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1 Surjective homomorphisms between 2-bridge knot groups

(Masaaki Suzuki)

Let $K$ be a knot in $S^{3}$ and $G(K)$ the fundamental group of the complement
$S^{3}-K$ . We write $K_{1}\geq K_{2}$ if there exists a surjective homomorphism from $G(K_{1})$

onto $G(K_{2})$ . It is well known that this relation $\geq$ is a partial order on the set of
prime knots. This partial order is determined on the set of prime knots with up to
10 crossings in [50]. Furthermore this result is extended to the set of prime knots
with up to 11 crossings in [30].

In this section, we focus on surjective homomorphisms between 2-bridge knot
groups. Schubert showed that 2-bridge knots are classified by Schubert normal
forms, which are rational numbers. Let $K(r)$ denote the 2-bridge knot corresponding
to a rational number $r$ . Ohtsuki-Riley-Sakuma [73] gave a systematic construction
which, for a given 2-bridge knot $K(r)$ , provides surjective homomorphisms from
$K(\tilde{r})$ onto $K(r)$ . On the other hand, Lee-Sakuma [52] showed that the converse
statement holds in a sense, that is, they describes all upper-meridian-pair-preserving
surjective homomorphisms between 2-bridge knot groups.

The following is a very simple question about this subject.

Question 1.1 (M. Suzuki). Does there exist a 2-bridge knot which surjects simul-
taneously onto $G(3_{1})$ and $G(4_{1})^{Q}$

The author confirmed that there exists no such 2-bridge knot with up to 20
crossings. The above problem is one of the simplest model of the following problem.

Problem 1.2 (M. Suzuki). For given two rational numbers $r$ and $r’$ , detemine
whether there exists a 2-bridge knot $K(\tilde{r})$ such that $K(\tilde{r})\geq K(r)$ and $K(\tilde{r})\geq K(r’)$ .
In other words, find an algorithm to detemine whether there exists such a 2-bridge
knot $K(\tilde{r})$ or not.

If it is possible to answer the above problem, we can describe the Hasse diagram
of 2-bridge knots with respect to the partial order $\geq$ .

2 Extensions of Burau representation of the braid groups

(Hiroshi Matsuda)

Burau [9] introduced a representation $\varphi_{n}:B_{n}arrow M(n;\mathbb{Z}[t, t^{-1}])$ of the braid
group $B_{n}$ defined by

$\varphi_{n}(\sigma_{i})=(\begin{array}{llll}I_{i-1} O O OO 1-t t OO 1 0 OO O O I_{n-(i+1)}\end{array})$ ,

where $\sigma_{1},$ $\cdots,$ $\sigma_{n-1}$ denote the usual generators of $B_{n}$ . He constructed from $\varphi_{n}$ a
knot invariant which is essentially equal to the Alexander polynomial $\Delta_{K}(t)$ of a
knot $K$ .
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I propose to extend $\varphi_{n}$ by choosing a non-commutative algebra $\Omega$ instead of
$\mathbb{Z}[t, t^{-1}]$ . Consider a mapping defined by

$\psi_{n}(\sigma_{i})=(\begin{array}{llll}I_{i-1} O O OO \alpha \beta OO \gamma \delta OO O O I_{n-(i+1)}\end{array})$ ,

where $\alpha,$
$\beta,$

$\gamma,$
$\delta\in\Omega$ . We suppose that $(\begin{array}{ll}\alpha \beta\gamma \delta\end{array})$ is invertible in $M(2, \Omega)$ . The above

mapping can be extended to a representation $\psi_{n}:B_{n}arrow M(n;\Omega)$ if $\alpha,$
$\beta,$

$\gamma,$

$\delta$ sat-
isfy some polynomial equations derived from the relation $\psi_{3}(\sigma_{1})\psi_{3}(\sigma_{2})\psi_{3}(\sigma_{1})=$

$\psi_{3}(\sigma_{2})\psi_{3}(\sigma_{1})\psi_{3}(\sigma_{2})$ . When the inverses of $\alpha$ and $\beta$ exist, those polynomial equa-
tions are simplified as follows,

$\{\begin{array}{l}\gamma=\alpha^{-1}\beta^{-1}\alpha(1-\alpha),\delta=1-\alpha^{-1}\beta^{-1}\alpha\beta,\beta\alpha^{-1}\beta^{-1}\alpha-\alpha^{-1}\beta^{-1}\alpha\beta-\alpha+\beta^{-1}\alpha\beta=0.\end{array}$ (1)

(In general, we do not have to assume the existence of $\alpha^{-1}$ and $\beta^{-1}.$ )

Problem 2.1 (H. Matsuda). Choosing your favorite algebm $\Omega$ with unit 1, construct
a knot invariant from the above representation $\psi_{n}$ .

When $\Omega=M(2;\mathbb{C})$ , it is shown in [58] that there is a 6-parameter family of
solutions of (1) and we can construct a knot invariant from the corresponding repre-
sentation $\psi_{n}$ , though it might be equal to the product $\triangle_{K}(t_{1})\triangle_{K}(t_{2})$ of two copies
of the Alexander polynomial.

3 A conjugation sub-quandle of PSL $($ 2, $F_{q})$

(Yuichi Kabaya)

Let $p$ be a prime, and let $F_{q}$ be the finite field of order $q=p^{n}$ . We define the
quandle $X_{q}$ to be the set $(F_{q}^{2}\backslash \{0\})/\{\pm 1\}$ with the binary operation given by

$(c^{f} d’)*(c d)$ $=(d d’)(\begin{array}{ll}cd1+ d^{2}-c^{2} cd1-\end{array})$ .

We see that $X_{q}$ can be regarded as a sub-quandle of the conjugation quandle of
PSL $($ 2, $F_{q})$ , as follows. A conjugation quandle of a group is the group with the
binary operation $x*y=y^{-1}xy$ . Let PSL $($ 2, $F_{q})$ be the projective special linear

group over $F_{q}$ , and put $h=(\begin{array}{ll}1 10 1\end{array})$ . Let $X_{q}’$ be the sub-quandle $\{g^{-1}hg|g\in$

PSL $($ 2, $F_{q})\}$ of the conjugation quandle of PSL $($ 2, $F_{q})$ . Then, $X_{q}’$ can naturally be
identified with $Z(h)\backslash PSL(2, F_{q})$ , where $Z(h)$ denotes the centralizer of $h$ . Further,
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since $Z(h)=\{(\begin{array}{l}1*01\end{array})\},$ $Z(h)$ is equal to the stabilizer of (0 1) with respect to

the right action of PSL $($ 2, $F_{q})$ on $F_{q}^{2}$ . Thus, we have an isomorphism $X_{q}arrow X_{q}’$

taking (0 1) $g$ to $g^{-1}hg$ . That is, putting $g=(\begin{array}{ll}a bc d\end{array})$ , this is the isomorphism

taking $(c d)$ to $(\begin{array}{ll}cd1+ d^{2}-c^{2} cdl-\end{array})$ .

