Bounds of minimal dilatation for pseudo－Anosovs and the magic 3－manifold

Eiko Kin and Mitsuhiko Takasawa

1 Minimal dilatation of pseudo－Anosovs

Let $\Sigma=\Sigma_{g, n}$ be an orientable surface of genus g with n punctures，and let $\operatorname{Mod}(\Sigma)$ be the mapping class group．Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ are classified into 3 types，periodic，reducible，pseudo－Anosov．There exist two numerical invariants of pseudo－Anosov mapping classes．One is the entropy ent (ϕ) which is the logarithm of the dilatation $\lambda(\phi)>1$ ． The other is the volume $\operatorname{vol}(\phi)$ which is the hyperbolic volume of the mapping torus of ϕ

$$
\mathbb{T}(\phi)=\Sigma \times[0,1] / \sim,
$$

where \sim identifies $(x, 1)$ with $(f(x), 0)$ for any representative $f \in \phi$ ．
We denote by $\delta_{g, n}$ ，the minimal dilatation for pseudo－Anosov ele－ ments $\phi \in \operatorname{Mod}\left(\Sigma_{g, n}\right)$ ．We set $\delta_{g}=\delta_{g, 0}$ ．A natural question arises．
Question 1．1．What is the value of $\delta_{g, n}$ ？Find a pseudo－Anosov ele－ ment of $\operatorname{Mod}\left(\Sigma_{g, n}\right)$ whose dilatation is equal to $\delta_{g, n}$ ．

The above question is hard in general．For instance，in the case of closed surfaces，it is open to determine the values δ_{g} for $g \geq 3$ ．On the other hand，one understands the asymptotic behavior of the minimal entropy $\log \delta_{g}$ ．Penner proved that $\log \delta_{g} \asymp \frac{1}{g}$［12］．The following question posed by McMullen．

Question 1.2 （［11］）．Does $\lim _{g \rightarrow \infty} g \log \delta_{g}$ exist？What is its value？
Note that $\lim _{g \rightarrow \infty} g \log \delta_{g}$ exists if and only if $\lim _{g \rightarrow \infty}\left|\chi\left(\Sigma_{g}\right)\right| \log \delta_{g}$ exists， where $\chi(\Sigma)$ is the Euler characteristic of Σ ．

Figure 1: (left) 3 chain link \mathcal{C}_{3}. (center) ($-2,3,8$)-pretzel link or Whitehead sister link. (right) link 6_{2}^{2}. (N equals the exterior of $\mathcal{C}_{3} . N\left(\frac{-3}{2}\right)$ is homeomorphic to the ($-2,3,8$)-pretzel link exterior. $N\left(\frac{-1}{2}\right)$ is homeomorphic to the 6_{2}^{2} link exterior.)

Related questions on the minimal dilatation are ones for orientable pseudo-Anosovs. A pseudo-Anosov mapping class ϕ is said to be orientable if the invariant (un)stable foliation for a pseudo-Anosov homeomorphism $\Phi \in \phi$ is orientable. We denote by δ_{g}^{+}, the minimal dilatation for orientable pseudo-Anosov elements of $\operatorname{Mod}\left(\Sigma_{g}\right)$ for a closed surface Σ_{g} of genus g.

In this paper, we report our results in [7,8] on the minimal dilatation by investigating the so called magic manifold N which is the exterior of the 3 chain link \mathcal{C}_{3}, see Figure 1(left). In Section 2, we describe a motivation for the study of pseudo-Anosovs which occur as the monodromies on fibers for Dehn fillings of N. In Section 3, we state our results.

We would like to note that this paper only contains some results in $[7,8]$ and does not contain their proofs. The readers who are interested in the details should consult (the introduction of) $[7,8]$.

2 Why is the magic manifold an intriguing example?

Gordon and Wu named the exterior of the link \mathcal{C}_{3} the magic manifold N, see [3]. The reason why this manifold is called "magic" is that many important examples for the study of the exceptional Dehn fillings can be obtained from the Dehn fillings of a single manifold N. The magic
manifold is fibered and it has the smallest known volume among orientable hyperbolic 3 -manifolds having 3 cusps. Many manifolds having at most 2 cusps with small volume are obtained from N by Dehn fillings, see [10].

2.1 Entropy versus volume

Both invariants entropy ent (ϕ) and volume $\operatorname{vol}(\phi)$ know some complexity of pseudo-Anosovs ϕ. A natural question is how these are related.

