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ABSTRACT. A family of finite type invariants of string link is given by the HOM-
FLYPT polynomial of knots using various closure operations on (cabled) string
links. In this note we will show the following:
(1) These invariants, together with Milnor invariants of length $\leq 5$ , give classffica-
tions of n-string links up to $C_{k}$ -equivalence for $k\leq 5$ , and give a complete set of
finite type invariants of degree $\leq 4$ .
(2) Any Milnor invariant of length $n+1(>2)$ of a $C_{n}$ -trivial string link is expressed
as a linear combination of such invariants.

1. STRING LINKS AND $C_{k}$ -MOVES

The notion of string link was introduced by Le Dimet [3] and Habegger-Lin [5].
A string link is a kind of tangle without closed components in the cylinder, which
generalizes pure braids.

Let $D$ be the unit disk in the plane. Choose $n$ points $p_{1},$ $\ldots,p_{n}$ in the interior
of $D$ so that $p_{1},$ $\ldots,p_{n}$ lie in order on the x-axis, see Figure 2.1. An n-string link
$L=K_{1}\cup\cdots\cup K_{n}$ in $D\cross[0,1]$ is a disjoint union of oriented arcs $K_{1},$

$\ldots,$
$K_{n}$ such

that each $K_{i}$ runs from $(p_{i}, 0)$ to $(p_{i}, 1)(i=1, \ldots, n)$ . The string link $K_{1}\cup\cdots\cup K_{n}$

with $K_{i}=\{p_{i}\}\cross[0,1](i=1, \ldots, n)$ is called the trivial n-string link and denoted by
$1_{n}$ .

The set $S\mathcal{L}(n)$ of isotopy classes of n-string links fixing the endpoints has a
monoidal structure, with composition given by the stacking product and with the
trivial n-string link $1_{n}$ as unit element.

Habiro [6] and Goussarov [4] introduced independently the notion of $C_{k}$ -move as
follows. (This notion can also be defined by using the theory of claspers, see Sub-
section 5.1.) A $C_{k}$-move is a local move on (string) links as illustrated in Figure 1.1,
which can be regarded as a kind of ‘higher order crossing change’ (in particular, a
$C_{1}$ -move is a crossing change). The $C_{k}$-move generates an equivalence relation on
(string) links, called $C_{k}$ -equivalence, which becomes finer as $k$ increases. Thus we
have a descending filtration

$S\mathcal{L}(n)=S\mathcal{L}_{1}(n)\supset S\mathcal{L}_{2}(n)\supset S\mathcal{L}_{3}(n)\supset\ldots$

where $S\mathcal{L}_{k}(n)$ denotes the set of $C_{k}$ -trivial n-string links, i.e., string links which are
$C_{k}$-equivalent to $1_{n}$ . For $1\leq k\leq l$ , let $S\mathcal{L}_{k}(n)/C_{l}$ denote the set of $C_{l}$-equivalence
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FIGURE 1.1. A $C_{k}$-move involves $k+1$ strands of a link, labelled here
by integers between $0$ and $k$ .

classes of $C_{k}$-trivial n-string links. This is known to be a finitely generated nilpotent
group. Furthermore, if $l\leq 2k$ , this group is abelian [6, Thm. 5.4].

2. FINITE TYPE INVARIANTS OF STRING LINKS

A singular n-string links is a proper immersion $[sqcup]_{i=1}^{n}[0,1]_{i}arrow D^{2}\cross[0,1]$ of the
disjoint union $U_{i=1}^{n}[0,1]_{i}$ of $n$ copies of $[0,1]$ in $D^{2}\cross[0,1]$ such that the image of
$[0,1]_{i}$ runs from $(p_{i}, 0)$ to $(p_{i}, 1)(1\leq i\leq n)$ , and whose singularities are transverse
double points (in finite number).

Denote by $ZS\mathcal{L}(n)$ the free abelian group generated by $S\mathcal{L}(n)$ . A singular n-
string link $\sigma$ with $k$ double points can be expressed as an element of $ZS\mathcal{L}(n)$ using
the following skein formula.

(2.1) $X=\nearrow^{\nwarrow_{\backslash }}-/\nwarrow^{\nearrow}$

Let $A$ be an abelian group. An n-string link invariant $f$ : $S\mathcal{L}(n)arrow A$ is a finite
type invariant of degree $\leq k$ if its linear extension to $ZS\mathcal{L}(n)$ vanishes on every n-
string-link with (at least) $k+1$ double points. If $f$ is of degree $\leq k$ but not of degree
$k-1$ , then $f$ is called a finite type invariant of degree $k$ .

We recall a few classical examples of such invariants in the next two subsections.

2.1. Finite type knot invariants. Recall that the Conway polynomial of a knot
$K$ has the form

$\nabla_{K}(z)=1+\sum_{k\geq 1}a_{2k}(K)z^{2k}$
.

