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Abstract

In this note, we consider some cycles for Lee’s complex which represent canonical classes of
Lee $s$ homology of a knot. We also consider the Rasmussen invariant of a homogeneous knot
and its application.

1 Introduction

In [19], Rasmussen introduced a smooth concordance invariant of a knot $K$ , now called the Ras-
mussen invariant $s(K)$ , which is defined by cycles of Lee’s complex. There are many results on the
Rasmussen invariant However little is known on cycles of Lee $s$ complex. In this note, we consider
some cycles for Lee’s complex which represent canonical classes of Lee $s$ homology of a knot. We
also consider the Rasmussen invariant of a homogeneous knot and its application.
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2 Lee’s homology of a knot

Lee [13] constructed a homology theory which is closely related to Khovanov homology theory. We
review the results in [13].

2.1 The construction of Lee’s homology of a knot

In this subsection, we recall the construction of Lee $s$ homology of a knot.
Let $K$ be a knot, $D$ a diagram of $K,$ $c_{1},$ $\cdots,$ $c_{n}$ the crossings of $D$ and $n_{-}(D)$ the number of

negative crossings of $D$ . A state $s=(s_{1}, \cdots, s_{n})$ for $D$ is a vertex of the n-dimensional cube $[0,1]^{n}$ ,
that is, an element of $\{0,1\}^{n}$ . The grading of $s$ is the sum $\sum_{i=1}^{n}s_{i}-n_{-}(D)$ and denote it by $|s|$ .
A 0-smoothing and a l-smoothing are local moves on a link diagram as in Figure 1. We denote by
$D_{s}$ the loops which are obtained from $D$ by applying $s_{i}$-smoothing at $c_{i}(i=1, \cdots, n)$ and by $|D_{s}|$

the number of components of $D_{s}$ . Let $V=\mathbb{Q}[x]/(x^{2}-1)$ be a vector space, which is spanned by 1
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Figure 1: 0- and l-smoothings

and $x$ . The object of Lee’s complex is defined as follows,

$\sigma_{Lee}(D)=\bigoplus_{s\in\{0,1\}^{n}}|s|=\iota^{V^{\otimes|D_{s}|}}$ and
$C_{Lee}^{*}(D)= \bigoplus_{i\in Z}C_{Lee}^{i}(D)$ .

The multiplication $m:V\otimes Varrow V$ and the comultiplication $\Delta$ : $Varrow V\otimes V$ are defined by
$m(1\otimes 1)=m(x\otimes x)=1$ , $\Delta(1)=1\otimes x+x\otimes 1$ ,
$m(1\otimes x)=m(x\otimes 1)=x$ , $\Delta(x)=x\otimes x+1\otimes 1$ .

Let $\xi=$ $(\xi_{1}, --, \xi_{i}, \cdots, \xi_{n})$ be an edge of the n-dimensional cube $[0,1]^{n}$ , that is, an element of$\{0, *, 1\}^{n}$ with just one $*$ . Suppose that $\xi_{i}=*$ . Then we define to be $|\xi|=\xi_{1}+\cdots+\xi_{i-1},$ $\xi(0)=$
$(\xi_{1}, \cdots, \xi_{i-1},0, \xi_{i+1}, \cdots,\xi_{n}),$ $\xi(1)=(\xi_{1},$ $\cdots$ $\xi_{i-1},1,$ $\xi_{i+1},$

$\cdots,$ $\xi_{n})$ and $\xi(*)=i$ . For example,suppose that $n=5$ and $\xi=(1,1, *, 0,1)$ . Then $|\xi|=2,$ $\xi(0)=(1,1,0,0,1),$ $\xi(1)=(1,1,1,0,1)$ and$\xi(*)=3$ .
For an edge $\xi$ , we associate the cobordism $S_{\xi}$ from $D$ to $D$ as folloneighborhood of the $\xi(*)-$th crossing, assign a product cobordism, and fill the saddle cobordi