Many knots admit non-trivial colorings by $X_{q}$ . Let $K$ be a hyperbolic knot. Then
we have a holonomy representation $\varphi$ : $\pi_{1}(S^{3}\backslash K)arrow$ PSL $($ 2, $\mathbb{C})$ so that $\mathbb{H}^{3}/\varphi(\pi_{1}(S^{3}\backslash$

$K))$ is isometric to $S^{3}\backslash K$ . In particular, $\varphi$ takes each meridian to a parabolic
element of PSL $($ 2, $\mathbb{C})$ , which is conjugate to $h$ . Since the holonomy representation $\varphi$

is characterized by a finite number of algebraic equations in PSL $($ 2, $\mathbb{C}),$
$\varphi$ is conjugate

to a representation into PSL $($ 2, $\mathcal{F})$ for some finite extension field $\mathcal{F}$ of $\mathbb{Q}$ . Further,
in many cases,2 $\varphi$ is conjugate to a representation into PSL $($ 2, $\mathcal{O})$ , where $\mathcal{O}$ is the
ring of algebraic integers of $\mathcal{F}$ . Let $\mathfrak{p}$ be a prime ideal of $\mathcal{O}$ over $(p)\subset \mathbb{Z}$ . Then the
residue field $\mathcal{O}/\mathfrak{p}$ is an extension of $F_{p}$ , and hence it is isomorphic to $F_{q}$ with some
$q=p^{n}$ . This induces a representation $\pi_{1}(S^{3}\backslash K)arrow$ PSL $($ 2, $F_{q})$ . Further, it induces
a $X_{q}$-coloring of a knot diagram $D$ of $K$ , where a $X_{q}$ -coloring of a knot diagram $D$

is a map from the set of arcs of $D$ to $X_{q}$ which satisfies the relation shown in Figure
1 at each crossing of $D$ . We can naturally regard a $X_{q}$-coloring of $D$ as a quandle
homomorphism from the knot quandle of $K$ to $X_{q}$ .

Figure 1: Definition of a coloring at a crossing

Problem 3.1 (Y. Kabaya). Compute the quandle (co)homology of $X_{q}$ .
We have a natural map $H^{*}$ (PSL(2, $F_{q})$ ) $arrow H_{Q}^{*}(X_{q})$ . It is known [69] that $vol+$

$\sqrt{-1}$ CS” of a 3-manifold can be presented by using a 3-cocycle of PSL $($ 2, $\mathbb{C})$ , where
$vol$“ and “CS“ denote the hyperbolic volume and the Chern-Simons invariant; see

also [35] for such a presentation using a quandle 3-cocycle. We expect that invariants
like $mod p$ version” of $vol+\sqrt{-1}$ CS“ are obtained from cocycles of $X_{q}$ .

When $q=2,$ $X_{2}$ is isomorphic to the dihedral quandle $R_{3}$ . When $q=3,$ $X_{3}$ is
isomorphic to the Alexander quandle $\mathbb{Z}[T^{\pm 1}]/(2, T^{2}+T+1)$ .

We define the quandle $\tilde{X}_{q}$ to be the set $F_{q}^{2}\backslash \{0\}$ with the same binary operation
as $X_{q}$ . The quotient map $\tilde{X}_{q}arrow X_{q}$ is a central extension of $X_{q}$ by $\mathbb{Z}/2\mathbb{Z}$ ; see [14]
for the definition of quandle extensions. This extension seems to be non-trivial.

$toarepreaentationintoPSL(2,\mathcal{O});seeeg[57,Theorem5.2.5],[87,Theorem675]Notea1sothat’ evenif\varphi wasnotconjugatetoarepraeentationintoPSL(2,\mathcal{O}),\varphi inducaearepr\infty entation\pi_{1}(s^{3}\backslash K)arrow PSL(2,F_{q})inasimi1ar\overline{2Forexamp1e’ iftheknotcomp1ementhasn}oc1osedaesentia1surface’ theho1onomyrepresentation\varphi isconjugate$

way, for all but finitely many $p$ .

4

122



Figure 2: A general non-trivial $X_{q}$-coloring of a diagram of the figure-eight knot

For example, we show a general non-trivial $X_{q}$-coloring of a diagram of the figure-
eight knot in Figure 2. Without loss of generality, we can put colors of two arcs to
be (0 1) and $(t0)$ with some non-zero $t$ , as shown in Figure 2. Then, the defining
relations of coloring at the left two crossings determine the colors of the other arcs.
Further, the defining relations of coloring at the right two crossings give

$\{\begin{array}{l}\pm(-t^{2} 1) =(t(1+t^{2}) -t)*(0 1 ) =(t(1+t^{2}) t^{3}),\pm(t0)=(01) *(t(1+t^{2}) -t)=(-t^{2}(1+t^{2})^{2} 1+t^{2}+t^{4}).\end{array}$

They are rewritten

$\{\begin{array}{l}t^{2}\pm t+1=0,t^{2}\mp t+1=0.\end{array}$

Hence, $t^{2}\pm t+1=0$ . Since its discriminant is $-3$ , it has solutions in $F_{p}$ when
$( \frac{-3}{p})=1$ or $p=3$ , that is, when $p\equiv 0,1mod 3$ . In this case, we have non-trivial

$X_{p}$-colorings. Otherwise, $t^{2}\pm t+1$ is irreducible in $F_{p}$ , and we have $\mathcal{O}/\mathfrak{p}=F_{p^{2}}$ . In
this case, $t^{2}\pm t+1=0$ has solutions in $F_{p^{2}}$ , and we have non-trivial $X_{p^{2}}$ -colorings.

Similarly, a general non-trivial $\tilde{X}_{q}$-coloring of the diagram of the figure-eight knot
is given by

$\{\begin{array}{l}t^{2}+t+1=0,t^{2}-t+1=0.\end{array}$

Hence, 2 $t=0$ . Therefore, when $p$ is an odd prime, we have no non-trivial $\tilde{X}_{q^{-}}$

colorings, and any non-trivial $X_{q}$-coloring does not lift to an $\tilde{X}_{q}$-coloring. This
suggests that $H_{Q}^{2}(X_{q};\mathbb{Z}/2\mathbb{Z})$ is non-trivial, since the quandle cocycle invariant de-
rived from a cocycle of this cohomology can be regarded as an obstruction of such
lifting.

From the viewpoint of a relation to $vol+\sqrt{-1}$ CS“, it might be better to consider
cocycles of PSL $($ 2, $F_{p^{m}})$ and quandle cocycle invariants associated to them for all $m$

at the same time fixing $p$ . The behavior of the numbers of representations of a
knot group to PSL $($ 2, $F_{p^{m}})$ can be described by the congruence zeta function (Weil
conjecture); see [84]. It might be a problem to describe the behavior of quandle
cocycle invariants associated to such a family of cocycles.
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4 $C_{k}$-concordance among string links

(Jean-Baptiste Meilhan, Akira Yasuhara)

A $C_{k}$ -move is a local move on (string) links as illustrated in Figure 3, in particular,
a $C_{1}$ -move is a crossing change [26]. (The $C_{k}$-move can also be defined by using the
theory of claspers [26]. $)$ The $C_{k}$-move generates an equivalence relation on (string)
links, called $C_{k}$ -equivalence. The $C_{k}$-equivalence (string) links share all finite type
invariants of degree $\leq k-1[26]$ .

$rightarrow$
$\Uparrow_{k}$

$Figu\dot{r}e3$ : A $C_{k}$-move involves $k+1$ strands of a link, labeled here by integers between $0$ and $k$ .