It is not hard to show that the $z^{2k}$-coefficient $a_{2k}$ in the Conway polynomial is a finite
type invariant of degree $2k[1]$ .

Recall also that the HOMFL $YPT$ polynomial of a knot $K$ is of the form

$P(K;t, z)= \sum_{k=0}^{N}P_{2k}(K;t)z^{2k}$ ,

where $P_{2k}(K;t)\in \mathbb{Z}[t^{\pm 1}]$ is called the $2kth$ coefficient polynomial of $K$ . Denote by
$P_{2k}^{(l)}(K)$ the lth derivative of $P_{2k}(K;t)$ evaluated at $t=1$ . It was proved by Kanenobu
and Miyazawa that $P_{2k}^{(l)}$ is a finite type invariant of degree $2k+l[9]$ .

Note that both the Conway and HOMFLYPT polynomials of knots are invariant
under orientation reversal, and that both are multiplicative under the connected
sum [12].
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2.2. Milnor invariants of string links. Given an n-component oriented, ordered
link $L$ in $S^{3}$ , Milnor invariants $\overline{\mu}_{L}(I)$ of $L$ are defined for each multi-index $I=$
$i_{1}i_{2}\ldots i_{m}$ (i.e., any sequence of possibly repeating indices) among $\{$ 1, $\ldots,$

$n\}[18,19]$ .
The number $m$ is called the length of Milnor invariant $\overline{\mu}(I)$ , and is denoted by $|I|$ .
Unfortunately, the definition of these $\overline{\mu}(I)$ contains a rather intricate self-recurrent
indeterminacy.

Habegger and Lin showed that Milnor invariants are actually well defined integer-
valued invariants of string links [5], and that the indeterminacy in Milnor invariants
of a link is equivalent to the indeterminacy in regarding it as the closure of a string
link.

In the unit disk $D^{2}$ , we chose a point $e\in\partial D$ and loops $\alpha_{1},$
$\ldots,$

$\alpha_{n}$ as illustrated in
Figure 2.1. For an $n$-component string link $L=K_{1}\cup\cdots\cup K_{n}$ in $D^{2}\cross[0,1]$ with
$\partial K_{j}=\{(p_{j}, 0), (p_{j}, 1)\}(j=1, \ldots, n)$ , set $Y=(D^{2}\cross[0,1])\backslash L,$ $Y_{0}=(D^{2}\cross\{0\})\backslash L$ ,
and $Y_{1}=(D^{2}\cross\{1\})\backslash L$ . We may assume that each $\pi_{1}(Y_{t})(t\in\{0,1\})$ with base
point $(e, t)$ is the free group $F(n)$ on generators $\alpha_{1},$

$\ldots,$
$\alpha_{n}$ . We denote the image of $\alpha_{j}$

in the lower central series quotient $F(n)/F(n)_{q}$ again by $\alpha_{j}$ . By Stallings’ theorem
[23], the inclusions $i_{t}$ : $Y_{t}arrow Y$ induce isomorphisms $(i_{t})_{*}$ : $\pi_{1}(Y_{t})/\pi_{1}(Y_{t})_{q}arrow$

$\pi_{1}(Y)/\pi_{1}(Y)_{q}$ for any positive integer $q$ . Hence the induced map $(i_{1})_{*}^{-1}\circ(i_{0})_{*}$ is an
automorphism of $F(n)/F(n)_{q}$ and sends each $\alpha_{j}$ to a conjugate $l_{j}\alpha_{j}l_{j}^{-1}$ of $\alpha_{j}$ , where
$l_{j}$ is the longitude of $K_{j}$ defined as follows. Let $\gamma_{j}$ be a zero framed parallel of $K_{j}$

such that the endpoints $(c_{j}, t)\in D^{2}\cross\{t\}(t=0,1)$ lie on the $x$-axis in $\mathbb{R}^{2}\cross\{t\}$ . The
longitude $l_{j}\in F(n)/F(n)_{q}$ is an element represented by the union of the arc $\gamma_{j}$ and
the segments $e\cross[0,1],$ $c_{j}e\cross\{0,1\}$ under $(i_{1})_{*}^{-1}$ . The coefficient $\mu_{L}(i_{1}i_{2}\ldots i_{k-1}j)(k\leq q)$

of $X_{i_{1}}\cdots X_{i_{k-1}}$ in the Magnus expansion $E(l_{j})$ is well-defined invariant of $L$ , and it
is called a Milnor $\mu$ -invariant of length $k$ . It is known that Milnor $\mu$-invariants of
length $k$ are finite type invariants of degree $k-1$ for string links [2, 13].

