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OR CORE QUANDLES
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ABSTRACT. In this paper, we introduce new invariants of conjugacy classes of
surface braids via colorings by Alexander quandles or core quandles of groups and
explain some applications.

1. INTRODUCTION

In 2-dimensional knot theory, it is known that any surface-link in $R^{4}$ is represented
as the closure of a surface braid ([15, 9]). A surface braid and the closure of it are
often studied by charts in a 2-disk and a 2-sphere $U_{0}$ , respectively (cf. [10]). In this
paper, we define invariants of conjugacy classes of surface braids in terms of charts.
We also explain some applications for the following topics by the invariants (and
quandle cocycle invariants [1] $)$ :

$\bullet$ Existence of infinite sequences of mutually non-conjugate surface braids rep-
resenting same surface-links

$\bullet$ Characterizations of charts representing a given surface-link
$\bullet$ Braid index

This paper consists of seven sections: In \S 2, we review surface-links, surface braids,
charts and their relations. In \S 3, we review quandle colorings for charts and define
invariants $K_{X}$ related to colorings by Alexander quandles or core quandles of groups.
In \S 4, we give examples of infinite sequences of mutually non-conjugate surface braids
representing same surface-links. In \S 5, we give a simple classification of 4-charts by
$K_{X}$ and the number of X-colorings when $X$ is a dihedral quandle. In \S 6, we study
examples of a pair of non-conjugate surface braids representing same nonribbon
surface-links by dihedral quandle cocycle invariants and and the classification given
in \S 5. In \S 7, we study the braid index of a surface-link by the dihedral quandle
cocycle invariant.

2. PRELIMINARIES

A surface-link $S$ is a closed oriented surface embedded in Euclidean 4-space $R^{4}$

locally flatly. If $S$ is connected, then it is called a surface-knot. A surface-knot $S$ is
trivial if $S$ bounds a handlebody in $R^{4}$ and a surface-link $S$ is a trivial if $S$ is a split
union of trivial surface-knots. Two surface-links $F$ and $F’$ are equivalent if there is
an orientation preserving homeomorphism $f$ : $R^{4}arrow R^{4}$ such that $f(F)=F’$ .

A surface bmid $S$ of degree $m$ is an oriented surface embedded in $D_{1}\cross D_{2}(\subset R^{4})$

locally flatly and properly such that the restriction map $\pi|_{S}$ of the projection map
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$\pi$ : $D_{1}\cross D_{2}arrow D_{2}$ is an m-fold branched covering map and $\partial S=X_{m}\cross\partial D_{2}$ , where
$D_{1}$ and $D_{2}$ are 2-disks, $X_{m}$ is a fixed set of $m$ interior points of $D_{1}$ . If the branched
covering map is simple, then $S$ is called simple.

Two surface braids $S$ and $S’$ with same degree are equivalent if they are ambient
isotopic by a fiber-preserving isotopy $\{h_{u}\}_{0\leq u\leq 1}$ of $D_{1}\cross D_{2}$ , as a $D_{1}$-bundle over $D_{2}$ ,
rel $D_{1}\cross\partial D_{2}$ . For a surface braid $S$ of degree $m$ , we have a surface-link obtained
$homS$ by attaching $m$ paralle12-disks onto the boundary of $S$ in $\overline{R^{4}\backslash D_{1}\cross D_{2}}$ . We
call the surface the closure of $S$ .

