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Abstract
In this article, we treat the extended homogeneous Chebyshev’s equations
o (22 =26z — 1)+ (2= b)—p -2 =0,

where
{8

d
po=p=p(z), [=[), pa=TE(for a>0)

and z? — 2bz — 1 # 0 in the view of N-fractional calculus and discuss the so-
lutions by means of N- fractional calculus operator. We present the familiar
form of the solution like as

1 b? +1

. Vi3 _ v Vv
— 17rl/________ . v, - e -
p(z) = —e (z—b) 2F1(2’2+2’V+1’(z—b)2)

2vvl (v + %)
where |(b° 4 1)/(z — b)?| < 1 and o #}(- - -)is the Gauss hypergeometric func-

tion.

1 Definition of fractional calculus and some properties

We define the N-fractional calculus and N-fractional operator N2 as follows.
For a regular function f = f(2) and a arbitrary number o , N-fractional
differintegration of order « is difined as follows,

Naf = fa:(f)a:C(f)a
I'(a+1) f(Q)d¢
2ni Jo (¢ — 2)2H]

(f)—m = alirgm(f)a (m € Z+)7

(a ¢ 27),
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where D = {D_,D,} ,C={C_,C,},
—nm<arg((—2) <7 for C_, 0<arg({—2)<2n for Cy,

C#£z2 z€C, veR, T; Gamma function,

and C_ is a curve along the cut joining two points z and —oo +¢Im(z2), D_
is a domain surrounded by C_ , C, is a curve along the cut joining two
points z and oo + i/m(z), D, is a domain surrounded by C. .
When a > 0, (f)a is the fractional derivative of arbitrary order a , and
when a < 0, it is the integral of order —a , if |(f)a| < 0.
We denote o
N%p = dzf = (#)a-

and the binary operation o is
(NP o N*)f = (NPN)f = NO(NOf) = N*(NPf) (e,BER), (1)

then the set
{N"} = {N"|v € R} (2)

is an Abelian product group ( having continuous index v ) which has the
inverse transform operator (V”)~! = N~ to the fractional calculus operator
NV , for the function f such that f € F' = {f;0 # |f.,| < oco,v € R}, where
f=f(z)and z€ C. (vis. —co<v <00 ).

As for the properties of the operator, see [2], (3], [5]. We introduce here
two necessary lemmas.
Lemma I. We have ([1])

(i)
z—cC By — —maF(a ﬂ) —c B—a F(a — ﬁ)
(=Pl = T OB o (Mo

| <o)

(log(z = ¢))a = —€™T(a)(z — )™ (I[(e)] < 00)

(=)0 = —e™ s log(z =), (I(@)] < o0)

where z — ¢ # 0 in (i), and z — ¢ # 0,1 in (ii) and (iii) ,
(iv)

(u-v)q = Z k'FF((xa++11) k)ua_kvk (u = u(z),v = v(2))
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Lemma IT We have ([4])
(i)
(= =) = )")y = 77 (= = 1)

[—alsT(Bk—aB+7), ¢ I'(Bk — aB +7)
Z k'F ﬂk——aﬂ) ((z—b)ﬁ)k’ (l F(ﬂk~aﬂ) ‘<00X:3)

and
(ii) for n € Z5

(2 = ) =€) = (~1)"(= = )"

o0
[—a)k[Bk — af], c k c
XY ( )%, | | <1, (4)
—t k! (z —b)p (z — b)p
where
Me=AMA+1)--(A+k—=1)=TA+k)/T(X), [No=1.
2 VSOIutions to an extended homogeneous Chebyshev’s equations by

means of N-fractional calculus
We discuss the following type of an extended Chebyshev’s equation
0o (22 =22 —=1)+ ;- (z2—b)— -2 =0

by means of N-fractional calculus.
The above equation is solved by means of N-fractional calculus as follows.

Theorem 1 Letp € F = {p :0 +# |p,| < 0o,v € R} ,then the homogeneous
extended Chebyshev’s equation

w2 (22 =26z =1 4p1-(z=b)—p 12 =0 (1)

has particular solutions of the forms,

(i)
o= (((z= b= (B + 1))~ G _1,,) = oy (2)
and
(i) - 1
e=(((z-0*= (> +1)) ™) _q_,) = ¢fy. (3)
Proof.

We set g = 2z — b, h = 22 — 2bz — 1 and operating N to the both sides
of equation (1), we have then

(p2-h)a+(p1-9)a—(p- V2)a =0, (4)
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hence
P20 h+ Q11 (2+1)-g+pa-(a®—1v?) =0 (5)

since ‘
N%m = (Pm)a = Pm+a (Mm=2,1) (6)

by our index law, and from Lemma (iv) we have

o B _ s MNa+1)
N*(p1-9) = (p1-9)a= kz:% Fi(at1-F) (P1)a—k - Gk (7)
~ pagtpna ®
and
N%(p2-h) = (p2-h)a (9)
= 802+a'h+§01+a'209+90a‘a(a—1)‘ (10)

Choose a such that a? — 2 = 0, that is @ = v or — v. We have then

@2ta - h+@ria - (2a+1)g=0. (11)
When a = v, we set
Y=9(2) = g1, (p= ¢—(1+u)) (12)
and we obtain
P1-h+v-(2v+1)g=0. (13)

Then a particular solution to this linear first order equation is given by
b =h=GH) (14)
Therefore we have

¥ = ¢—(1+u) = ((h_(%+u))—(1+u)
p : —(i+v *
= (e = 0)* = (0" + 1)) 1) = oy (15)
When a = —v, in the similar way we obtain the second solution
1y
p=Y%_(1-y) = ((h~2 ))—(1-—1/)
(Ao
= (=0 -+ 1)) T ) = ¢l (16)

Inversely these functions shown by (15) and (16) satisfy the equation (1)
cleary.
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Indeed we have

LHS of (1) = ¢2-htei-g—- v

%))
(<P2 h) +(901'g)a_90a'1/2) .