FIGURE 2.1

Convention 2.1. As said above, each Milnor invariant $\mu(I)$ for n-string links is indexed
by a sequence $I$ of possibly repeating integers in $\{$ 1, $\ldots,$

$n\}$ . In the following, when
denoting indices of Milnor invariants, we will always let distinct letters denote distinct
integers, unless otherwise specified. For example, $\mu(iijk)(1\leq i, j, k\leq n)$ stands for
all Milnor invariants $\mu(iijk)$ with $i,$ $j,$ $k\in\{1, \ldots, n\}$ pairwise distincts.
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2.3. Closure invariants. Given an n-string link $L$ and a sequence $I=i_{1}i_{2}\cdots i_{m}$ of
$m$ elements in {1, $\ldots,$ $n,$

$\overline{1},$

$\ldots$ , it}, we will construct in the next subsection an oriented
knot $K(L;I)$ in $S^{3}$ as a closure of $L$ with respect to $I$ . Roughly speaking, we build
the knot in $S^{3}$ by connecting the endpoints of the $i_{j}$ th components of $L(j=1, \ldots, m)$

so that, when running along the knot following the orientation, we meet these com-
ponents in the order $i_{1},$ $i_{2},$

$\cdots,$ $i_{m}$ . Indices contained in $\{$ 1, $\ldots,$
$n\}$ , resp. in $\{\overline{1}, \ldots, \overline{n}\}$ ,

correspond to components whose orientation agree, resp. disagree, with the orienta-
tion of the knot. If some index appears more than one in $I$ , then we properly take
parallels of the corresponding component of $L$ .

2.3.1. Definition of the knot $K(L;I)$ for a sequence I without repetition. Let $I=$
$i_{1}i_{2}\cdots i_{m}$ be a sequence of $m$ elements in $\{1, \ldots, n, \overline{1}, \ldots,\overline{n}\}-$ without repeated number,
i.e., for each $i=1,$ $\ldots,$

$n$ , the number of times that $i$ or $i$ appears in $I$ is at most one.
Let $L=K_{1}\cup\ldots\cup K_{n}$ be an n-string link in $D^{2}\cross[0,1]\subset S^{3}$ .

Suppose that $\partial K_{i}=p_{i}\cross\{0,1\}\subset D^{2}\cross\{0,1\}$ . For each $I$ , we choose a tangle $T_{I}$

in $S^{3}\backslash (D^{2}\cross[0,1])$ as follows:
$\bullet$ If $i_{k}$ and $i_{k+1}$ are in $\{$ 1, $\ldots,$

$n\}$ then connect $p_{i_{k}}\cross\{1\}$ and $p_{i_{k+1}}\cross\{0\}$ in
$S^{3}\backslash (D^{2}\cross[0,1])$ .

$\bullet$ If $i_{k}$ is in $\{$ 1, $\ldots,$
$n\}$ and $i_{k+1}$ is in $\{\overline{1}, \ldots, \overline{n}\}$ then connect $p_{i_{k}}\cross\{1\}$ and $p_{\overline{i_{k+1}}}\cross\{1\}$

in $S^{3}\backslash (D^{2}\cross[0,1])$ .
$\bullet$ If $i_{k}$ and $i_{k+1}$ are in $\{\overline{1}, \ldots,\overline{n}\}$ then connect $r_{i_{k}^{-}}\cross\{0\}$ and $r_{i_{k+1}}^{-}\cross\{1\}$ in

$S^{3}\backslash (D^{2}\cross[0,1])$ .
$\bullet$ If $i_{k}$ is in $\{\overline{1}, \ldots, \overline{n}\}$ and $i_{k+1}$ is in $\{$ 1, $\ldots,$

$n\}$ then connect $r_{i_{k}}^{-}\cross\{0\}$ and $p_{i_{k+1}}\cross\{0\}$

in $S^{3}\backslash (D^{2}\cross[0,1])$ .
Here we implicitely mean that $\overline{\overline{i}}=i$ and $i_{m+1}=i_{1}$ in our notation. Let $L_{I}$ be the
m-string link obtained from $L$ by deleting all components $K_{j}$ of $L$ such that neither
$j$ nor $\overline{j}$ appears in $I$ . Then we have a knot $K(L;I)$ $:=L_{I}\cup T_{I}$ in $S^{3}$ . See Figure 2.2
for an example. For each $I$ , we choose $T_{I}$ so that $K(1_{n};I)$ is the trivial knot. While
there are several choices of $T_{I}$ tangles for each $I$ , we choose one and fix it.