Two n-string links $L,$ $L’$ are concordant if there is an embedding

$f$ : $(u_{i=1}^{n}[0,1]_{i})\cross[0,1]arrow(D^{2}\cross[0,1])\cross[0,1]$

such that $f((u_{i=1}^{n}[0,1]_{i})\cross\{0\})=L\cross\{0\}$ and $f((u_{i=1}^{n}[0,1]_{i})\cross\{1\})=L’\cross\{1\}$ , and
such that $f(\partial(u_{i=1}^{n}[0,1]_{i})\cross[0,1])=(\partial L)\cross[0,1]$ . Here, $U_{i=1}^{n}[0,1]_{i}$ is the disjoint
union of $n$ copies of $[0,1]$ . Two n-string links $L,$ $L’$ are $C_{k}$ -concordant if there is
a sequence $L=L_{0},$ $L_{1},$

$\ldots,$ $L_{m}=L$‘ such that for each $i\geq 1,$ $L_{i}$ and $L$‘ are either
$C_{k}$-equivalent or concordant. The $C_{k}$-concordant string links share all finite type,
concordance invariants of degree $\leq k-1$ . It seems to be natural to ask the following.

Question 4.1 (J.-B. Meilhan, A. Yasuhara). Let $L,$ $L’$ be n-stnng links. Is it true
that $L$ and $L’$ are $C_{k}$ -concordant if and only if they share all finite type concordance
invariants of degree $\leq k-1$ ?

It is known that the Milnor invariants are concordance invariants and the Milnor
invariants of length $\leq k$ are $C_{k}$-equivalence invariants [26]. Habegger and Masbaum
showed that all mtional finite type concordance invariants of string links are given
by Milnor invariants via the Kontsevich integral [25]. It is first essentially shown
by Ng [70] that, for an integer $k\geq 3$ , two knots (l-string links) $K$ and $K’$ are
$C_{k}$-concordant if and only if Arf$(K)=$ Arf$(K’)$ . Any knot (l-string link) is $C_{2^{-}}$

equivalent to the trivial one [68]. Two n-string links are $C_{2}$-concordant if and only
if they share all invariants $\mu(ij)(1\leq i<j\leq n)[68]$ . Thus we have an affirmative
answer to Question 4.1 for $n=1$ or $k=2$ . Hence we may assume that $n\geq 2$ and
$k\geq 3$ .
Remark 4.2 ([61]).
(1) Two n-string links are $C_{3}$-concordant if and only if they share all invariants
$Arf_{i}(1\leq i\leq n)$ , the Milnor invariants of length $\leq 3$ , and $\mu(jiij)mod 2(1\leq i<$

$j\leq n)$ . Here $Arf_{i}$ is the Arf invariant for the closure of the ith-component of a
string link.
(2) Two n-string links are $C_{5}$-concordant if and only if they share all invariants

6

124



$Arf_{i}(1\leq i\leq n)$ , the Milnor invariants of length $\leq 5,$ $\mu(jiiiij)mod 2,$ $(1\leq i, j\leq n)$ ,
and $\mu(kijjik)mod 2(1\leq i,j<k\leq n)$ .
(3) For $k=4,6$ , two n-string links are $C_{k}$-concordant if and only if they share all
invariants $Arf_{i}(1\leq i\leq n)$ and the Milnor invariants of length $\leq k$ .

The classification of string links up to $C_{3}$-concordance is given by concordance
finite type invariants of degree $\leq 2$ , and hence rational concordance finite type
invariants of degree 2, together with the invariants $Arf_{i}$ , do not suffice to determine
all concordance finite type invariants of degree 2 [61, Remark 5.14].

Remark 4.2 (1), (3) give an affirmative answer to Question 4.1 for $k=3,4$ and 6.
So far we have not known if $\mu(jiiiij)(mod 2)$ and $\mu(kijjik)(mod 2)$ are finite type
invariants of degree $\leq 4$ while they are of degree 5. In general, $\mu(i_{0}, \ldots, i_{m}, i_{m}, \ldots, i_{0})$

$(mod 2)(i_{0}, \ldots, i_{m}\in\{1, \ldots, n\})$ are $C_{2m+1}$-equivalence invariants [61, Remark 5.4].
Hence we have the following question.

Question 4.3 (J.-B. Meilhan, A. Yasuhara). For an integer $m\geq 3$ , are $\mu(i_{0}, \ldots, i_{m}, i_{m}, \ldots, i_{0})$

(mod 2) $(i_{0}, \ldots, i_{m}\in\{1, \ldots, n\})$ finite type invariants of degree $\leq 2m$ ?

5 Planar algebras

(Nobuya Sato)

The notion of planar algebra was introduced by Jones [38]; for introductions to
planar algebras, see [65, 80]. The definition of (subfactor) planar algebras do not
need any knowledge of subfactors. In the study of planar algebras, it is a problem
to give a presentation by generators and relations for every planar algebra.

For example, it is known [65] that, putting $q= \exp(\frac{2\pi\sqrt{-1}}{8n-4})$ , the $D_{2n}$ subfactor
planar algebra is generated by a single element $S$ with $4n-4$ legs, subject to the
following relations,

$4n-4$ $4n-4$

where the box denotes the Jones-Wenzl idempotent, and we put $[n]=(q^{n}-q^{-n})/(q-$

$q^{-1})$ . We define a crossing in this planar algebra by a defining relation of the linear
skein of the Kauffman bracket,

$\sqrt{-1}q^{1/2})(-\sqrt{-1}q^{-1/2}\vee\wedge\cdot$
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Then, it is shown [65] that $S$ satisfies the following relation, called partial bmiding,

The $D_{2n}$ subfactor planar algebra guarantees that the linear skein involving such $S$

is well defined, and the space of closed diagrams of this linear skein is l-dimensional.
Further, we define two projectors by

$2n-2$
$\wedge 2n-2$

$2n-2$
$\wedge 2n-2$– $arrow$

$Q$

By substituting $P$ and $Q$ into a knot diagram of a knot, we obtain an invariant of
this knot, which is shown to be equal to a colored Jones polynomial at a root of
unity [66]. Further, it is shown in [66] that, for an $\ell$-component link $L$ and a positive
integer $k$ , we obtain an invariant of $L$ as the sum of all ways of substituting $k$ copies
of $P$ and $\ell-k$ copies of $Q$ into the components of $L$ .

Problem 5.1 (N. Sato). Find more examples of the skein theory of subfactor planar
algebms with partial bmidings. Then, investigate link invariants associated with
them. What can we say for the$m^{}$

As other examples, it is known [4] that the $E_{6}$ (resp. $E_{8}$ ) subfactor planar algebra
is generated by a single element with 6legs (resp. 10legs) subject to some relations.
Since these planar algebra do not have braidings, we can not define link invariants
from them. However, we can define the state-sum invariants of 3-manifolds from the
$E_{6}$ and $E_{8}$ subfactors by associating a tetrahedron of a triangulation of a 3-manifold
with $6j$-symbol of such subfactors; for details, see $e.g$ . $[89]$ .

Problem 5.2 (N. Sato). Give a skein theoretic construction of the state-sum in-
variant of 3-manifolds for the $E_{6}$ and $E_{8}$ subfactors.