An m-chart $\Gamma$ is a (possibly empty) finite graph in an oriented 2-disk $D_{2}$ , which
may have hoops (that are closed edges without vertices), satisfying the following
conditions:

(i) Every vertex has degree one, four or six.
(ii) Every edge is directed and labeled by an integer in $\{1, 2, \ldots, m-1\}$ .
(iii) For each vertex of degree six, three consecutive edges are directed inward

and the other three are directed outward; these six edges are labeled by $i$

and $i+1$ alternately for some $i$ .
(iv) For each vertex of degree four, two consecutive edges are directed inward and

the other two are directed outward; these four edges are labeled by $i$ and $j$

alternately with $|i-j|>1$ .
An example of a 4-chart is given in Fig. 1. A vertex of degree one or six is called

a black vertex or a white vertex, respectively. An edge attached to a white vertex
is called a middle edge if it is the middle of the three consecutive edges which are
oriented in the same directions; otherwise a non-middle edge. A free edge is an edge
in a chart whose endpoints are black vertices. See Fig. 2.

Operations listed below (and their inverses) are called a $C_{I^{-}},$ $C_{II}$-and $C_{III}$-move,
respectively. See Fig. 3. These moves are called C-moves. Two m-charts are
C-move equivalent if they are related by a finite sequence of such C-moves and
ambient isotopies.
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FIGURE 4. Conjugations, stabilizations and destabilizations

$(C_{I})$ For a 2-disk $E$ on $D_{2}$ such that $\Gamma\cap E$ has neither black vertices nor nodes,
replace $\Gamma\cap E$ with an arbitrary chart that has neither black vertices nor
nodes.

$(C_{II})$ Suppose that there is an edge $\alpha$ attached to a black vertex $B$ and a 4-valent
vertex $v$ . Remove $\alpha$ and $v$ , attach $B$ to the diagonal edge of $\alpha$ and connect
other two edges in a natural way.

$(C_{III})$ Let a black vertex $B$ and a white vertex $W$ be connected by a non-middle
edge $\alpha$ of $W$ . Remove $\alpha$ and $W$ , attach $B$ to the edge of $W$ opposite to $\alpha$ ,
and connect other four edges in a natural way.

In [10], S. Kamada proved that there is one-to-one correspondence between equiv-
alent classes of simple surface braids of degree $m$ and C-move equivalent classes of
m-charts in $D_{2}$ . For a chart $\Gamma$ , we denote by $S(\Gamma)$ the closure of a simple surface
braid corresponded to $\Gamma$ . A 4-chart depicted in Fig. 1 represents a 2-twist spun
trefoil.

A conjugation for a chart is an operation inserting some boundary parallel hoops.
A conjugation for a surface braid is an operation corresponded to a conjugation for
a chart. For an m-chart $\Gamma$ , an $m+1$-chart is obtained from $\Gamma$ by inserting a free
edge labeled by $m$ . This operation is called a stabilization, and the inverse operation
is called a destabilization. See Fig. 4.

For charts in $D_{2}$ , we define charts in a 2-sphere $U_{0}$ by identifying $\partial D_{2}$ . We also
define C-moves, stabilizations and destabilizations in $U_{0}$ naturally.

Theorem 2.1 ([10]). There is one-to-one correspondence between conjugacy and
equivalent classes of simple surface bmids of degree $m$ and C-move equivalent classes
of m-charts in $U_{0}$ .
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FIGURE 6. Example of an $R_{3}$-coloring

From now on, we assumed that that any chart is in $U_{0}$ .

3. INVARIANTS

In this section, we review quandle colorings of a chart [2, 4] and introduce invari-
ants of conjugacy classes of surface braids.

A quandle is a set $X$ with a binary operation $*:X\cross Xarrow X$ satisfying the
following properties:

(a) For any $x\in X,$ $x*x=x$ .
(b) For any $x_{1},$ $x_{2}\in X$ , there is a unique $x_{3}\in X$ such that $x_{1}=x_{3}*x_{2}$ .
(c) For any $x_{1},$ $x_{2},$ $x_{3}\in X,$ $(x_{1}*x_{2})*x_{3}=(x_{1}*x_{3})*(x_{2}*x_{3})$

Example 3.1. (i) The set $Z_{n}(\cong Z/nZ)$ becomes a quandle under the binary oper-
ation $a*b=2b-a(mod n)$ , which is called the dihedml quandle $R$ of order $n$ .
(ii) Set $\Lambda$ $:=Z[t, t^{-1}]$ . A $\Lambda$-module $M$ becomes a quandle under the binary opera-
tion $a*b=ta+(1-t)b$ , which is called an Alexander quandle. If $M=\Lambda/(n, t+1)$ ,
then $M$ is isomorphic to $R_{\eta}$ .
(iii) A group $G$ becomes a quandle under the binary operation $a*b=ba^{-1}b$ , which
is called the core quandle of $G$ . The core quandle of $Z_{n}$ is isomorphic to $R_{rn}$ .

