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Abstract

In Infinitary Logic, the topological space S(Lr,T) is not compact.
Morley showed S(Lr,T) is analytic where L is countable[2]. In this pa-
per I show that S(Lr,T) is completely metrizable where L is countable.

1 Introduction

In Infinitary Logic, compactuess fail. For example, {z # ¢;}icwU{V, ., ( = ¢;)}
is finitely satisfiable but inconsistent. By this fact, we can’t get saturated models
and arbitrary large models in general. How do we construct a large model? The
model existence theorem is a way to construct some models(see [1]). In this
paper, I show a basic property of infinitary logic. In many cases you can use
this property instead of the model existence theorein. In section 2, I define
Lr a fragment of L. .. This definition has little deferences from some text
books[1], but you can easily understand that it is sufficiently general. In section
3, I translate Lr to L(7), a language with first order logic. We’ll see that any
class of nodels of a theory of Lg is equivalent to a subclass of an elementary
class which language is F(7). This subclass is characterized by a set of types.
In section 4, I show that if language is countable then S(Lg,T) is completely
metrizable.

2 Preliminaries

First I define L, ,, and a fragment of L, .

Definition 1 Suppose L is the set of all (first order) L-formulas.

1. Let {p;, fj,cx} be a set of new symbols. Then We’ll write L({p;, f;,ck})
as the set of all (first order) formulas of the expanded language which is
added {p;, fj,ck} to the language L.
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2. Ly, is the smallest set of forinulas such that

(a) L C Lg.

(b) L, is closed under finite boolean combination and finite quantifica-
tion.

(c) f &(Z) C Lew (|®| < K, |Z] < w), then A ®(Z) € Ly .

3. We say Lr is a fragment of L, iff L C Ly C Ly, and it is closed
under finite boolean combinations and finite quantifications, subforinulas,
and finitely exchanging of terms(i.e. if ¢(t) € Lp,  is L-term, then

¢(t') € LF).

I note that every formula has only finitely many variables.(There may be
infinitely many occurrences.) In the following, we fix a fragment Lg C L, .

3 Translation

3.1 Translation of Lr into L(7)(first order logic)

I construct a first order language L(7) corresponding to Lf.

Definition 2 We define 7 be a set of new predicate symbols Ps.

1.7 ={Ps(z) | N®(2) € Lr}.

2. ¢* € L(7) is defined in each ¢ € Lg as follows.
(a) If ¢ € L then ¢* = ¢.
(b) If ¢ is ¢1 A d2(—¢1, 1), then ¢* is defined by @7 A ¢3(—¢%, Izd}).
(c) If ¢ = A ®(Z), then ¢* = Ps(Z).

Remark 3 Themap x: Lr — L(7) is injective but not surjective. For exainple,
suppose /\ ®(y) be a Lp-formula and t(z) be a L-terin. Let ®'(z) = ®(t(x)).
There is a predicate symbol Py (y) and we can take a L(7)-forinula Pg(¢(z)). But
(A ®'(x))* is just Pp:(x). So there is no Ly-formula 9 such that v* = Pg(t(z)).

Next I define suitable subclass of L(7)-structure STR. Each member of STR
omits a set of L(7)-types I" and interprets Py like A ®. In section 3.2, we’ll see
that STR. is "suitable”.

Definition 4 Suppose M is a L-structure.

1. M* is a L(7)-structure expanded M such that M* |= Pg(a) if and only if
M = A\ ®(a) for all Py € L(7).

2. T ={q(9)lg = {~Ps(9)} U (9)*, Pa(y) € L(7)}.
3. Ty = {VZ(Ps(Z) — ¢*(Z))|Ps € L(7),¢ € ®}



5. STR = {N|N is a L(r)-structure, N omits ', N = T;.}

Let * : M — M?* be the map in Definition 4. It is easy to show the map
is a injection. Moreover, the image of the map is a subset of STR. Actually, if
M = A\ ®(a), then M |= ¢(a) for all ¢ € ®. This implies M* = T;. On the
other hand, if M = ¢(a) for all ¢ € ®, then M = A ®(a). this implies M*
omits I'.

The next remark is important. This claims that x : Ly — L(7) is not a bijection
but it seeins a bijection under T.

Remark 5 For all L(7)-formula ¢(Z), there is a Lp-forinula ¢(Z) such that
T EVz(¢(z) > ¥(2)7). '

Proof: By induction on ¢(Z). If #(Z) = Pe(f(Z)), then we can take ¥(Z) =
Py (T) where ®'(Z) = ®(¢(z)). By T, ¢ is equivalent to . The other cases are
straightforward. 1

3.2 Interpreting as a subclass of L(7)-structures

Proposition 6 Suppose N is a L-structure. If N is in STR, then N[ }= #(a)
if and only if N |= ¢*(@) forall ¢ € Lp,a € N.