6 The Rasmussen invariant of a knot

(Tetsuya Abe)

In [76], Rasmussen introduced a smooth concordance invariant of a knot $K$ , now
called the Rasmussen invariant $s(K)$ . This gives a lower bound for the 4-ball genus
$g_{*}(K)$ of a knot $K$ as follows,

$|s(K)|\leq 2g_{*}(K)$ .

In particular, if $s(K)\neq 0$ , then we can prove that $K$ is not (smoothly) slice $(i.e.$ ,
$g_{*}(K)>0)$ . A motivation for studying the Rasmussen invariant is to find and
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describe non-slice knots with trivial Alexander polynomial systematically by calcu-
lating the Rasmussen invariant, noting that a knot with trivial Alexander polynomial
is always topologically slice3 ([15]).

We briefly review the definition of the Rasmussen invariant. For a diagram $D$ of
a knot $K$ , Lee [53] introduced Lee’s complex $C_{*}^{Lee}(D)$ and its homology $H_{*}^{Lee}(K)$ ,
and proved that

$H_{*}^{Lee}(K)\cong\{\begin{array}{ll}\mathbb{Q}^{2} if*=0,0 otherwise.\end{array}$

Further, Lee [53] constructed two concrete cycles4 $f_{0}(D)$ and $f_{\overline{o}}(D)$ of $C_{*}^{Lee}(D)$ from
an orientation $0$ and its opposite orientation $\overline{o}$ of $D$ , and proved that $[f_{0}(D)]$ and
$[f_{\overline{o}}(D)]$ form a basis of $H_{0}^{Lee}(K)$ , where $[\cdot]$ denotes its homology class. Rasmussen
[76] defined a filtration grading $u:C_{*}^{Lee}(D)\backslash \{0\}arrow$ {odd integers} which induces a
descending filtration on $C_{*}^{Lee}(D)$ ,

$C_{*}^{Lee}(D)\supset$ . . . $\supset \mathcal{F}^{2k-1}C_{*}^{Lee}(D)\supset \mathcal{F}^{2k+1}C_{*}^{Lee}(D)\supset \mathcal{F}^{2k+3}C_{*}^{Lee}(D)\supset.$ . .

Then the filtration grading $s$ on a non-zero element $[x]\in H_{*}^{Lee}(K)$ is defined by

$s([x])= \max\{q(y)|[x]=[y]\}$ ,

which induces a filtration on $H_{*}^{Lee}(K)$ . It is shown in [76] that this filtration is of
the following form,

$\mathbb{Q}^{2}\cong H_{0}^{Lee}(D)=\mathcal{F}^{2m-1}H_{0}^{Lee}(D)\supsetneq \mathcal{F}^{2m+1}H_{0}^{Lee}(D)\supsetneq \mathcal{F}^{2m+3}H_{0}^{Lee}(D)=\{0\}$,

for some $m$ , and that $[f_{0}(D)],$ $[f_{\overline{o}}(D)]\in \mathcal{F}^{2m-1}H_{0}^{Lee}(D)\backslash \mathcal{F}^{2m+1}H_{0}^{Lee}(D)$ . The Ras-
mussen invariant $s(K)$ of $K$ is defined to be $2m$ , i. e., $s(K)=s([f_{0}(D)])+1=$
$s([f_{\overline{o}}(D)])+1$ . It is shown in [76] that $s(K)$ does not dependent on the choice of a
diagram $D$ of $K$ .

It is algorithmically possible to compute $s(K)$ by definition for each $K$ , but, in
practice, it is hard to compute $s(K)$ from the definition by hand for all but some
simplest knots, since the computational complexity is of exponential order of the
number of crossings of a diagram of $K$ . It is a problem to find efficient methods to
compute $s(K)$ . There are some known methods to compute $s(K)$ so far.

$\bullet$ $s(K)$ can be computed from the Khovanov homology (see [76]), and there are
fast computer programs to compute the Khovanov homology.

$\bullet$ For any alternating knot $K,$ $s(K)$ is equal to the signature of $K[76]$ .
$\bullet$ For any positive knot $K,$ $s(K)$ can be computed from the definition; see [76].

$\bullet$ For any strongly quasipositive knot $K$ , it is known $[$55, Theorem $4]^{5}$ (see also
[83] $)$ that $s(K)=2g_{*}(K)=2g(K)$ , where $g(K)$ denotes the genus of $K$ , and

$\overline{3A}$knot in $S^{3}$ is(smoothly)slice if it bounds a smooth disc in $B^{4}$ whose boundary is $S^{3}$ A knot in $S^{3}$ is

$top_{4}o_{In[76],these}logicallyslice$
ifitbounds $a1oca11yfla$ topologicaldisc in $B^{4}$

5It is known [79, Theorem 4.90] that the assumption of [55, Theorem 4] is equivalent to the condition that $K$ is
strongly quasipositive. Though the conclusion of [55, Theorem 4] is $\tau(K)=g_{*}(K)=g(K)$ , we can replace $\tau(K)$

with $s(K)/2$ , since the resulting formula can be proved in the same way,
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we can determine $s(K)$ from $g_{*}(K)$ or $g(K)$ when we know the value of $g_{*}(K)$

or $g(K)$ .
$\bullet$ There is a table [12] of the values of $s(K)$ for knots with up to 11 crossings.

A lower bound of $s(K)$ is given by the slice-Bennequin inequality [75, 83]

$w(D)-O(D)+1\leq s(K)$

for any diagram $D$ of $K$ , where $w(D)$ denotes the writhe of $D$ and $O(D)$ denotes
the number of Seifert circles of $D$ ; see also [45, 46, 56] for its refinements.

$($a$)$ $($b$)$

Figure 4: The pretzel knots $P(3, -5, -7)$ and $P(3, -3, -7)$

We consider the Rasmussen invariant of the pretzel knot $P(a, b, c)$ of type $(a, b, c)$

(see Figure 4) for odd integers $a,$ $b,$ $c$ . Note that $|s(P(a, b, c))|\leq 2g_{*}(s(P(a, b, c)))\leq$

$2g(s(P(a, b, c)))\leq 2$ . When $a,$ $b,$ $c$ are positive odd integers, $P(a, b, c)$ is alternating,
and its Rasmussen invariant is equal to its signature. Further, since $s(\overline{K})=-s(K)$

for the mirror image of $K,$ $s(P(-a, -b, -c))=-s(P(a, b, c))$ . Hence, it is sufficient
to study the following case; it is shown in $[2]^{6}$ that for positive odd integers $a,$ $b,$ $c$ ,

$s(P(a, -b, -c))=\{\begin{array}{ll}0 if a\geq\min\{b, c\},2 if a<\min\{b, c\}.\end{array}$

Problem 6.1 (T. Abe). Let $a,$ $b,$ $c$ be positive odd integers, and let $D$ be the standard
diagmm of the pretzel knot $P(a, -b, -c)$ . Then, give an explicit presentation of a
cycle $f(D)\in C_{*}^{Lee}(D)$ such that $[f_{0}(D)]=[f(D)]$ and $q(f(D))=1$ .

We expect that such a cycle has particular properties, and such properties would
be useful to compute $s(K)$ for a general knot $K$ .