FIGURE 2.2

2.3.2. Definition of the knot $K(L;I)$ for an arbitrary sequence $I$ . Let $L=K_{1}\cup$

. . . $\cup K_{n}$ be an n-string link. Let $I=i_{1}i_{2}\cdots i_{m}$ be a sequence of $m$ elements of
$\{1, \ldots, n,\overline{1}, \ldots, \overline{n}\}$ , where for each number $i(=1, \ldots, n)$ , the number of times that $i$ or $\overline{i}$

appears in $I$ is $r_{i}$ . Let $m= \sum_{i}r_{i}$ . Denote by $D_{I}(L)$ the m-string link obtained from
$L$ as follows:
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$\bullet$ Replace each string $K_{i}$ by $r_{i}$ zero-framed parallel copies of it, labeled from
$K_{(i,1)}$ to $K_{(i,r_{i})}$ according to the natural order induced by the orientation of
the diametral axis in $D^{2}$ . If $r_{i}=0$ for some index $i$ , simply delete $K_{i}$ .

$\bullet$ Let $D_{I}(L)=K_{1}’\cup\cdots\cup K_{m}’$ be the m-string link $\bigcup_{i,j}K_{(i,j)}$ with the order
induced by the lexicographic order of the index $(i, j)$ . This ordering defines
a bijection

$\varphi$ : $\{(i, j)|1\leq i\leq n, 1\leq j\leq r_{i}\}arrow\{1, \ldots, m\}$ .

We also define a sequence $D(I)$ of elements of $\{$ 1, $\ldots,$
$m\}$ without repeated number

as follows. First, consider a sequence of elements of $\{(i, j);1\leq i\leq n, 1\leq j\leq r_{i}\}$

by replacing each number $i$ in $I$ with $(i, 1),$
$\ldots,$

$(i, r_{i})$ in this order. For example if
$I=12\overline{2}31$ , we obtain the sequence (1, 1), (2, 1), $\overline{(2,2)},$ $(3,1),$ $(1,2)$ . Next replace each
term $(i, j)$ of this sequence with $\varphi((i, j))$ . Hence we have $D(12\overline{2}31)=13\overline{4}52$ . Since
$D(I)$ does not contain repeated number, we have a closure $K(D_{I}(L);D(I))$ of $L$ with
respect to the sequence $D(I)$ . We call the knot $K(D_{I}(L);D(I))$ the closure knot with
respect to $I$ .

It is not hard to show the following proposition.

Proposition 2.2. Let I be a sequence of elements in $\{1, \ldots, n, \overline{1}, \ldots, \overline{n}\}_{f}$ and let
$v_{m}$ be a finite type invariant of degree $m$ for knots. Then the assignement $L\mapsto$

$v_{m}(K(D_{I}(L);D(I)))$ defines a finite type invariant of degree $m$ for n-string links.

Convention 2.3. Let $v_{m}$ be a finite type invariant of degree $m(\geq 2)$ for knots. For
an n-string link $L$ and a sequence $I=i_{1}i_{2}\cdots i_{m}$ of $m$ elements of $\{1, \ldots, n,\overline{1}, \ldots, \overline{n}\}$ ,
we denote $v_{m}(K(D_{I}(L);D(I)))$ by $v_{m}(L;I)$ or $v_{m}(D_{I}(L);D(I))$ . For example, we
denote $P_{0}^{(m)}(K(D_{I}(L);D(I)))$ and $a_{m}(K(D_{I}(L);D(I)))$ by $P_{0}^{(m)}(L;I)$ and $a_{m}(L;I)$

respectively. We call $P_{0}^{(m)}(L;I)$ and $a_{m}(L;I)$ the $P_{0}^{(m)}$ -closure invariant and the
$a_{m}$ -closure invariant respectively.

3. $C_{k}$ -MOVES AND FINITE TYPE INVARIANTS

3.1. The Goussarov-Habiro Conjecture. Goussarov and Habiro showed inde-
pendently the following.

Theorem 3.1 ([4, 6]). Two knots (l-string links) cannot be distinguished by any
finite type invariant of degree $\leq k$ if and only if they are $C_{k}$ -equivalent.

It is known that the ‘if’ part of the statement holds for links as well, but explicit
examples show that the ‘only if’ part of Theorem 3.1 does not hold for links in
general, see [6, \S 7.2].

However, Theorem 3.1 may generalize to string links.

Conjecture (Goussarov-Habiro; [4, 6]). Two string links of the same number of
components share all finite type invariant of degree $\leq k-1$ if and only if they are
$C_{k}$ -equivalent.

As in the link case, the ‘if’ part of the conjecture is always true. The ‘only if’ part is
also true for $k=1$ (in which case the statement is vacuous) and $k=2$ ; the only finite
type string link invariant of degree 1 is the linking number, which is known to classify
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string links up to $C_{2}$-equivalence [21]. (Note that this actually also applies to links).
The Goussarov-Habiro conjecture was (essentially) proved for $k=3$ by the first
author in [15]. Massuyeau gave a proof for $k=4$ , but it is mostly based on algebraic
arguments and thus does not provide any information about the corresponding finite
type invariants [14]. In [16], we classify n-string links up to $C_{k}$-move for $k\leq 5$ , by
explicitly giving a complete set of low degree finite type invariants. In addition to
Milnor invariants, these include several closure invariants of string links. In the next
subsection, we give the statements of these results. As a consequence, we show that
the Goussarov-Habiro Conjecture is true for $k\leq 5$ .
3.2. Invariants of degree $\leq 4$ . In this subsection, we give a $C_{k}$-classification of
string links for $k\leq 5$ . While the statemants here look different from the statements
in [16], they are essentially the same (we just use a different notation for closure
invariants).