Let $\Gamma$ be an m-chart and the set of regions of $U_{0}\backslash \Gamma$ is denoted by $\Sigma(\Gamma)$ . A map
$C$ : $\Sigma(\Gamma)arrow X^{m}$ is an X-coloring of $\Gamma$ if it is such that $C(\lambda_{1})=(y_{1}, \cdots, y_{m})$ and
$C(\lambda_{2})=(y_{1}, \cdots, y_{i-1}, y_{i+1}, y_{i}*y_{i+1}, y_{i+2}, \cdots, y_{m})$ for each edge $e$ with label $i$ where
$\lambda_{1}$ and $\lambda_{2}$ are regions separated by $e$ and $\lambda_{1}$ is on the left-side of $e$ . See Fig. 5. The
set of X-colorings of $\Gamma$ is denoted by $Col_{X}(\Gamma)$ . An example of an $R_{3}$-coloring of a
4-chart depicted in Fig. 1 is given in Fig. 6. If $C(\lambda)=(y, \ldots, y)$ for $\lambda\in\Sigma(\Gamma)$ and
for some $y\in X$ , then we call $C$ a trivial X-coloring.
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Let $\Gamma$ be an m-chart and $X$ be an Alexander quandle or the core quandle of a
group. We define a map $\kappa$ : $Col_{X}(\Gamma)arrow X$ by

(1) $\kappa(C, \lambda)=\sum_{i=1}^{m}t^{m-i}y_{i}$

when $X$ is an Alexander quandle, and

(2) $\kappa(C, \lambda)=\prod_{i=1}^{m}y_{i}^{(-1)^{m-i}}$

when $X$ is the core quandle of a group, where $C(\lambda)=(y_{1}, y_{2}, \ldots, y_{m})$ for $\lambda\in\Sigma(\Gamma)$ .
In particular, when $X=R_{m}$ , by Equation 1 or 2, $\kappa(C, \lambda)$ is defined by

(3) $\kappa(C, \lambda):=\sum_{i=1}^{m}(-1)^{i}y_{i}$ . $(mod n)$

If $X$ is an Alexander quandle and the core quandle of a group, then $X$ is a dihedral
quandle. Thus, $\kappa(C, \lambda)$ is well-defined.

Lemma 3.2. The map $\kappa(C, \lambda)$ is independent of a choice of $\lambda$ .
By Lemma 3.2, we denote $\kappa(C, \lambda)$ by $\kappa(C)$ . We define a multiset

$K_{X}(\Gamma):=\{\kappa(C)|C\in Col_{X}(\Gamma)\}$ .

Theorem 3.3 ([5]). A multiset $K_{X}(\Gamma)$ is an invariant of C-move equivalent classes
of charts in $U_{0}$ , and hence $K_{X}(\Gamma)$ is also an invariant of conjugacy classes of surface
braids.

Set $X=R_{m}$ . Then we also regard $K_{R_{n}}(\Gamma)$ as an element of $Z[t, t^{-1}]/(t^{n}-1)$ by

$K_{R_{m}}( \Gamma):=\sum_{C\in Col_{R_{n}}(\Gamma)}t^{\kappa(C)}$
.

If $\Gamma$ is a 4-chart depicted in Fig. 1, then $K_{R_{3}}(\Gamma)=3^{2}$ (see Fig. 6).