(<P2+a ht@iia - 20+ 1)g+ o - (o —VQ))_Q
(v

0

1 h‘* ’lp (2a+1)g)

(17)

with applying (12) and (15) or (16).

3 Familiar forms of Solutions of the extended homogeneous Cheby-
shev’s equation

Applying Lemma II, in case of & = v we have

; —in(—1-v —(v+1) v
p= (((z—b)z - (bz+l))_”+5)_(1+u) — e im(=1-¥) (5 — )~ +3)2+(14v)

XilV+%lkF(2k+(v+%)~2—(1+y)) ®2 + 1)\
KT (2k 4+ (v 4 3) - 2) (z — b)?
(
(=

_ im(14v) ., [V+ ]kr(2k+y) b2 + 1) *
- e (z=b7" — )2

— kIT(2k +2v + 1)

I (@4 D)
5 dauls i) (1)

'Lﬂ’l/( b) 14

Now we notice following relations.
F(Qk + I/) = {V]QkF(V)
D2k +2v 4+ 1) = [2v + 1] (2v + 1)
v, v 1
[V)2k = 22k[§]k[§ + 5k
1
20 + 1)ox = 2% [v + Skl + 1
So we can get
k
o iy F( ) v [ ]k[Q 2]k (b2+ 1)
r=e F(2V+1) b Z Klv+ 1), \(z—1b)?
I'(v) v v 1 b2 41

e W (L S i ——). (1
Y 2bi(g g vt i) M)

Here oF (- - -) denote the Gauss’s hypergeometric function.



In the case of o = —v, we have the following form in according to the
same way of the case a = v,

o= (=0 = (V' +1))72)
i rew>(z_muiikau—s+ak(wr+n>k
k=0

T Ta-w) K—v+ 1k \(z=b)?
i ['(—v) v v 1 b% +1
— wyv _ N _ Vol e — e P,
= —e F(1_21/)(:4 b ati(=5,—5 + 5 u+1,(z_b)2). (2)

4 INlustrative Example

We show some examples.
(1)We consider the case of v = § and b = 5. The equation is

1 1
pr-(F—z=Dtpi(z-5) -9 (3)°=0
Operating N%to the equation, we have
2 1 2 Lo
prea- (2= 2= 1)+ pria- Qat1) (2= 3) +pa-(a? = (5)1) =0

We adopt o = 1/2, then

‘ 1
2 ‘
<p2%-(z z 1)+g01%-2-(z——2)—0.

Setting ¥ = ¥ (z) = P14l We have the following equation

wl-(z2—z—1)+¢-(2)(z—%):o.

and the solution
p=(z2-2z-1)"1

Therefore we have the solution as follows,
Yy = (((22 —c= 1)_1)_(1+%)
_ lo 1o 1
= (2= 3= (P + D) e

With applying Lemma II, we have

¢:0u-§f—§»4)@)

0 1 5 k
= ei”(%)(z —- l)—% X Z [I]kr(2k+ 5) ( Zl )
2 2 KTk +2) \(z- 1)?
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Here we notice the following relations.

['(2k + %) = [%]%F(%) = [%]%ﬁ
['(2k +2) = [2]2xT(2) = [2)ax
Mg=1-2---(1+k-1)=k
Furthermore,

1 ol 1 1
[§]2k = 22k[z]k[z + :Z]k
3 3
[2]2x = 22k[1]k[§]k = 22kk![§]k
At last we obtain

= ™D yr(z - 1) w[%]k[%]k( i )k
Y = v ( 5) 5x}§ il Kemper

133 )
74’2?(2 ]

L= [e

Bl

; 1
— etﬂ'(%)\/;(z__ _2_)——%2}(11( )2

and b = . Then the equation is

> |

ol

(ii) We consider the case of v =
2 1 19
p2-(z"—z=1)+p1-(z=3)—¢-(3)"=0.
Operating N® to this equation, we have

1 1
prva- (=2 =D+ e Qa+1) (2 - 3) +¢a (@° = (3)") =0

We adopt o = 1/3, then

, . 1
502+%~(z2—z——1)+301+%-2-(z-—§)=0.

Setting ¥ = ¢(z) = Pri1, We have the following equation
5 1
b (o= 1) 49 (G 5) =0

and the solution i
P =(22—2—1)7s.

Therefore we have the solution as follows,
5
o = ((P-2- 108
1 1 5
= (((z - 5)2 - ((5)2 +1))78) 141y



Applying Lemma II,

o= (((z - %)2 - (g))_%>_(s)

o R (81,0(2k + 1) 5 \*
= e @) (z— =)3 Z Z'I;“(2k+§93 ((2_4%)2) :

We notice the following relations.

I(2k + %) - [%]ri(é) - 22k[é1k[§]w(%)

D2k + 2) = (21al(3) = 21T ()

So we have
k
__in(d 1 T(3) Z[ gl 3
r(3) Kl (3lk \(z—3)?
r'(3) 124 5
R R A TER R R
X z .
o) 6373 (- 12
We can conclude that the familiar form of the solution can write as
i L) 1 b2 +1

p(z) = —e m(z“)yF(—’:z 5 +1( b)g)

where |(b? +1)/(z — b)?| < 1, including the case of v be integer formally.
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