$\xi(0)$ $\xi(1)$ as $o$ ows: we remove a
between the 0- and l-smoothings around the $\xi(*)-$th crossing. The cobordism is either of th

co or lsm

following two types: (i) two circles of $D_{\xi(0)}$ merge into one circle of $D$ or (ii) one circle of $D$

$1Se$ler $0$ te
$\zeta(1)$ , or

splits into two circles of $D_{\xi(1)}.$ Rrthermore, we associate the ma $d\cdot V^{\otimes|D_{\zeta(0)}|}$

$\xi(0)$

$p$
$\xi$ . $arrow V$ $\xi(1)$ as$\otimes|D$ $|$

follows: the homeomorphism $d_{\xi}$ is induced by the map $m$ if the cobordism $S$ is of $t$

the map $\Delta$ if the cobordism $S_{\xi}$ is of type (ii). Note that we set $d$ to be the
$\xi identit^{yp}n$

the ten
$y$$e(i)$ and $b$

factors corresponding to the loops that do not participate. For
$an\xi$

element $x\in V^{\otimes|D,|}\subset yonC_{Lee}^{i}(D)$

,
$e$ ensor

we define $\theta$ as follows,

$d^{t}(x)= \sum_{\xi\in\{0,*,1\}^{n}:\xi(0)=s}(-1)^{|\xi|}d_{\xi}(x)$ ,

where $s$ is a state for $D$ . Let $d$ be $\oplus_{i\in Z}\theta$ . We obtain $d^{2}=0$ . The complex $C^{*}$ $(D)-(C^{*}$ $(D$ $d$is called Lee’s complex. The Lee’s homology of $KH^{*}$ $(K)$ , is defined to $betheh^{-}mo1LeeLee$
$)$ , $)$

of $C_{Lee}^{*}(D).$ By the following lemma, $H_{Lee}^{*}(K)$ does $notdependLee$ on the choice of diagrams of $K$ .
$e$ omo ogy group

Lemma 2.1 ([13]). Let $D$ and $D’$ be diagrams of a knot K. Then $C_{Lee}^{*}(D)$ and $C_{Lee}^{*}(D’)$ are chainhomotopic.

2.2 The basis of Lee’s homology of a knot
It is known that Lee’s homology of a knot is very simple as a vector space. Indeed, Lee [13] showedthat $\dim H_{Lee}^{*}(K)=2$ and described a basis of Lee’s homology of a knot $K$ . In this subsection we

ee [13] showe
explain these results. We also recall the notion of an enhanced state.

It is useful to use the basis $a=1+x,$ $b=1-x$ of $V$ . Then

$m(a\otimes a)=2a,$ $m(b\otimes b)=2b$ , $\triangle(a)=2a\otimes a$ ,
$m(a\otimes b)=0,$ $m(b\otimes a)=0$ , $\Delta(b)=-2b\otimes b$ .

108



For a state $s$ for $D$ , we define col$(D_{s})$ to be the set of coloring maps from the components of $D_{s}$ to
V. Note that an element of col $(D_{s})$ is naturally identified with an element of $V^{\otimes|D_{S}|}\subset C_{Lee}^{|s|}(D)$ .
Hereafter we always identify an element of col $(D_{s})$ with the element of $V^{\otimes|D_{S}|}\subset C_{Lee}^{|s|}(D)$ . We call
an element of col $(D_{s})$ an enhanced state.

Let $0$ be the orientation of $D$ and $s_{o}$ the state for $D$ corresponding to $0$ , that is, the state whose
i-th element is $0$ if the sign of $c_{i}$ is positive and 1 if the sign of $c_{i}$ is negative. Then, by definition,
$D_{s_{O}}$ are the Seifert circles and $|s_{o}|=0$ . Let $f_{0}(D)\in$ col $(D_{s_{o}})$ be the enhanced state whose values of
any adjacent Seifert circles are $a$ and $b$ respectively and the outer most right-handed Seifert circle is
$a$ and the outer most left-handed Seifert circle is $b$ (see Figure 3). Let 5 be the reversed orientation
of $D$ . Then $f_{0}(D)$ and $f_{\overline{o}}(D)$ are cycles of $C_{Lee}^{0}(D)$ and we obtain the following.