Recall that there is essentially only one finite type knot invariant of degree 2,
namely $a_{2}$ , and that there is essentially only one finite type knot invariant of degree 3,
namely $P_{0}^{(3)}$ . There are essentially two linearly independent finite type knot invariants
of degree 4, namely $a_{4}$ and $P_{0}^{(4)}$ . We will use these knot invariants to define a number
of finite type string links invariants of degree $\leq 4$ by using some closure. These
various invariants, together with Milnor invariants of length $\leq 5$ , give the following
classification of n-string links up to $C_{k}$-equivalence for $k\leq 5$ .
Theorem 3.2 ([15]). Let $L,$ $L^{f}\in S\mathcal{L}(n)$ . Then the following assertions are mutually
equivalent:

(1) $L$ and $L^{f}$ are $C_{3}$ -equivalent,
(2) $L$ and $L’$ share all finite type invariants of degree $\leq 2$ ,
(3) $a_{2}(L;i\underline{)}=a_{2}(L^{f};i)(1\leq i\leq n)$ ,

$a_{2}(L, ij)=a_{2}(L’;i\overline{j})(1\leq i<j\leq n)$ ,
$\mu_{L}(ij)=\mu_{L’}(ij)(1\leq i<j\leq n)$ and
$\mu_{L}(ijk)=\mu_{L’}(ijk)(1\leq i<j<k\leq n)$ .

Theorem 3.3 ([16]). Let $L,$ $L^{f}\in S\mathcal{L}(n)$ . Then the following assertions are mutually
equivalent:

(1) $L$ and $L’$ are $C_{4}$ -equivalent,
(2) $L$ and $L’$ share all finite type invariants of degree $\leq 3$ ,
(3) $L$ and $L’$ share all finite type invariants of degree $\leq 2$ , and

$P_{0}^{(3)}(L;i)=P_{0}^{(3)}(L’;i)(1\leq i\leq n)$ ,
$P_{0}^{(3)}(L;i\overline{j})=P_{0}^{(3)}(L’;i\overline{j})(1\leq i<j\leq n)$

$P_{0}^{(3)}(L;ik\overline{j})=P_{0}^{(3)}(L^{f};ik\overline{j})(1\leq i<j<k\leq n)$,
$\mu_{L}$ (iijj) $=\mu_{L’}$ (iijj) $(1\leq i<j\leq n)$ ,
$\mu_{L}$ (ijkl) $=\mu_{L’}$ (ijkl) $(1\leq i,j<k<l\leq n)$ and
$\mu_{L}$ (ijkk) $=\mu_{L’}$ (ijkk) $(1\leq i,j, k\leq n, i<j)$ .

Theorem 3.4 ([16]). Let $L,$ $L’\in S\mathcal{L}(n)$ . Then the following assertions are equiva-
lent:

(1) $L$ and $L^{f}$ are $C_{5}$ -equivalent,
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(2) $L$ and $L^{f}$ share all finite type invariants of degree $\leq 4$ ,
(3) $L$ and $L^{f}$ share all finite type invariants of degree $\leq 3$ , and