Theorem 2.1 ([6]). There exists a constant $B=B(\Sigma)$ depending only on the topology of Σ such that the inequality,

$$
B \operatorname{vol}(\phi) \leq \operatorname{ent}(\phi)
$$

holds for any pseudo-Anosov ϕ on Σ. Furthermore, for any $\varepsilon>0$, there exists a constant $C=C(\varepsilon, \Sigma)>1$ depending only on ε and the topology of Σ such that the inequality

$$
\operatorname{ent}(\phi) \leq C \operatorname{vol}(\phi)
$$

holds for any pseudo-Anosov ϕ on Σ whose mapping torus $\mathbb{T}(\phi)$ has no closed geodesics of length $<\varepsilon$.

The first part of Theorem 2.1 says that if the entropy is small, the volume can not be large.

For a non-negative integer c, we set

$$
\begin{aligned}
\lambda(\Sigma ; c) & =\min \{\lambda(\phi) \mid \phi \in \operatorname{Mod}(\Sigma), \mathbb{T}(\phi) \text { has } c \text { cusps }\} \\
\operatorname{vol}(\Sigma ; c) & =\min \{\operatorname{vol}(\phi) \mid \phi \in \operatorname{Mod}(\Sigma), \mathbb{T}(\phi) \text { has } c \text { cusps }\} .
\end{aligned}
$$

A variation on the questions of the minimal dilatations is to determine $\lambda(\Sigma ; c)$ and to find a mapping class realizing the minimum. In [6], the authors and S. Kojima obtain experimental results concerning the minimal dilatation. In the case the mapping class group $\operatorname{Mod}\left(D_{n}\right)$ of an n-punctured disk D_{n}, they observe that for many pairs (n, c), there exists a pseudo-Anosov element simultaneously reaching both minima $\lambda\left(D_{n} ; c\right)$ and $\operatorname{vol}\left(D_{n} ; c\right)$. Experiments tell us that in case $c=3$, the mapping tori reaching both minima are homeomorphic to N. Moreover when $c=2$, it is observed that there exists a mapping class ϕ
realizing both $\lambda\left(D_{n} ; 2\right)$ and $\operatorname{vol}\left(D_{n} ; 2\right)$ and its mapping torus $\mathbb{T}(\phi)$ is homeomorphic to a Dehn filling of N along one cusp. This is a motivation for us for focusing on N.

2.2 Small dilatation pseudo-Anosovs

After we have finished our papers [6, 7], we leaned the small dilatation pseudo-Anosovs, introduced by Farb, Leininger and Margalit.

For any number $P>1$, define the set of pseudo-Anosov homeomorphisms
$\Psi_{P}=\{$ pseudo-Anosov $\Phi: \Sigma \rightarrow \Sigma|\chi(\Sigma)<0,|\chi(\Sigma)| \log \lambda(\Phi) \leq \log P\}$.
Elements $\Phi \in \Psi_{P}$ are called small dilatation pseudo-Anosov homeomorphisms. If one takes P sufficiently large (e.g. $P \geq 2+\sqrt{3}$), then Ψ_{P} contains a pseudo-Anosov homeomorphism $\Phi_{g}: \Sigma_{g} \rightarrow \Sigma_{g}$ for each $g \geq 2$. By a result in [5], Ψ_{P} also contains pseudo-Anosov homeomorphism $\Phi_{n}: D_{n} \rightarrow D_{n}$ for each $n \geq 3$. Let $\Sigma^{\circ} \subset \Sigma$ be the surface obtained by removing the singularities of the (un)stable foliation for Φ and $\left.\Phi\right|_{\Sigma^{\circ}}: \Sigma^{\circ} \rightarrow \Sigma^{\circ}$ denotes the restriction. Observe that $\lambda(\Phi)=\lambda\left(\left.\Phi\right|_{\Sigma^{\circ}}\right)$. The set

$$
\Psi_{P}^{\circ}=\left\{\left.\Phi\right|_{\Sigma^{\circ}}: \Sigma^{\circ} \rightarrow \Sigma^{\circ} \mid(\Phi: \Sigma \rightarrow \Sigma) \in \Psi_{P}\right\}
$$