Theorem 2.2 ([13]). Let $K$ be a knot and $D$ a diagram of K. Then

$H_{Lee}^{i}(K)=\{\begin{array}{ll}\mathbb{Q}\oplus \mathbb{Q} i=0,0 i\neq 0.\end{array}$

Here, $[f_{0}(D)]$ and $[f_{\overline{o}}(D)]fom$ a basis of $H_{Lee}^{0}(K)$ .

Remark 2.3. The two cycles $f_{0}(D)$ and $f_{\overline{o}}(D)$ are determined up to multiplication of $2^{c}$ , where $c$

is an integer (see [13]). Therefore we call $[f_{0}(D)]$ and $[f_{\overline{o}}(D)]$ the canonical classes of $H_{Lee}^{*}(K)$ .

3 State cycles which represent canonical classes

In this section, we recall the notion of a state cycle, which is a cycle of $C_{Lee}^{0}(D)$ and a result on
state cycles (Theorem 3.2).

We recall some terms. A Seifert circle of a diagram is strongly negative if signs of the adjacent
crossings to it are all negative. Let $D$ be a diagram of a knot. An enhanced state $g\in$ col $(D_{s_{o}})$ is
state cycle if $f_{0}(l)=g(l)$ for any Seifert circle $l$ which is not strongly negative. We define $col_{o}(D_{s_{o}})$

to be the subset of col $(D_{s_{o}})$ which consists of state cycles. Note that the cycle $f_{0}(D)$ is a state
cycle. Any state cycles are, indeed, cycles of $C_{Lee}^{0}(D)$ as follows:

Lemma 3.1 ([1]). Let $D$ be a diagram of a knot and $g$ a state cycle. Then $g$ is a cycle of $C_{Lee}^{0}(D)$

$i.e$ . $d^{0}(g)=0$ .

In general, the homology class of a cycle of $C_{Lee}^{0}(D)$ has many representatives. Let $f_{2}(D)$ be
the state cycle such that $f_{2}(D)(l)=2$ for any strongly negative Seifert circle $l$ . Then we obtain the
following:

Theorem 3.2 ([1]). Let $D$ be a non-negative diagram of a knot K. Then $[f_{0}(D)]=[f_{2}(D)]$ .

We give an example which illustrates Theorem 3.2.

Example 3.3. Let $D$ be the standard pretzel diagram of $P(3, -3, -3)$ . Figure 2 illustrates $D$ ,
its Seifert circles and strongly negative Seifert circles. Let $g\in C_{Lee}^{-1}(D)$ be the enhanced state as
in Figure 3. Then $f_{0}(D)-d^{-1}(g)$ is also a state cycle as in Figure 3. Let $h\in C_{Lee}^{-1}(D)$ be the
enhanced state as in Figure 4. Then $f_{2}(D)=f_{0}(D)-d^{-1}(g)-d^{-1}(h)$ as in Figure 4. Therefore
three homology classes in Figure 5 are the same.
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Figure 2: The standard pretzel diagram of $P(3, -3, -3)$ , its Seifert circles and strongly negative
Seifert circles

$f_{0}(D)$ $g$ $-d^{-1}(g)$ $f_{0}(D)-d^{-1}(g)$

Figure 3: Some enhanced states

$f_{0}(D)-d^{-1}(g)$ $h$ $-d^{-1}(h)$ $f_{0}(D)-d^{-1}(g)-d^{-1}(h)$

Figure 4: Some enhanced states

Figure 5: Three representatives of $[f_{0}(D)]$
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4 The Rasmussen invariant of a knot and the sharper slice-Bennequin
inequality

In this section, we recall the definition of the Rasmussen invariant of a knot and the sharper
slice-Bennequin inequality for the Rasmussen invariant of a knot.