When $ab+bc+ca=-1$ , the Alexander polynomial of $P(a, b, c)$ is trivial. In
fact,7 there are infinitely many such pretzel knots.

The cycle $f_{2}(D)$ given in [3] satisfies that $q(f_{2}(D))\geq-1$ . In particular, when
$a \geq\min\{b, c\}$ ,

$0=s(P(a, -b, -c))\geq q(f_{2}(D))+1\geq 0$ ,

6It has partially been shown in [85].
7When $|\ell|$ is a divisor of $k(k+1)$ , $(a, b, c)=(2k+1,2\ell-2k-1,2k(k+1)/\ell-2k-1)$ satisfies that $ab+bc+ca=-1$ .
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and the equalities of this formula hold, and, hence, $f_{2}(D)$ is a solution to Problem
6.1. So, it is a problem to find a solution when $a< \min\{b, c\}$ .

For example, $s(P(3, -5, -7))$ is computed in [83] by finding a strongly quasiposi-
tive diagram of $P(3, -5, -7)$ (see [83, Figure 1]) which is different from the standard
diagram shown in Figure 4 (a). It means that in [83] the difficulty of the compu-
tation is resolved by finding an appropriate diagram of the knot. An intention of
Problem 6.1 is to resolve the difficulty by finding an appropriate cycle for a given
diagram.

7 Exceptional surgeries on knots

(Kazuhiro Ichihara, In Dae Jong)

Let $K$ be a knot in the 3-sphere $S^{3}$ and $\gamma$ a slope (i.e., an isotopy class of non-
trivial simple closed curves) on the boundary of a tubular neighborhood $N(K)$ of $K$ .
Then, the Dehn surgery on $K$ along a slope $\gamma$ is defined as an operation to create a
(new) 3-manifold as follows: Take the exterior $E(K)$ of the knot $K$ (i.e., removing
the interior of $N(K))$ , and glue a solid torus $V$ to $E(K)$ so that a simple closed curve
representing $\gamma$ bounds a meridian disk in $V$ . The manifold obtained by the Dehn
surgery on $K$ along a slope $\gamma$ is denoted by $K(\gamma)$ . It is well-known that slopes on
the boundary torus $\partial E(K)$ are parameterized by $\mathbb{Q}\cup\{1/0\}$ by using the standard
meridian-longitude system for $K$ . Thus, when $\gamma$ corresponds to $r\in \mathbb{Q}\cup\{1/0\}$ , we
call the Dehn surgery along a slope $\gamma$ the r-Dehn surgery or r-surgery for brevity,
and denote $K(\gamma)$ by $K(r)$ . See [47], [77] for basic references.

A knot with the complement which admits a complete hyperbolic structure of
finite volume is called a hyperbolic knot. It is well-known that, on a hyperbolic
knot, Dehn surgeries yielding non-hyperbolic manifolds are only finitely many. This
fact was originally established by Thurston in [87] as a part of Hyperbolic Dehn
Surgery Theorem. Thereby a Dehn surgery on a hyperbolic knot yielding a non-
hyperbolic manifold is called exceptional. In view of this, it is an interesting and
challenging problem to determine and classify all exceptional surgeries on hyperbolic
knots in $S^{3}$ , where we recall that, as a consequence of the affirmative solution to the
Geometrization Conjecture, exceptional surgeries are classified into the following
three types; a Seifert fibered surgery, a toroidal surgery, a reducible surgery. A
Dehn surgery is said to be Seifert fibered /tomidal/reducible if which yields a
Seifert fibered/toroidal/reducible manifold respectively.

In this section, we address two problems and review known facts about the prob-
lems.

Problem 7.I (K. Ichihara, I. D. Jong). Determine and classify exceptional surgeries
on altemating knots in the 3-sphere.

A knot in $S^{3}$ is called altemating if it admits a diagram with alternatively ar-
ranged over-crossings and under-crossings running along it. Note that Menasco
showed in [62] that an alternating knot in $S^{3}$ is hyperbolic unless it is a $($ 2, $p)$ -torus
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knot $T_{2,p}$ . Here $T_{a,b}$ denotes the torus knot of type $(a, b)$ , that is, the knot isotopic
to the $(a, b)$-curve on the standard embedded torus in $S^{3}$ .

Typical example of alternating knots are given by two-bridge knots, i.e., knots
with bridge index two. On two-bridge knots, exceptional surgeries are completely
classified by Brittenham and Wu in [8].

Concerning reducible surgeries, it was shown by Menasco and Thistlethwaite in
[63, Corollary 1.1] that a hyperbolic alternating knot has no reducible surgery.

Concerning toroidal surgeries, in [74], based on the result obtained in [63], Patton
claimed that if an alternating knot admits a toroidal surgery, then it is either a 2-
bridge knot or a 3-strand pretzel knot. This is also achieved as [7, Lemmas 3.1 and
3.3]. Thus, together with the results by Brittenham and Wu in [8] and Wu in [91],
toroidal surgeries on alternating knots have been completely classified.

Concerning Seifert fibered surgeries, Delman and Roberts showed in [13] that no
Dehn surgeries on a hyperbolic alternating knot yield 3-manifolds with finite fun-
damental groups. Note that irreducible 3-manifolds with finite fundamental groups
must be Seifert fibered. Also, in the forthcoming paper [34], the authors with Shigeru
Mizushima showed that any alternating knot other than the trefoil yields no Dehn
surgeries yielding 3-manifolds which are toroidal and Seifert fibered, extending the
result obtained by Motegi in [67].

On the other hand, Lackenby in [51] showed that a hyperbolic alternating knot
admitting a “sufficiently complicated” alternating diagram has no exceptional surg-
eries. Further all exceptional surgeries on alternating knots are integral surgeries,
which was shown by the first author in [31]. Namely, if r-surgery on a hyperbolic
alternating knot is exceptional, then $r\in \mathbb{Z}$ .

Problem 7.2 (K. Ichihara, I. D. Jong). Detemine and classify exceptional surgeries
on Montesinos knots in the 3-sphere.

A Montesinos knot of type $(R_{1}, R_{2}, \ldots, R_{l})$ , denoted by $M(R_{1}, R_{2}, \ldots, R_{l})$ , is de-
fined as a knot admitting a diagram obtained by putting rational tangles $R_{1},$ $R_{2},$

$\ldots,$
$R_{l}$

together in a circle. Remark that, here and in the sequel, we abuse $R_{\eta}$ to denote
a rational number (or, an irreducible fraction) or the corresponding rational tangle
depending on the context. The minimal number of such rational tangles is called the
length of a Montesinos knot. In particular, a Montesinos knot $K$ is called a pretzel
knot of type $(a_{1}, a_{2}, \ldots, a_{l})$ , denoted by $P(a_{1}, a_{2}, \ldots, a_{l})$ , if the rational tangles in $K$

are of the form $1/a_{1},1/a_{2,}1/a_{l}$ .
It is already known which Montesinos knots are non-hyperbolic. If the length of

a Montesinos knot is less than three, then it actually is a two-bridge knot. Then
Menasco in [62] showed that non-hyperbolic two-bridge knots arejust the torus knots
$T_{2,x}$ . Otherwise, non-trivial non-hyperbolic Montesinos knots are just $P(-2,3,3)$
and $P(-2,3,5)$ , which are actually $T_{3,4}$ and $T_{3,5}$ respectively. This was originally
shown by Oertel in [72, Corollary 5] together with the result in the unpublished
monograph in [5] by Bonahon and Siebenmann, recently version-uped as [6].

