Hecke operators for Arakawa
lifting, Tohoku Math. J., 60 (2008) 227-251.

[M-N-2] A. Murase and H. Narita, Fourier expansion of Arakawa lifting I: An explicit for-
mula and examples of non-vanishing lifts, to appear in Israel Journal of Mathematics.

[Na] H. Narita, Fourier-Jacobi expansion of automorphic forms on Sp(1,q) generating
quaternionic discrete series, J. Funct. Anal., 239 (2006), 638-682. ’

157



158

[No] M. Novodvorsky, Automorphic L-functions for symplectic group GSp(4), Proc. Symp.
Pure Math., 33 (2) (1979), 87-95.

[O] T. Okazaki, Paramodular forms on GSp(2,A), preprint.

[P] T. Przebinda, The oscillator duality correspondence for the pair O(2,2) and Sp(2,R),
Memoirs of A. M. S., vol.70, No.403 (1989).

[Sh] H. Shimizu, Theta series and automorphic forms on GLj, J. Math. Soc. Japan, 24
(1972) 638-683.

[Su] T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J.
Fac. Sci. Univ. Tokyo, 31 (1985) 521-568.

[Wa] J. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre
de symmétrie, Compos. Math., 54 (1985) 173-242.

Atsushi Murase: Department of Mathematical Science, Faculty of Science, Kyoto Sangyo
University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
E-mail address: murase@cc.kyoto-su.ac.jp

Hiro-aki Narita: Department of Mathematics, Kumamoto University, Kurokami, Kumamoto
860-8555, Japan
E-mail address: narita@sci.kumamoto-u.ac.jp