We define a grading $p$ on $V$ by setting $p(1)=1$ and $p(x)=-1$ and extend it to $V^{\otimes n}$ by
$p(v_{1}\otimes v_{2}\otimes, \cdots, v_{n})=p(v_{1})+p(v_{2})+\cdots+p(v_{n})$ . Next we define a filtration grading $q$ on $C_{Lee}^{i}(D)$

by $q(v)=p(v)+i+\omega(D)$ , where $v$ is a monomial of $C_{Lee}^{i}(D)$ and $\omega(D)$ is the writhe of $D$ , and
extend it to $C_{Lee}^{i}(D)$ by $\min\{q(v_{j})\}$ where $v= \sum v_{j}\in C_{Lee}^{*}(D)$ and $v_{j}$ is a monomial. Let

$PC_{Lee}^{*}(D)=\{v\in C_{Lee}^{*}(D)\backslash \{0\}|q(v)\geq i\}\cup\{0\}$ .

Then $\{PC_{Lee}^{*}(D)\}$ is a filtration of $C_{Lee}^{*}(D)$ . Rasmussen showed the following.

Lemma 4.1 ([19]). Let $D$ and $D’$ be diagmms of a knot. Then $C_{Lee}^{*}(D)$ and $C_{Lee}^{*}(D’)$ are filtered
chain homotopic.

We also denote by $q$ the filtration grading on $H_{Lee}^{*}(K)$ which is induced by the filtration grading
$q$ on $C_{Lee}^{*}(D)$ . Let

$q_{\max}(K)= \max\{q(x)|x\in H_{Lee}^{*}(K), x\neq 0\}$ ,

$q_{\min}(K)= \min\{q(x)|x\in H_{Lee}^{*}(K), x\neq 0\}$ .

The Rasmussen invariant of a knot $K,$ $s(K)$ , is define to be $\frac{q_{\max}(K)-q_{\min}(K)}{2}$ . By Lemma 4.1,
$s(K)$ does not depend on the choice of diagrams of $K$ .

Lemma 4.2 ([19]). Let $K$ be a knot and $D$ a diagram of K. Then
(1) $q_{\min}(K)=q([f_{0}(D)])=q([f_{\overline{o}}(D)])$ .
(2) $q_{\max}(K)-q_{\min}(K)=2$ .

Note that $s(K)$ is equal to $q([f_{0}(D)])+1$ by Lemma 4.2. The following theorem is the sharper
slice-Bennequin inequality for the Rasmussen invariant, which was first proved by Kawamura [10].
Note that the state cycle in Theorem 3.2 implies the sharper slice-Bennequin inequality for the
Rasmussen invariant.

Theorem 4.3 ([1] and [10]). Let $D$ be a non-negative diagram of a K. Then

$w(D)-O(D)+2O_{<}(D)+1\leq s(K)$ ,

where $O_{<}(D)$ is the number of strongly negative circles of $D$ .

5 Kawamura-Lobb $s$ inequality for the Rasmussen invariant

In this section, we recall Kawamura-Lobb $s$ inequality for the Rasmussen invariant, which is stronger
than the sharper slice-Bennequin inequality, and that the equality holds for homogeneous knots.

Let $O_{+}(D)^{1}$ and $O_{-}(D)$ be the numbers of connected components of the diagrams which is
obtained from $D$ by smoothing all negative and positive crossings of $D$ , respectively. Kawamura
[11] and Lobb [17] independently obtained a stronger estimation for the Rasmussen invariant as
follows:

lIn [11] and [17], it was denoted by $l_{0}(D)$ and $\#$components $(T^{+}(D))$ , respectively.
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Figure 6: A non-alternating and non-positive diagram $D$ and the graph $G(D)$

Theorem 5.1 ([11] and [17]). Let $D$ be a diagram of a knot K. Then

$w(D)-O(D)+2O_{+}(D)-1\leq s(K)$ ,

where $\omega(D)$ denotes the writhe of $D(i.e$ . the number of positive crossings of $D$ minus the number
of negative cmssings of $D$) and $O(D)$ denotes the number of the Seifert circles of $D$ .