is infinite. Let $\mathcal{T}\left(\Psi_{P}^{\circ}\right)$ be the set of homeomorphism classes of mapping tori by elements of Ψ_{P}°.
Theorem 2.2 ([2]). The set $\mathcal{T}\left(\Psi_{P}^{\circ}\right)$ is finite. Namely, for each $P>1$, there exist finite many complete, non compact hyperbolic 3-manifolds $M_{1}, M_{2}, \cdots, M_{r}$ fibering over S^{1} so that the following holds. Any pseudoAnosov $\Phi \in \Psi_{P}$ occurs as the monodromy of a Dehn filling of one of the M_{k}. In particular, there exists a constant $V=V(P)$ such that $\operatorname{vol}(\Phi) \leq V$ holds for any $\Phi \in \Psi_{P}$.
It is not known that how large the set of manifolds $\left\{M_{1}, \cdots, M_{r}\right\}$ is. By Theorem 2.2, one sees that the following set \mathcal{V} is finite.
$\mathcal{V}=\left\{\mathbb{T}\left(\left.\Phi\right|_{\Sigma^{\circ}}\right) \mid n \geq 3, \Phi\right.$ is pseudo-Anosov on $\left.\Sigma=D_{n}, \lambda(\Phi)=\delta\left(D_{n}\right)\right\}$,
where $\delta\left(D_{n}\right)$ denotes the minimal dilatation for pseudo-Anosov elements of $\operatorname{Mod}\left(D_{n}\right)$ on D_{n}.

In [7], we show that for each $n \geq 9$ (resp. $n=3,4,5,7,8$), there exists a pseudo-Anosov homeomorphism $\Phi_{n}: D_{n} \rightarrow D_{n}$ with the smallest known entropy (resp. the smallest entropy) which occurs as the monodromy on an n-punctured disk fiber for the Dehn filling of N. A pseudo-Anosov homeomorphism $\Phi_{6}: D_{6} \rightarrow D_{6}$ with the smallest entropy occurs as the monodromy on a 6 -punctured disk fiber for N. In particular, $N \in \mathcal{V}$. See also work of Venzke [13]. This result suggests that one may have a chance to find pseudo-Anosov homeomorphisms with small dilatation on other surfaces which arise as the monodromies on fibers for Dehn fillings of N. This is another motivation for us.

3 Results

Let us introduce the following polynomial

$$
f_{(k, \ell)}(t)=t^{2 k}-t^{k+\ell}-t^{k}-t^{k-\ell}+1 \text { for } k>0,-k<\ell<k,
$$

having a unique real root $\lambda_{(k, \ell)}$ greater than 1 [8]. For the rational number r, let $N(r)$ be the Dehn filling of N along the slope r.

Theorem 3.1. Let $r \in\left\{\frac{-3}{2}, \frac{-1}{2}, 2\right\}$. For each $g \geq 3$, there exists a monodromy $\Phi_{g}=\Phi_{g}(r)$ on a closed fiber of genus g for a Dehn filling of $N(r)$, where the filling is on the boundary slope of a fiber of $N(r)$, such that

$$
\lim _{g \rightarrow \infty} g \log \lambda\left(\Phi_{g}\right)=\log \left(\frac{3+\sqrt{5}}{2}\right)
$$

In particular

$$
\lim _{g \rightarrow \infty} \sup g \log \delta_{g} \leq \log \left(\frac{3+\sqrt{5}}{2}\right)
$$

Remark 3.2. Independently, Hironaka has obtained Theorem 3.1 in case $r=\frac{-1}{2}$ [4]. Independently, Aaber and Dunfield have obtained Theorem 3.1 in case $r=\frac{-3}{2}$ [1]. They have obtained similar results on the dilatation to those given in [8].

By using monodromies on closed fibers coming from $N\left(\frac{-3}{2}\right)$, we find an upper bound of δ_{g} for $g \equiv 0,1,5,6,7,9(\bmod 10)$ and $g \geq 5$.

Theorem 3.3. (1) $\delta_{g} \leq \lambda_{(g+2,1)}$ if $g \equiv 0,1,5,6(\bmod 10)$ and $g \geq 5$.
(2) $\delta_{g} \leq \lambda_{(g+2,2)}$ if $g \equiv 7,9(\bmod 10)$ and $g \geq 7$.

For more details of an upper bound of δ_{g} for other g (e.g. $g \equiv 2,4$ $(\bmod 10))$, see $[8]$. The bound in Theorem 3.3 improves the one by Hironaka [4].

We turn to the study on the minimal dilatations δ_{g}^{+}for orientable pseudo-Anosovs. The minima δ_{g}^{+}were determined for $g=2$ by Zhirov [14], for $3 \leq g \leq 5$ by Lanneau-Thiffeault [9], and for $g=8$ by LanneauThiffeault and Hironaka [9, 4]. Those values are given by $\delta_{2}^{+}=\lambda_{(2,1)}$, $\delta_{3}^{+}=\lambda_{(3,1)}=\lambda_{(4,3)} \approx 1.40127, \delta_{4}^{+}=\lambda_{(4,1)} \approx 1.28064, \delta_{5}^{+}=\lambda_{(6,1)}=$ $\lambda_{(7,4)} \approx 1.17628$ and $\delta_{8}^{+}=\lambda_{(8,1)} \approx 1.12876$.