An oval nest is a free edge together with some concentric hoops. A chart is ribbon
if it is C-move equivalent to a chart consists of some oval nests. If a surface-link is
represented by a ribbon chart, then we call it a ribbon.

Remark 3.4. In [2], I. Hasegawa defined another invariant of conjugacy classes of
surface braids. Hasegawa $s$ invariant is required that any surface braid corresponded
to a ribbon chart has specific value. By the invariant, we have a first example of non-
ribbon chart representing a ribbon surface-link and a pair of non-conjugate surface
braids. Our invariant $K_{X}$ do not help us to study whether a chart is ribbon or not,
but are useful to study whether two ribbon charts are conjugate or not as in \S 4.

4. EXAMPLES

Let $D^{n}$ and $E^{n}$ be 4-charts depicted in Fig. 7 for any $n$ . By a destabilization and
C-moves, we see that $D^{n}$ and $E^{n}$ represents same surface-knot, the surface-knot is
a spun (2, n)-torus knot and

$K_{R_{n}}(D^{n})=n(1+t+\cdots+t^{n-1})$ ,

$K_{R_{n}}(E^{n})=n^{2}$ .
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FIGURE 8. $B_{s,g_{1},\ldots,g_{\theta}}^{l}$

Thus, we have Theorem 4.1.

Theorem 4.1 ([5]). There is a pair of non-conjugate surface bmids with degree 4
representing a spun (2, n)-torus knot for $n\geq 3$ .

Let $s,$ $g_{1},$ $\ldots,$ $g_{s},$
$l$ be integers with $s\geq 2,$ $g_{1},$ $\ldots,$

$g_{s}\geq 0$ and $l\geq 2$ . Let $B_{s,g_{1},\ldots,g_{s}}^{l}$ be
a 2 $s$-chart depicted in Fig. 8. By a destabilization and C-moves, we see that $B_{s,g_{1},\ldots,g_{s}}^{l}$

represents same surface-link for any $l$ and the surface-link is an $s$ component trivial
surface-link whose components have genera $g_{1},$ $\ldots,$ $g_{s}$ . Let $\mathbb{P}$ be the set of prime
integers. Then we also see that $\{B_{s,g_{1},\ldots,g_{S}}^{p}\}_{p\in \mathbb{P}}$ are the set of $2s$-charts representing
mutually non-conjugate surface braids by the set of invariants $\{K_{R_{T}}\}_{p\in \mathbb{P}}$ . Thus, we
have Theorem 4.2.

Theorem 4.2 ([5]). There is an infinite sequence of mutually non-conjugate surface
braids with degree $2s$ representing the $tr\cdot\iota vials$ component surface-link for any $s\geq 2$

and any genus.
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5. SIMPLE CLASSIFICATION OF 4-CHARTS

In \S 4, we give examples of pairs of non-conjugate surface braids representing a
nontrivial ribbon surface-knot. We would like to find an example of a pair of non-
conjugate surface braids representing a nonribbon surface-knot. In [8], Kamada
proved that any m-chart represents a ribbon surface-link if $m\leq 3$ . Thus, we study
4-charts.

It is known that $Col_{R_{p}}(\Gamma)$ is a linear space over $Z_{p}$ (cf. [3]) and the dimension
$Col_{R_{p}}(\Gamma)$ is at most 4 ([14]). We classify 4-charts the following five types for odd
prime $p$ by the dimension of the set of $Col_{R_{p}}(\Gamma)$ , which is denoted by $\dim Col_{R_{p}}(\Gamma)$ ,
and $K_{R_{p}}$ .

(I-p) It is satisfied that $\dim Col_{R_{p}}(\Gamma)=1$ .
(II-I-p) It is satisfied that $\dim Col_{R_{p}}(\Gamma)=2$ and $K_{R_{p}}(\Gamma)=p^{2}$ .