Cromwell [5] introduced the notion of homogeneity for knots to generalize results on alternating
knots. The notion of homogeneity is also defined for signed graphs and diagrams: A signed graph
is homogeneous if each block has the same signs, and a diagram $D$ of a knot is homogeneous
if its Seifert graph, denoted by $G(D)$ , is homogeneous (for more details, see [2]). A knot $K$ is
homogeneous if $K$ has a homogeneous diagram. In [2], we determined the Rasmussen invariant of
a homogeneous knot as follows:

Theorem 5.2 ([2]). Let $D$ be a homogeneous diagmm of a knot K. Then

$s(K)=w(D)-O(D)+2O_{+}(D)-1$ .

6 A criteria on homogeneous knots

In this section, we consider some homogeneous knots and give a new criteria on homogeneous knots.
Cromwell [5] showed that alternating diagrams and positive diagrams are homogeneous. There

are many homogeneous diagrams which are neither alternating nor positive. The following is a such
example.

Example 6.1. Let $D$ be the diagram as in Figure 6. Then $G(D)$ is homogeneous (see Figure 6).
Therefore $D$ is a homogeneous diagram which is neither alternating nor positive.

The class of homogeneous knots includes alternating knots and positive knots. Another example
of a homogeneous knot is the closure of a homogeneous braid, a notion which was introduced by
Stallings [21]. Let $B_{n}$ be the braid group on $n$ strands with generators $\sigma_{1},$ $\sigma_{2},$ $\cdots,$ $\sigma_{n-1}$ . A braid
$\beta=\sigma_{i_{1}}^{\epsilon_{1}}\sigma_{i_{2}}^{\epsilon 2}\cdots\sigma_{i_{k}}^{\epsilon_{k}},$$\epsilon_{j}=\pm 1(j=1, \cdots, k)$ is homogeneous if

(1) every $\sigma_{j}$ occurs at least once,

(2) for each $j$ , the exponents of all occurrences of $\sigma j$ are the same.
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Table 1:

For example, the braid $\sigma_{1}\sigma_{2}^{-1}\sigma_{1}\sigma_{2}^{-1}$ is homogeneous, however, the braid $\sigma_{1}^{2}\sigma_{2}\sigma_{1}\sigma_{2}^{-1}$ is not homo-
geneous.

Lemma 6.2 ([5]). Let $\beta$ be a braid whose closure is a knot. Then $\beta$ is homogeneous if and only if
the knot diagmm of the closure of $\beta$ is homogeneous.

A homogeneous bmid knot is the closure of a homogeneous braid. By the above lemma, a
homogeneous braid knot is homogeneous. The knot $9_{43}$ is a homogeneous braid knot which is not
neither alternating nor positive.

Stallings [21] proved that a homogeneous braid knot is fibered. Notice that there exist homoge-
neous knots which are not homogeneous braid knots since some homogeneous knots are not fibered
(for example, $5_{2}$ ). The knot $9_{49}$ is a homogeneous knot which are neither homogeneous braid,

alternating, nor positive. We give tables of non-alternating homogeneous knots and homogeneous
braid knots up to 10 crossings, respectively. The table of non-alternating homogeneous knots up
to 10 crossings is due to Cromwell [5].

In [2], we gave some characterizations of a positive knot. One of them is the following:
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Figure 7: A diagram of $8_{19}$ and its Seifert circles

Theorem 6.3 (Theorem 1.3 in [2]). A knot $K$ is positive if and only if $K$ homogeneous and
$s(K)/2=g_{*}(K)=g(K)$ , where $g_{*}(K)$ is the 4-ball genus of $K$ and $g(K)$ is the genus of $K$ .

As a corollary, we obtain the following:

Corollary 6.4. If $K$ is not positive and $s(K)=2g(K)$ , then $K$ is not homogeneous.

This corollary gives us a new method to show that some knots are not homogeneous. The
following is such an example.

Example 6.5. Let $K$ be the knot $10_{145}$ . Then $K$ is not positive and $s(K)=2g(K)=4$ (see [4]).
Therefore $K$ is not homogeneous.