We recall the lower bounds of δ_{6}^{+}and δ_{7}^{+}and the question on δ_{g}^{+}for g even by Lanneau-Thiffeault.
Theorem 3.4 ([9]).
(1) $\delta_{6}^{+} \geq \lambda_{(6,1)} \approx 1.17628$.
(2) $\delta_{7}^{+} \geq \lambda_{(9,2)} \approx 1.11548$.

Question 3.5 ([9]). For g even, is δ_{g}^{+}equal to $\lambda_{(g, 1)}$?
We give an upper bound of δ_{g}^{+}in case $g \equiv 1,5,7,9(\bmod 10)$ using orientable pseudo-Anosov monodromies coming from $N\left(\frac{-3}{2}\right)$.
Theorem 3.6. (1) $\delta_{g}^{+} \leq \lambda_{(g+2,2)}$ if $g \equiv 7,9(\bmod 10)$ and $g \geq 7$.
(2) $\delta_{g}^{+} \leq \lambda_{(g+2,4)}$ if $g \equiv 1,5(\bmod 10)$ and $g \geq 5$.

The bound in Theorem 3.6 improves the one by Hironaka [4]. Theorem 3.6(1) together with Theorem 3.4(2) gives:

Corollary 3.7. $\delta_{7}^{+}=\lambda_{(9,2)}$.
Independently, Corollary 3.7 was established by Aaber and Dunfiled [1].

The following tells us that the sequence $\left\{\delta_{g}^{+}\right\}_{g \geq 2}$ is not monotone decreasing.

Proposition 3.8. If Question 3.5 is true, then $\delta_{g}^{+}<\delta_{g+1}^{+}$whenever $g \equiv 1,5,7,9(\bmod 10)$ and $g \geq 7$. In particular the inequality $\delta_{7}^{+}<\delta_{8}^{+}$ holds.

Our pseudo-Anosov homeomorphisms providing the upper bound of δ_{g} in Theorem 3.3(1) are not orientable. This together with the inequality $\lambda_{(7,1)}<\lambda_{(6,1)}=\delta_{5}^{+}$implies:

Corollary 3.9. $\delta_{5}<\delta_{5}^{+}$.

References

[1] J. W. Aaber and N. M. Dunfield, Closed surface bundles of least volume, preprint, arXiv:1002.3423
[2] B. Farb, C. J. Leininger and D. Margalit, Small dilatation pseudoAnosovs and 3-manifolds, preprint, arXiv:0905.0219
[3] C. Gordon and Y-Q. Wu, Toroidal and annular Dehn fillings, Proceedings of the London Mathematical Society (3) 78 (1999), 662700.
[4] E. Hironaka, Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid, preprint, arXiv:0909.4517
[5] E. Hironaka and E. Kin, A family of pseudo-Anosov braids with small dilatation, Algebraic and Geometric Topology 6 (2006), 699738.
[6] E. Kin, S. Kojima and M. Takasawa, Entropy versus volume for pseudo-Anosovs, Experimental Mathematics 18 (2009), 397-407.
[7] E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic 3-manifold, preprint, arXiv:0812.4589
[8] E. Kin and M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, preprint, arXiv:1003.0545
[9] E. Lanneau and J. L. Thiffeault, On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus, Annales de l'Institut Fourier, in press.
[10] B. Martelli and C. Petronio, Dehn filling of the "magic" 3manifold, Communications in Analysis and Geometry 14 (2006), 969-1026.
[11] C. McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüler geodesic for foliations, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série 33 (2000), 519-560.
[12] R. C. Penner, Bounds on least dilatations, Proceedings of the American Mathematical Society 113 (1991) 443-450.
[13] R. Venzke, Braid forcing, hyperbolic geometry, and pseudo-Anosov sequences of low entropy, PhD thesis, California Institute of Technology (2008), available at http://etd.caltech.edu/etd/available/etd-05292008-085545/
[14] A. Y. Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms on a double torus, Russian Mathematical Surveys 50 (1995), 223-224.

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
Ohokayama, Meguro Tokyo 152-8552 Japan
E-mail address: kin@is.titech.ac.jp
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
Ohokayama, Meguro Tokyo 152-8552 Japan
E-mail address: takasawa@is.titech.ac.jp