(II-II-p) It is satisfied that $\dim Col_{R_{p}}(\Gamma)=2$ and $K_{R_{p}}(\Gamma)\neq p^{2}$ .
(III-p) It is satisfied that $\dim Col_{R_{p}}(\Gamma)=3$ .
(IV-p) It is satisfied that $\dim Col_{R_{p}}(\Gamma)=4$ .

If $\Gamma$ is a 4-chart depicted in Fig. 1, then $\Gamma$ satisfies (II-I-p) (see Fig. 6).

Lemma 5.1. We have the following.
(i) If $\Gamma$ satisfies (I-p), then all $R_{\tau}$ -colorings are trivial.
(ii) If $\Gamma$ satisfies (III-p), then $K_{R_{p}}(\Gamma)\neq p^{3}$ .
(iii) If $\Gamma$ satisfies (IV-p), then $\Gamma$ represents the trivial 4-component 2-link.

Let $\mathfrak{U}$ be the set of subcharts in $U_{0}$ depicted in Fig. 9 and their mirror images.
Let $\mathfrak{B}$ be the set of subcharts in $U_{0}$ depicted in Fig. 10 and their mirror images.
By colorings conditions around each subgraph in $\mathfrak{U}$ and $\mathfrak{B}$ , we have the following
lemmas.

Lemma 5.2. Let $\Gamma$ be a 4-chart.
(i) If there is a subchart $G$ of $\Gamma$ with $G\in \mathfrak{U}_{f}$ then $\Gamma$ satisfies (I-p) or (II-I-p).
(ii) If there is a subchart $G$ of $\Gamma$ with $G\in \mathfrak{B}$ , then $\Gamma$ satisfies (I-p) or (II-II-p).

Moreover, if there is a subchart $G$ and $G’$ of $\Gamma$ with $G\in \mathfrak{U}$ and $G’\in \mathfrak{B}$ , then all
$\mathscr{F}$-coloring of $\Gamma$ is trivial.
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FIGURE 10. $\mathfrak{B}$

6. DIHEDRAL QUANDLE COCYCLES INVARIANTS

In [1], a quandle cocycle invariant $\Phi_{f}(F)$ for a surface-link $F$ was defined as an
element of $Z[A]$ where $f$ is an A-valued 3-cocycle. By the definition of $\Phi_{f}(F)$ , we
see that if $\Phi_{f}(F)\not\in Z(\subset Z[A])$ , then $F$ is nonribbon. Thus, we shall consider a chart
$\Gamma$ such that $\Phi_{f}(S(\Gamma))\not\in Z$ for an A-valued 3-cocycle $f$ . First, we consider $\Phi_{\theta_{3}}(S(\Gamma))$

where $\theta_{3}$ is the Mochizuki‘s 3-cocycle of $R_{3}$ (cf. [12]). Since $Z[Z_{p}]$ is isomorphic
to $Z[t, t^{-1}]/(t^{p}-1)$ , we also regard $\Phi_{\theta_{3}}(F)$ as an element of $Z[t, t^{-1}]/(t^{n}-1)$ . It
is known that $\Gamma$ satisfies (11-1-3) and $\Phi_{\theta_{3}}(S(\Gamma))=3+6t^{2}$ $(or 3+6t)$ where $\Gamma$ is a
4-chart depicted in Fig. 1 (or its mirror image) (cf. [1]).

Theorem 6.1 ([7]). Let $F$ be a surface-link represented by a 4-chart $\Gamma$ . If $\Gamma$ satisfies
(11-11-3), then $\Phi_{\theta_{3}}(F)=3^{2}$ .

Corollary 6.2. There is no 4-chart $\Gamma$ satisfying that $\Phi_{\theta_{3}}(S(\Gamma))\not\in Z$ and (11-11-3).
In particular, if there is a subchart $G$ of $\Gamma$ with $G\in \mathfrak{B}$ , then $\Gamma$ does not represent a
2-twist spun trefoil.