$a_{4}(L;i)=a_{4}(L^{f};i),$ $P_{0}^{(4)}(L;i)=P_{0}^{(4)}(L^{f};i)(1\leq i\leq n)$ ,
$a_{4}(L;i\overline{j})=a_{4}(L’;i\overline{j}),$ $P_{0}^{(4)}(L;i\overline{j})=P_{0}^{(4)}(L’;i\overline{j})$ ,
$a_{4}(L;ii\overline{j})=a_{4}(L’;ii\overline{j}),$ $P_{0}^{(4)}(L;ii\overline{j})=P_{0}^{(4)}(L’;ii\overline{j})$ ,
$P_{0}^{(4)}(K(L;i\overline{jj}))=P_{0}^{(4)}(K(L’;i\overline{jj}))(1\leq i<j\leq n)$,
$a_{4}(L;i\overline{jk})=a_{4}(L^{f};i\overline{jk}),$ $P_{0}^{(4)}(L;i\overline{jk})=P_{0}^{(4)}(L’;i\overline{jk})$ ,
$a_{4}(L;i\overline{k}j)=a_{4}(L’;i\overline{k}j),$ $P_{0}^{(4)}(L;i\overline{k}j)=P_{0}^{(4)}(L’;i\overline{k}j)$ ,
$a_{4}(L, ik\overline{j})=a_{4}(L^{f};ik\overline{j}),$ $P_{0}^{(4)}(L;ik\overline{j})=P_{0}^{(4)}(L^{f};ik\overline{j})$ ,
$P_{0}^{(4)}(L;i\overline{j}k)=P_{0}^{(4)}(L’;i\overline{j}k)(1\leq i<j<k\leq n)$ ,
$P_{0}^{(4)}$ ( $L$ ; ijk7) $=P_{0}^{(4)}(L’;i\overline{j}k\overline{l}),$ $P_{0}^{(4)}$ ( $L$ ; ijlk) $=P_{0}^{(4)}(L^{f};i\overline{j}l\overline{k})$ ,
$P_{0}^{(4)}(L;i\overline{k}j\overline{l})=P_{0}^{(4)}(L^{f};i\overline{k}j\overline{l})(1\leq i<j<k<l\leq n)$ ,
$\mu_{L}$ (ijklm) $=\mu_{L’}$ (ijklm) $(1\leq i,j, k<l<m\leq n)$ ,
$\mu_{L}$ (iiijk) $=\mu_{L’}$ (iiijk), $\mu_{L}$ (ijjkk) $=\mu_{L’}$ (ijjkk),
$\mu_{L}$ (jikll) $=\mu_{L’}$ (jikll) $(1\leq i,j, k, l\leq n, j<k)$ .

Remark 3.5. A complete set of finite type link invariant of degree $\leq 3$ has been
computed in [10] using weight systems and chord diagrams. For 2-component links,
this has been done for degree $\leq 4$ invariants in [11]. All invariants are given by
coefficients of the Conway and HOMFLYPT polynomials of sublinks.

4. MILNOR INVARIANTS AND $P_{0}^{(m)}$ -CLOSURE INVARIANTS

We start by expressing Milnor $s$ link homotopy invariants, i.e., Milnor invariants
$\mu(I)$ with a sequence $I$ without repeated number, in terms of the closure invariants
defined in Subsection 2.3.

Theorem 4.1 ([17]). Let $m\geq 2$ . Let $L$ be a $C_{m}$ -trivial n-string link $(m+1\leq n)$ .
Let I be a sequence of $m+1$ elements of $\{$ 1, $\ldots,$

$n\}$ without repeated number. Then

$\mu_{L}(I)=\frac{\pm 1}{m!2^{m}}\sum_{J\subset I,J\neq\emptyset}(-1)^{m-|J|}P_{0}^{(m)}(L;J)$ ,

where the sum runs over all nonempty subsequences $J$ of $I$ .

Remark 4.2. (1) By [6], the fact that $L$ is $C_{m}$-trivial implies that $\mu_{L}(I)=0$ for any
sequence $I$ of length $|I|\leq m$ .
(2) Any link-homotopically trivial Brunnian n-string link is $C_{n}$-trivial [8, 20], and
any Brunnian n-string link whose Milnor invariants of length $\leq n+1$ vanish is $C_{n+1^{-}}$

trivial [16]. Since a Brunnian n-string link whose Milnor invariants with length $\leq n$

vanish is link-homotopically trivial [18], for $m=n+1$ or $n$ , a Brunnian n-string
link whose Milnor invariants with length $\leq m$ vanish is $C_{m}$-trivial. Moreover, any
Brunnian n-string link is $C_{n-1}$ -trivial [7, 20] and has vanishing Milnor invariants with
length $\leq n-1$ , so this holds for $m=n-1$ as well.
(3) Since there exists no degree one invariant of knots, such a formula does not hold
for the linking number, hence the assumption $m\geq 2$ is needed. In order to give such
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a formula one should consider ‘closure links’, that is more general closure operations
on string links that can produce links with several components.

By combining [19, Thm. 7] and Theorem 4.1, we have the following theorem.

Theorem 4.3 ([17]). Let $m\geq 2$ . Let $L$ be a $C_{m}$ -trivial n-string link. Let I be a
sequence of $m+1$ elements of $\{$ 1, $\ldots,$

$n\}$ . Then

$\mu_{L}(I)=\mu_{D_{I}(L)}(D(I))=\frac{\pm 1}{m!2^{m}}\sum_{J\subset D(I),J\neq\emptyset}(-1)^{m-|J|}P_{0}^{(m)}(D_{I}(L);J)$ ,

where the sum runs over all nonempty subsequences $J$ of $D(I)$ .