A Montesinos knot of length $l<3$ is a two-bridge knot and thus exceptional
surgeries on such knots are completely determined in [8]. On the other hand, it is
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shown by Wu in [90] that a Montesinos knot of length $l>3$ admits no exceptional
surgery. Therefore the remaining is the case where the length is just three.

In [90], Wu showed that there are no reducible surgeries on hyperbolic Montesinos
knots. It was also obtained by Wu in [91] that a complete classification of toroidal
surgeries on Montesinos knots of length three. Furthermore, the authors gave a
complete classification of surgeries to give 3-manifolds with cyclic or finite funda-
mental groups on Montesinos knots in [32], and showed that there are no toroidal
Seifert surgeries on on Montesinos knots other than the trefoil in [33]. Therefore
the remaining open is to determine and classify all atoroidal Seifert fibered surgeries
with infinite fundamental groups on Montesinos knots of length three.

Recently in [92], Wu have further obtained new restriction on Seifert fibered
surgeries on Montesinos knots. In fact, it was shown that if $\frac{1}{q_{1}-1}+\frac{1}{q_{2}-1}+\frac{1}{q_{3}-1}\leq$

$1$ , then a Montesinos knot of type $(p_{1}/q_{1}, p_{2}/q_{2},p_{3}/q_{3})$ admits no atoroidal Seifert
fibered surgery. As a consequence, we have a classification of exceptional Dehn
surgeries on all Montesinos knots except those $M(p_{1}/q_{1}, p_{2}/q_{2},p_{3}/q_{3})$ with $q_{1}=2$ ,
or $(q_{1}, q_{2})=(3,3)$ , or $(q_{1}, q_{2}, q_{3})=(3,4,5)$ for $q_{1}\leq q_{2}\leq q_{3}$ . Further restrictions on
$p_{i}$ and the surgery slopes for these cases were also given. See [92, Theorems 8.2 and
8.3] for details.

It is already known which Montesinos knots are alternating. Actually, by the
claim given in [86, Section 4, 2nd paragraph], it is shown that a Montesinos knot
is alternating if and only if its reduced Montesinos diagram, introduced in [54], is
alternating. This means that a Montesinos knot is alternating if and only if it is
expressed as $M(R_{1}, R_{2}, \ldots, R_{l})$ with all $R_{i}$ ’s having the same sign.

Very recently, in [34], for alternating Montesinos knots other than two-bridge
knots, we have obtained that there are no Seifert fibered surgeries.

8 Minimal dilatation of closed surfaces

(Eiko Kin, Mitsuhiko Takasawa)

Let Mod $(\Sigma)$ be the mapping class group on an orientable surface $\Sigma$ . An ele-
ment $\phi\in$ Mod $(\Sigma)$ which contains a pseudo-Anosov homeomorphism $\Phi$ : $\Sigmaarrow\Sigma$

as a representative is called a pseudo-Anosov mapping class. One of the numeri-
cal invariants for pseudo-Anosov mapping classes is the dilatation. The dilatation
$\lambda(\phi)>1$ is defined to be the expansion constant $\lambda(\Phi)$ for the invariant foliation of
$\Phi$ .

Fixing the surface $\Sigma$ , the dilatation $\lambda(\phi)$ for a pseudo-Anosov element $\phi\in$

Mod $(\Sigma)$ is known to be an algebraic integer with a bounded degree depending
only on the topological type of $\Sigma$ . For each $c>1$ , the set of dilatations $\lambda(\phi)$

for $\phi\in$ Mod $(\Sigma)$ bounded by $c$ from above is finite (Ivanov). In particular the set

Dil $(\Sigma)=$ { $\lambda(\phi)|$ pseudo-Anosov $\phi\in$ Mod $(\Sigma)$ }

achieves a minimum $\delta(\Sigma)$ . We denote by $\delta_{g}$ , the minimal dilatation $\delta(\Sigma_{g})$ for a
closed surface $\Sigma_{g}$ of genus $g$ .
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Penner proved that $\log\delta_{g\wedge}\vee 1/g$ . The following question was posed by McMullen.

Question 8.1 (McMullen [60]). Does $\lim_{garrow\infty}g\log\delta_{g}$ exis$t’?( \Leftrightarrow Does\lim_{garrow\infty}|\chi(\Sigma_{g})|\log\delta_{g}$

exis $t’?$) What is its valu$e^{}?$

On the question above, it is known (Hironaka [29], Aaber-Dunfield [1], Kin-Takasawa
[49] $)$ that

$\lim_{garrow}\sup_{\infty}g\log\delta_{g}\leq\log(\frac{3+\sqrt{5}}{2})$ ( $=\log$ ( $1+$ golden ratio)).

Question 8.2 (E. Kin, M. Takasawa). Is it true that

$\lim_{garrow\infty}g\log\delta_{g}=\log(\frac{3+\sqrt{5}}{2})$ ?

9 The magic “magic manifold”

(Eiko Kin, Mitsuhiko Takasawa)

The magic manifold $N$ , which is the exterior of the 3-component link shown in
Figure 5, is an intriguing example. Many pseudo-Anosov homeomorphisms with
the smallest known dilatation occur as the monodromies of Dehn fillings of $N[1$ ,
29, 48, 49]. For example, we have: For each $n\geq 9$ $($ resp. $n=3,4,5,7,8)$ , the
pseudo-Anosov homeomorphism on an n-punctured disk $D_{n}$ with the smallest known
dilatation (resp. smallest dilatation) occurs as the monodromy on a fiber for a Dehn
filling of $N[48]$ .

Figure 5: The 3-component link, whose exterior is the magic manifold

We pose the following question.

Question 9.1 (E. Kin, M. Takasawa). Does the magic manifold $N$ satisfy the fol-
lowing pmperties (1), (2) ?

(1) There exist Dehn fillings of $N$ giving an infinite sequence of fiberings over $S^{1}$ ,
with closed fibers $\Sigma_{g_{i}}$ of genus $g_{i}\geq 2$ with $g_{i}arrow\infty$ , and with monodromy $\Phi_{i}$ so
that $\delta_{g:}=\lambda(\Phi_{i})$ .

(2) There exist Dehn fillings of $N$ giving an infinite sequence of fiberings over $S^{1}$ ,
with fibers $D_{n_{i}}$ having $n_{i}$ punctures with $n_{i}arrow\infty$ , and with monodmmy $\Phi_{i}$ so
that $\delta(D_{n_{i}})=\lambda(\Phi_{i})$ .
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10 The w-index of surface links

(Masahide Iwakiri)

A surface link is the image of a smooth embedding of a closed surface into $\mathbb{R}^{4}$ .
It is known [44, 88] that any surface link can be presented by the closure of some
surface braid. We define the w-index $w(F)$ of a surface link $F$ by

$w(F):= \min\{w(S)|$ $whoseclosureisisotopicSisasurfacebraid$
to $F\}$

where $w(S)$ is the number of triple points of $S$ .
A quandle was defined by Joyce [39] (see also [59]). Let $A$ be an abelian group,

and let $f$ be an A-valued 3-cocycle of a finite quandle. In [10], the quandle cocycle
invariant $\Phi_{f}(F)$ of a surface link $F$ was defined to be in $\mathbb{Z}[A]$ . We can make an
estimate of the triple point number of $F$ by using the quandle cocycle invariant
when $\Phi_{f}(F)\not\in \mathbb{Z}\cdot 0_{A}$ for some 3-cocycle $f$ , where $0_{A}$ denotes the unit of $A$ .