It is implies that we cannot find examples for a pair of non-conjugate surface
braids of degree 4 representing a nonribbon surface-link $F$ with $\Phi_{\theta_{3}}(F)\not\in Z$ by our
approaches.

Next, we consider a chart $\Gamma$ such that $\Phi_{\theta_{5}}(S(\Gamma))\not\in$ Z. Let $A_{1}^{10},$ $A_{2}^{10}$ and $A_{3}^{10}$ be
4-charts depicted in Fig. 11. Then we see that $K_{R_{5}}(A_{1}^{10})=K_{R_{5}}(A_{2}^{10})=5(1+t+$

$t^{2}+t^{3}+t^{4})$ and $K_{R_{5}}(A_{3}^{10})=5^{2}$ . We also see that $\Phi_{\theta_{5}}(S(A_{i}^{10}))=5(1+2t^{2}+2t^{3})$ and
the surface-knot group $G(S(A_{i}^{10}))\cong\langle a,$ $z|a^{-1}za=z^{-1},$ $z^{5}=1\rangle$ for $i=1,2,3$ . By
similar arguments of \S 21 of [10], we see that $A_{1}^{10}$ represents a 2-twist spun (2, 5)-torus
knot.

Question 6.3 ([6]). Are $S(A_{1}^{10}),$ $S(A_{2}^{10})$ and $S(A_{3}^{10})$ equivalent?

If the answer of Question 6.3 is positive, then we have an example of a pair of
non-conjugate surface braids representing a nonribbon surface-link.

7. THE BRAID INDEX OF A SURFACE-LINK

In this section, we study the braid index of a surface-link.
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FIGURE 11. $A_{1}^{10},$ $A_{2}^{10}$ and $A_{3}^{10}$

For a surface-link $F$ , we define Braid$(F)$ by

Braid$(F)$ $:= \min\{m$ $whoseclosureisequivalenttoFSisasurfacebraidofdegreem\}$

$= \min${ $m|\Gamma$ is an m-chart representing $F$ },
and call Braid$(F)$ the braid index of $F$ .

Let $T_{3}^{r}$ be an r-twist spun trefoil. It is known that Braid $(T_{3}^{0})=3$ and Braid $(T_{3}^{2})=$

$4(cf.[8,10])$ . Let $F_{l}$ and $G_{l}$ be the connected sums $F_{l}=\#\iota^{T_{3}^{0}}$ and $G_{l}=\tau_{3}^{2}\#(\#\iota^{T_{3}^{0})}\cdot$

Theorem 7.1 ([11]). Let $F$ and $F’$ be non-trivial surface-links. Then

Braid $(F\# F’)\leq$ Braid$(F)+$ Braid$(F’)-2$ .

Theorem 7.2 ([14]). Let $F$ be a non-trivial surface-link and $X$ be a finite quandle.
If $|Col_{X}(F)|\geq|X|^{l}$ , then Braid $(F)\geq l+1$ .

By Theorems 7.1 and 7.2, Tanaka stated that Braid$(F_{l})=l+2$ and Braid $(G_{l})=$

$l+3$ or $l+4$ for each $l$ , and gave the following problem.

Problem 7.3 ([14]). For each integer $l>0$ , determine the braid index of $G_{l}$ exactly.
Which is the correct value of this index, $l+3$ or $l+4$?

By Theorem 6.1, we can prove the following corollary.

Corollary 7.4 ([7]). Let $F$ be a surface-link represented by a 4-chart $\Gamma$ . If $\Gamma$ satisfies
(III-3), then $\Phi_{\theta_{3}}(F)=3^{3},21+6t$ or $21+6t^{2}$ .

We see that $\Phi_{\theta_{3}}(G_{1})=9+18t^{2}$ . By Theorem 7.1 and Corollary 7.4, we have
Problem 7.3 for $l=1$ .

Corollary 7.5 ([7]). The braid index of $G_{1}$ is equal to 5.
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