K. Habiro has pointed out the following remark.

Remark 4.4. It is not hard to see that the 6-string link $L$ illustrated in Figure 4.1 is $C_{5^{-}}$

trivial and satisfies $\mu_{L}(123456)=\pm 1$ . By Theorem 4.1, $\mu_{L}(123456)$ can be expressed
as a linear combination of $P_{0}^{(5)}$ -closure invariants of L. (By applying the theorem, we
have $\mu_{L}(123456)=(\pm 1/5!2^{5})P_{0}^{(5)}(L$ ; 123456 $)$ . $)$ In contrast, since $a_{5}$ of knots always
vanish, it is impossible to express $\mu_{L}(123456)$ by any linear combination of $a_{5}$-closure
invariants of $L$ . Moreover we notice that $L$ is equivalent to $1_{6}$ up to doubled-delta
move, which is a local move on links defined by Naik and Stanford [22]. Hence any
closure knot, and more generally any closure link (see Remark $4.2(3)$ ) obtained from
$L$ is equivalent to a trivial knot or link up to doubled-delta moves. Since the doubled-
delta move preserves the Alexander invariant, the Conway polynomial of any closure
link obtained from $L$ vanishes.

12 3 4 5 6

FIGURE 4.1

5. CLASPERS AND $P_{0}^{(m)}$-CLOSURE INVARIANTS

5.1. Claspers. For a general definition of claspers, we refer the reader to [6]. Let $L$

be a (string) link. A surface $G$ embedded in $D^{2}\cross(0,1)$ is called a graph clasper for
$L$ if it satisfies the following three conditions:

(1) $G$ is decomposed into disks and bands, called edges, each of which connects
two distinct disks.

(2) The disks have either 1 or 3 incident edges, and are called leaves or nodes
respectively.

(3) $G$ intersects $L$ transversely, and the intersections are contained in the union
of the interiors of the leaves.
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In particular, if a connected graph clasper $G$ is simply connected, we call it a tree
clasper.

A graph clasper for a (string) link $L$ is simple if each of its leaves intersects $L$

at one point. The degree of a connected graph clasper $G$ is defined as half of the
number of nodes and leaves. We call a degree $k$ connected graph clasper a $C_{k}$ -gmph.
A tree clasper of degree $k$ is called a $C_{k}$ -tree.

Given a graph clasper $G$ for a (string) link $L$ , there is a procedure to construct a
framed link, in a regular neighbourhood of $G$ . There is thus a notion of surgery along
$G$ , which is defined as surgery along the corresponding framed link. In particular,
surgery along a simple $C_{k}$-tree is a local move as illustrated in Figure 5.1, which is
equivalent to a $C_{k}$-move as defined in Section 1 (Figure 1.1).

FIGURE 5.1. Surgery along a simple $C_{5}$-tree.

The $C_{k}$-equivalence (as defined in Section 1) coincides with the equivalence relation
on string links generated by surgeries along $C_{k}$-graphs and isotopies. In particular,
it is known that two links are $C_{k}$-equivalent if and only if they are related by surgery
along simple $C_{k}$-trees [6, Thm. 3.17].

For $k\geq 3$ , a $C_{k}$-tree $G$ having the shape of the tree clasper in Figure 5.1 is called
a linear $C_{k}$-tree. The left-most and right-most leaves of $G$ in Figure 5.1 are called
the ends of $G$ , and the remaining $(k-1)$ leaves are called the intemal leaves of $G$ .

Suppose that the two ends of a linear $C_{k}$-tree are denoted by $f$ and $f’$ . Let $S$ be a
nonempty subset of the set of all internal leaves of $T$ . We have a labeling from 1 to
$|S|$ of the leaves in $S$ by travelling along the boundary of the diskl $T$ from $f$ to $f^{f}$ so
that all leaves are visited. We call this labeling the linear labeling of $S$ , from $f$ to $f^{f}$ .

5.2. Generators of $S\mathcal{L}_{m}(n)/C_{m+1}$ . Let $m\geq 3$ be an integer. In this section we
find generators for the abelian group $S\mathcal{L}_{m}(n)/C_{m+1}$ and show that for each of these
generators, there is a $P_{0}^{(m)}$-closure invariant which detects it.

For a simple tree clasper $\Gamma$ for a string link, let $r_{i}(\Gamma)$ denote the number of leaves
intersecting the ith component of the string link.

Let $L\in S\mathcal{L}_{m}(n)$ be a $C_{m}$-trivial n-string link. By Calculus of Claspers [16,
Lem.3.2] and the AS and $IHX$ relations [16, Lem.3.3], $L$ is $C_{m+1}$ -equivalent to a
product $\prod T_{i}$ of n-string links $T_{1},$

$\ldots,$
$T_{l}$ , where each $T_{k}$ is obtained from $1_{n}$ by surgery

along a simple linear $C_{m}$-tree $\Gamma_{k}$ . Actually, by the IHX relation we may assume that
each $\Gamma_{k}$ satisfies one of the following;

(1) all leaves of $\Gamma_{k}$ intersect a single component of $1_{n}$ ,
(2) $|\{i|r_{i}(\Gamma_{k})=1\}|\geq 2$ , and the ends intersect the pth and qth components of