We define the numbers $\omega_{a}^{i}(f),$ $\omega_{a}(f),$ $\omega^{i}(f)$ and $\omega(f)$ for any A-valued 3-cocycle
$f$ and any element $a\not\in \mathbb{Z}\cdot 0_{A}$ of $\mathbb{Z}[A]$ by

$\omega_{a}^{i}(f):=\min\{w(S)|$ $suchthat\Phi_{f}(c1osureofS)=aSisasurfacebraidofdegreei\}$ ,

$\omega_{a}(f):=\min\{\omega_{a}^{i}(f)|i\in N\}$ ,
$\omega^{i}(f):=\min\{\omega_{a}^{i}(f)|a\not\in \mathbb{Z}\cdot 0_{A}\}$ ,
$\omega(f)$ $:= \min\{\omega_{a}(f)|a\not\in \mathbb{Z}\cdot 0_{A}\}(=\min\{\omega^{i}(f)|i\in N\})$ .

If there is no surface braid satisfying the condition in the definition of $\omega_{a}^{i}(f)$ , then
we define it to be $\infty$ . The number $\omega(f)$ measures the sharpness of the estimation
of $w(F)$ by $\Phi_{f}(F)$ .

Problem 10.1 (M. Iwakiri). Determine $\omega_{a}^{i}(f),$ $\omega_{a}(f),$ $\omega^{i}(f)$ and $\omega(f)$ for $i\in N$ ,
an A-valued 3-cocycle $f$ and an element $a$ of $\mathbb{Z}[A]$ .

By definition, $\omega(f)\leq\omega_{a}(f)\leq\omega_{a}^{i}(f)$ and $\omega(f)\leq\omega^{i}(f)\leq\omega_{a}^{i}(f)$ . By considering
stabilizations of surface braids ([44]), we have $\omega_{a}^{i+1}(f)\leq\omega_{a}^{i}(f)$ and $\omega^{i+1}(f)\leq\omega^{i}(f)$ .
Since the closure of any surface braid of degree $\leq 3$ is a ribbon surface link ([43]),
$\omega_{a}^{i}(f)=\infty$ for $i\leq 3$ .

Let $\theta_{p}$ be Mochizuki $s\mathbb{Z}_{p}$-valued 3-cocycle ([64]) of the dihedral quandle of order
$p$ , and identify $\mathbb{Z}[\mathbb{Z}_{p}]$ with $\mathbb{Z}[t, t^{-1}]/(t^{p}-1)$ . It is shown in [36] that $\omega(\theta_{3})=\omega^{i}(\theta_{3})=$

$\omega_{a}^{i}(\theta_{3})=6$ for any $i\geq 4$ and $a=3+6t,$ $3+6t^{2}$ . Further, it is shown in [37] that
$\omega(\theta_{5})\leq\omega^{4}(\theta_{5})=\omega_{a}^{4}(\theta_{5})=10$ for $a=5+10t^{2}+10t^{3}$ .

We can consider similar numbers for the triple point number, instead of the
w-index, as follows. We define the triple point number $t(F)$ of a surface link $F$ by

$t(F)$ $:= \min\{t(D)|D$ is a link diagram of $F\})$
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where $t(D)$ is the number of triple points of $D$ . Further, we define the numbers
$\tau_{a}(f)$ and $\tau(f)$ for any A-valued 3-cocycle $f$ and any element $a\not\in \mathbb{Z}\cdot 0_{A}$ of $\mathbb{Z}[A]$ by

$\tau_{a}(f)$ $:= \min\{t(F)|F$ is a surface link such that $\Phi_{f}(F)=a\}$ ,
$\tau(f):=\min\{\tau_{a}(f)|a\not\in \mathbb{Z}\cdot 0_{A}\}$ .

If there is no surface link satisfying the condition in the definition of $\tau_{a}(f)$ , then we
define it to be $\infty$ . The number $\tau(f)$ measures the sharpness of the estimation of
$t(F)$ by $\Phi_{f}(F)$ .

Problem 10.2 (M. Iwakiri). Detemine $\tau_{a}(f)$ and $\tau(f)$ for an A-valued 3-cocycle
$f$ and an element $a$ of $\mathbb{Z}[A]$ .

By definition, $\tau(f)\leq\tau_{a}(f)$ . It follows from results of [82] that $\tau(\theta_{3})=\tau_{a}(\theta_{3})=4$

for $a=3+6t,$ $3+6t^{2}$ . Further, it follows from results of [27] that $\tau(\theta_{5})\geq 6$ .
Furthermore, it follows from results of [81] that $\tau(\theta_{5})=\tau_{a}(\theta_{5})=8$ for $a=5+$
$10t^{2}+10t^{3}$ .

11 Invariants of 3-manifolds derived from their covering
presentation

(Eri Hatakenaka, Takefumi Nosaka)

In this section, manifolds are connected and orientable. Consider a 4-fold branched
cover of $S^{3}$ whose branch locus is a link $L\subset S^{3}$ . Such a branched cover is called
simple if its monodromy representation $\varphi$ : $\pi_{1}(S^{3}\backslash L)arrow \mathfrak{S}_{4}$ takes each meridian to
a transposition in $\mathfrak{S}_{4}$ . A labeled link is alink with such a representation. It is known
that any closed 3-manifold is homeomorphic to a simple 4-fold branched cover of
$S^{3}$ . In this sense, a labeled link $(L, \varphi)$ can be regarded as a presentation of a closed
3-manifold $M$ . Further, it is known that two labeled links present homeomorphic
3-manifolds if and only if the labeled links are related by a finite sequence of the
MI and MII moves. We call this presentation of closed 3-manifolds the covering
presentation.

Problem 11.1 (E. Hatakenaka, T. Nosaka). Construct invariants of a closed 3-
manifold $Mfmm$ an invariant of a labeled link $(L, \varphi)$ .

A simple representation $\pi_{1}(S^{3}\backslash L)arrow \mathfrak{S}_{4}$ naturally induces a quandle homomor-
phism $Q(L)arrow S_{6}$ , where $Q(L)$ denotes a link quandle of $L$ and $S_{6}$ denotes the
conjugation quandle consisting of all transposition of $\mathfrak{S}_{4}$ , i.e., $S_{6}$ $:=\{(ij)\in \mathfrak{S}_{4}\}$ .
In [28], the 4-fold symmetric quandle homotopy invariant of closed 3-manifolds was
constructed from the quandle homotopy invariant of $L$ for such a quandle $X$ that
there is a surjective quandle homomorphism $Xarrow S_{6}$ with appropriate properties.
It is a problem to construct other invariants of closed 3-manifolds derived from the
covering presentation.