7 Non state cycles which represent canonical classes

In section 3, we described state cycles which give the sharper slice-Bennequin inequality for the
Rasmussen invariant. In this section, we consider cycles which give Kawamura-Lobb’ inequality for
the Rasmussen invariant, which is stronger than the sharper slice-Bennequin inequality.

First we give some examples of knot diagrams such that Kawamura-Lobb’ inequality gives a
stronger estimation than the sharper slice-Bennequin inequality.

Example 7.1. Let $D$ be the diagram of $8_{19}$ as in Figure 7. Then $\omega(D)=3,$ $O(D)=4,$ $O_{<}(D)=0$

and $O_{+}(D)=2$ . Therefore the sharper slice-Bennequin inequality implies that $0=3-4+0+1\leq$
$s(8_{19})$ and Kawamura-Lobb’ inequality implies that $2=3-4+2+1\leq s(8_{19})$ . Note that $s(8_{19})=2$

(see [4]).

Example 7.2. Let $D$ be the alternating diagram as in Figure 8 and $K$ the knot which is represented
by $D$ . Then $\omega(D)=-3,$ $O(D)=6,$ $O_{<}(D)=2$ and $O_{+}(D)=4$ . Therefore the sharper slice-
Bennequin inequality implies that $-4=-3-6+4+1\leq s(K)$ and Kawamura-Lobb’ inequality
implies that $-2=-3-6+6+1\leq s(K)$ . Since $K$ is the connected sum of two figure-eight knots
and the trefoil knot, $s(K)=-2$ (see [19]).

Next we give some cycles which give Kawamura-Lobb’ inequality for the Rasmussen invariant.

Example 7.3. Let $D$ be the diagram of $8_{19}$ as in Figure 7. Let $g\in C_{Lee}^{-1}(D)$ be the enhanced
state as in Figure 9. Then $f_{0}(D)-d^{-1}(g)$ is not a state cycle as in Figure 10. Note that the cycle
$f_{0}(D)-d^{-1}(g)$ implies that $2=3-4+2+1\leq s(8_{19})$ , which is Kawamura-Lobb) inequality.
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Figure 8: An alternating diagram and its Seifert circles

$f_{0}(D)$ $g$

Figure 9: The state cycle $f_{0}(D)$ and the enhanced state $g$

$b$

$+$

$2a$

$f_{0}(D)$ – $d^{-1}(g)$

Figure 10: A representative of $f_{0}(D)$
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$b$ a $b$ a $b$ $b$

$f_{0}(D)$ $g$

Figure 11: The state cycle $f_{0}(D)$ and the enhanced state $g$

$b$ a $b$ a

$f_{0}(D)$ – $d^{-1}(g)$

Figure 12: A representative of $f_{0}(D)$

Example 7.4. Let $D$ be the alternating diagram as in Figure 8 and $K$ the knot which is represented
by $D$ . Let $g\in C_{Lee}^{-1}(D)$ be the enhanced state as in Figure 11. Then $f_{0}(D)-d^{-1}(g)$ is not a state
cycle as in Figure 10. Note that the cycle $f_{0}(D)-d^{-1}(g)$ implies that-2 $=-3-6+6+1\leq s(K)$ ,
which is Kawamura-Lobb’ inequality.

Problem 7.5. Let $D$ be a knot diagram. Find an explicit presentation of a cycle $f(D)$ such that
$[f_{0}(D)]=[f(D)]$ and $q(f(D))=w(D)-O(D)+2O_{+}(D)-2$ .

In general, even for an alternating diagram $D$ , we do not know an explicit presentation of a
cycle $f(D)$ such that $[f_{0}(D)]=[f(D)]$ and $q(f(D))=w(D)-O(D)+2O_{+}(D)-2$ .

8 Non homogeneous knots

There are many non homogeneous knots. One of them is the pretzel knot of type $(p, -q, -r)$ for
odd integer $|p|\geq 3,$ $|q|\geq 3,$ $|r|\geq 3$ (see [5]). Another example is the untwisted Whitehead double
of a knot (see [5]). For diagrams of these knots, it seem to be more hard to describe cycles which
determine the Rasmussen invariant.
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