$1_{n}$ , where $p= \min\{i|r_{i}(\Gamma_{k})=1\}$ and $q= \min\{i|r_{i}(\Gamma_{k})=1, i\neq p\}$ ,

lRecall that a clasper is an embedded surface: in particular, since $T$ is a tree clasper, the
underlying surface is isotopic to a disk.
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(3) $r_{i}(\Gamma_{k})=2$ for some $i,$ $|\{i|r_{i}(\Gamma_{k})=1\}|<2$ , and the ends intersect the pth
component of $1_{n}$ , where $p= \min\{i|r_{i}(\Gamma_{k})=2\}$ ,

(4) $\Gamma_{k}$ is not of type (1), $r_{i}(\Gamma_{k})\neq 2$ for any $i,$ $|\{i|r_{i}(\Gamma_{k})=1\}|<2$ , and the ends
intersect the pth component of $1_{n}$ , where $(r_{p}(\Gamma_{k}),p)$ is the minimum among
$\{(r_{i}(\Gamma_{k}), i)|i=1, \ldots, n, r_{i}(\Gamma_{k})\geq 3\}$ with respect to the lexicographic order.

This implies that $S\mathcal{L}_{m}(n)/C_{m+1}$ is generated by all string links obtained from $1_{n}$ by
surgery along a $C_{m}$-tree of one of the 4 types above.

Let us reduce the number of generators of type (4). Let $\mathcal{T}_{p}$ be the set of linear
$C_{m}$-trees of type (4) with ends intersecting the pth component of $1_{n}$ . Each tree in
$\mathcal{T}_{n}$ has a unique leaf not intersecting the nth component of $1_{n}$ . By [16, Lem.3.6], the
case reduces to trees of type (3). Hence we may assume that $p\neq n$ . By the IHX
relation, we may assume that the two ends are the ‘top‘, resp. ‘bottom‘, leaves on
the $pth$ component of $1_{n}$ , which are defined as the last, resp. first, leaf we meet while
traveling along this component from the initial point to the terminal point. For a
$C_{m}$-tree $\Gamma\in \mathcal{T}_{p}$ with top end $f$ and bottom end $f’$ , we consider the linear labeling
(from 1 to $m-1$ ) of the set of all internal leaves of $\Gamma$ , from $f’$ to $f$ (see Section 5.1).
Suppose that while traveling along the pth component from $f’$ to $f$ , we meet $s$ leaves
labeled by $i_{1},$

$\ldots,$
$i_{s}\in\{1, \ldots, m-1\}$ in this order. We say that $\Gamma$ is flat (on the $pth$

component of $1_{n}$) if $i_{1}<i_{2}<\cdots<i_{s}$ . Let $\mathcal{F}_{p}$ be the set of flat trees in $\mathcal{T}_{p}$ .
Define $\mathcal{F}_{p}^{0}$ as set of $C_{k}$-trees in $\mathcal{F}_{p}$ which do not contain a fork. Here we say that

a tree clasper $T$ for $1_{n}$ contains a fork if there exists a 3-ball that intersects $1_{n}\cup T$

as represented in Figure 5.2

FIGURE 5.2

Proposition 5.1 ([17]). For an integer $m\geq 3,$ $S\mathcal{L}_{m}(n)/C_{m+1}$ is genemted by string
links obtained $fmm1_{n}$ by surgery along linear trees of type (1), (2), (3) or in $\mathcal{F}_{p}^{0}(p=$

$1,$
$\ldots,$

$n-1)$ .

The abelian group $S\mathcal{L}_{m}(n)/C_{m+1}$ can be decomposed into a direct sum $G_{1}\oplus G_{2}$ ,
where $G_{1}$ (resp. $G_{2}$ ) is the subgroup generated by string links obtained from $1_{n}$

surgery along a linear $C_{m}$-tree of type (1) (resp. of type (2), (3) or in $F_{p}(p=$

$1,$
$\ldots,$

$n-1))$ . By the Goussarov-Habiro Theorem [4, 6], $G_{1}$ is classified by finite type
invariants. For the group $G_{2}$ , we have the following

Theorem 5.2 ([17]). Let $m\geq 3$ be an integer. For any simple linear $C_{m}$ -tree $\Gamma$

for $1_{n}$ of type (2), (3) or in $\mathcal{F}_{p}^{0}(p=1, \ldots, n-1)$ , there is a sequence I of elements

of $\{$ 1, $\ldots,$
$n\}$ such that $P_{0}^{(m)}((1_{n})_{\Gamma};I)=\pm m!2^{m}$ . Hence $(1_{n})_{\Gamma}$ has infinite order in

$S\mathcal{L}_{m}(n)/C_{m+1}$ .
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