Further, we pose another problem.
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Problem 11.2 (E. Hatakenaka, T. Nosaka). Extend the 4-fold symmetric quan-
dle homotopy invariant to an invariant of 3-manifolds with boundaries. Further,
construct a topological quantum field theory (TQFT) of the invariant.

Quantum invariants can be formulated by TQFT, and it enables us to compute
the invariants by cut-and-paste method of 3-manifolds: for example, Turaev-Viro
and Dijkgraaf-Witten invariant. It is shown in [28] that Dijkgraaf-Witten invariant
is derived from 4-fold symmetric quandle homotopy invariant of closed manifolds.
So, we expect to construct a TQFT for the 4-fold symmetric quandle homotopy
invariant.

12 Sutured manifolds and invariants of 3-manifolds

(Hiroshi Goda, Takuya Sakasai)

For a given knot $K$ with a Seifert surface $R$ , we can construct a sutured manifold
$(M_{R}, K)$ called the complementary sutured manifold for $R$ by cutting open the knot
exterior along $R$ . The boundary of $M_{R}$ is the union of two copies of $R$ glued along
their common boundary $K$ , thus $M_{R}$ can be seen as a cobordism over $R$ . As an
analogue of Heegaard genus, the handle number [21] is defined for a sutured manifold.
Let $h(R)$ denote the handle number of the complementary sutured manifold $M_{R}$ .
The Morse-Novikov number $M\mathcal{N}(K)$ of $K$ is also defined as the minimal number
of the handle numbers among all Seifert surfaces of $K$ . By considering many recent
applications of Heegaard Floer homology and its variants, we pose:

Question 12.1 (H. Goda, T. Sakasai). Can we estimate $h(R)$ and $M\mathcal{N}(K)$ by
using the sutured Floer homology or the knot Floer homology?

Next, we consider the following another approach for estimating handle numbers.
A knot $K$ is said to be homologically fibered if it has a (necessarily minimal genus)
Seifert surface $R$ whose complementary sutured manifold is a homology cobordism
over $R$ . This condition is known to be equivalent to that the Alexander polynomial
$\triangle_{K}(t)$ of $K$ is monic and has degree equal to the twice of the genus of $K$ . As is
well known, fibered knots satisfy this condition. The motivation for defining this
class of knots comes from the study of homology cylinders, which was initiated by
Goussarov [24] and Habiro [26] independently in their study of finite type invariants
of 3-manifolds via clover or clasper surgery. A homology cylinder $(M, m)$ is, roughly
speaking, a pair of a homology cobordism $M$ over a surface $\Sigma$ and an identification
$m$ of $\partial M$ with $\partial(\Sigma\cross[0,1])$ . Homologically fibered knots provide a construction of
homology cylinders.

Question 12.2 (H. Goda, T. Sakasai). Can we estimate $h(R)$ and $M\mathcal{N}(K)$ for a
homologically fibered knot $K$ with a minimal genus Seifert surface $R$ by using finite
type invariants for homology cylinders’2

By definition, a knot $K$ is fibered if and only if its minimal genus Seifert surface
$R$ satisfies $h(R)=0$ , in particular, $M\mathcal{N}(K)=0$ . In [22], we gave a lower estimate
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of the handle number of a minimal genus Seifert surface of a homological fibered
knot by using a certain (Reidemeister) torsion invariant $\tau$ for homology cylinders.
It was shown by Friedl-Juh\’asz-Rasmussen [16] that $\tau$ may be regarded as a special
case of a decategorification of sutured Floer homology. While Ghiggini [20], Ni [71]
and Juh\’asz [40] showed that sutured Floer homology, a variant of Heegaard Floer
homology, can detect the fiberedness of a knot, there are no examples so far where
$\tau$ cannot detect the non-fiberedness of a non-fibered homological fibered knot (see
the computations in [22, 23] $)$ .

Question 12.3 (H. Goda, T. Sakasai). Does the torsion $\tau$ detect the fiberedness of
a homologically fibered knot?

This question is highly related to the question: How much the decategorification of
sutured Floer homology loses information.

Finally, to make the relationship between homology cylinders and homologically
fibered knots more closer, we pose:

Problem 12.4 (H. Goda, T. Sakasai). Define (local) moves among homologically
fibered knots. Then by using them, construct a theory of finite type invariants spe-
cialized to homologically $fibered_{v}$ knots.

13 Sutured Floer homology

(Andr\’as Juh\’asz)
Sutured manifolds were introduced by Gabai in [17] to study taut foliations on

three-manifolds, and in [18] and [19] he used this theory to prove the so called
property $R$ conjecture. Loosely speaking, a sutured manifold is a pair $(M, \gamma)$ such
that $M$ is a compact oriented three-manifold with boundary, and $\gamma$ is a set of oriented
simple closed curves in $\partial M$ that divide $\partial M$ into pieces $R_{-}(\gamma)$ and $R_{+}(\gamma)$ . A sutured
manifold is called balanced if $\chi(R_{+}(\gamma))=\chi(R_{-}(\gamma)))$ , it has no closed components,
and each component of $\partial M$ has at least one suture on it.

In [40], I introduced an invariant of balanced sutured manifolds, called sutured
Floer homology, in short $SFH$. It assigns a finitely generated Abelian group to every
balanced sutured manifold, and it is a common generalization of the hat versions
of Heegaard Floer homology and knot Floer homology. It satisfies the following
decomposition formula: if $(M, \gamma)$ is a balanced sutured manifold and $(M’, \gamma^{f})$ is
obtained from it by a “nice” sutured manifold decomposition, then $SFH(M’, \gamma’)$ is
a direct summand of $SFH(M, \gamma)$ , see [41].

Question 13.1 (A. Juh\’asz). Is it possible to define $SFH$ for sutured manifolds that
have no sutures on some components of $\partial M’$? Is there an analogue of $HF^{\pm}$ and
$HF^{\infty}$ in the sutured Floer settin$g’$? If the answer is yes, does an analogue of the
decomposition formula hold for them?

Given a Seifert surface $R$ of a knot $K\subset S^{3}$ , let $S^{3}(R)$ denote the sutured man-
ifold complementary to $R$ . Note that $SFH(S^{3}(R))\cong\overline{HFK}(K, g(R))$ . However,
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$SFH(M, \gamma)$ decomposes as a direct sum along relative Spi$n^{}$ -structures on $(M, \gamma)$ ,
which form an affine space over $H_{1}(M)$ .

Question 13.2 (A. Juh\’asz). Is there a knot $K$ in $S^{3}$ that has two minimal genus
Seifert surfaces $R_{1}$ and $R_{2}$ that can be distinguished using $SFH(S^{3}(R_{i}))$ together
with the $Spin^{c}-gmding$ ? Is there an example where the sutured Floer homology poly-
topes $($see $f42J)$ of $S^{3}(R_{1})$ and $S^{3}(R_{2})$ are different?
Question 13.3 (A. Juh\’asz). Suppose that $K$ is a knot in $S^{3}$ , and

$rk(\overline{HFK}(K, g(K)))<2^{k+1}$ .

Then the sutured manifold $S^{3}(K)$ complementary to $K$ has a length at most $2k+1$
sutured manifold hiemrchy. Is it true that $S^{3}(K)$ has a depth at most $2k+1$ taut
foliation $(?$
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