Proof: By induction on ¢. Suppose ¢ = A ®(Z). Let N[= A ®(a). By
definition, this means N[ (@) for all v € ®. By induction hypothesis,
N = y*(a) for all ¢ € ®. Since N is in STR, N omits ['(Definition 4). Then
N = Pg(a). Conversely, let N |= Py(a). Because N is in STR, N &= T;. So
we get N |= ¢*(a) for all ¢ € ®. By induction hypothesis, N[, #(a) for all
¢ € ®. Therefor N[r= A ®(@). The other cases are straightforward. i

Corollary 7 Suppose ¢ € Lp, ¥ C Lp.
1. Iin(x) = STR, »~! = [L.
2. NeSt= N Ts.
3. L= ¢ < For all M € STR, if M | £* then M = ¢* .

Proof: 2. We want to show that N = Py (a) > Pp(t(a)) for all @ € N. Let
N | Ps/(a). Then N[ = A\ ®'(a) by proposition 6. Take b = £(a) € N. Since
®'(a) = ®(#(a)), we get N[ = A ®(b). Again by proposition 6, N = Py (b).
This implies N |= Py (#(@)). The other direction is the same.

Proposition 6 and Corollary 7 say that you can consider the inodel theory

of STR instead of the model theory of Lp.
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4 Complete metric

4.1 G;

Definition 8 Suppose T is a set of Lg-sentences.

1. £(Z) C LF is an n-type with respect to T if |Z| = n and there are a L-
structure M and elements @ € M such that M = ¢(a) for all ¢(z) € £(Z).

2. Su(Lp,T) is the set of all complete(in Lg) n-types w.r.t. T.

In model theory for first order logic, the space of types S, (T) is compact.
Morley showed S,,(Lr,T) is analytic where Lp is countable[2]. A topological
space is analytic if it is a iinage of continuous function of a Borel set. In this
section, I introduce G5 subsets. Clearly every G5 subset is a Borel set then it
is analytic. We will see S,(LF,T) is a G5 subset of a stone space.

Definition 9 Let S be a topological space, and A C §. Then A is called a
G5 subset of S if there are countably many open sets O;(i < w) such that

A = ﬂi<w0i.
The next fact is well known. For example, see [4].

Fact 10 Let S be completely metrizable and A C S. Then A is G if and only
if A is comnpletely metrizable.

4.2 So(Lp,T)is Gs

First, I claimn that we can consider S,(Lg,T) as a subset of S, (T™).

Lemma 11 If ¥(Z) C Lp is finitely satisfiable, then £* UT; UT5 is also finitely
satisfiable. If ¥(Z) C L is finitely satisfiable and comnplete in Lg, then £* U
T) U T3 has a unique completion in L(7).

Proof: If M = ¢(a), then M* = ¢*(a) by definition of x. Moreover, M* € STR.
Then M |= UT; U Ty by Corollary 7. (Remark 5 implies the uniqueness of
completion.) i

Recall I is the set of L(7)-types(See Definition 4). If £(Z) C L is consistent,
then there is a model M = ¥(a). Then M* must be omits I' and M* =
Y*(@)UT). Conversely, If there is a model N = ¥*(@) UT; which omits I, then
N[rE ¥(a). This fact implies that S,(Lr,T) is a G5 subset of a stone space
by Ounitting Types Theoreimn. We'll see this in Proposition 12 and Theoremn 14.

Proposition 12 Suppose L is countable and p(Z) is a set of Lg-formulas. Let
p(Z) be finitely satisfiable and complete in Lr. The following are equivalent.

1. p(Z) is consistent.

2. For every q(Z,y) € T, ¢ is nonisolated w.r.t. p(Z)* UT; U T5.
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3. For every A\ ®(Z,3),¥(Z,§) € L, either of (a) or (b) holds.

(a) Vg(¥(Z,9) = N ®(%,9)) € p(z)
(b) g(¥(z,7) A ~¢(Z, 7)) € p(Z) for some ¢ € P.

Proof:

(2—>1)

By omitting types, we can take a model M = p*(a) U T, which omits I'. Then

M|k p(a) by Proposition6.

(1-3)

Notice {¢p = ¢|¢p € ®} = ¢ - A ®. So, if (b) does’t hold then (a) holds by the

consistency and the completeness of p(z).

(3 —2)

Since p(Z) is complete, p*(Z) D T). Because of Lemnmall, we can assuine

p*(Z) UT: is a complete consistent in L(7). Let ¢(Z,7) = {—Ps(Z,5)} UD*(Z,7)

be isolated w.r.t. p*(Z)UTs. Then we can find a L(7)-forinula ¢’(Z, ) such that
¥/ isolates ¢g. By Rewnark 5, there is a Lp-forinula v(Z, ) such that Tp = ¢* &

w By 3., either V§(y*(Z, ) — Ps(Z,9)) € p*(Z) or IG(¥*(Z,9) A —¢*(Z, 7)) €

p*(Z) for some ¢* € ®* holds. But ¢* isolates q. Then p(Z)* U T, must be

incousisteunt. |

Corollary 13 Suppose Lr and p(Z) satisfy the assuinption of Proposition12.
Let Lf satisfy following condition (a)(b).

(@) Y, A® € Lr = N{¢ = ¢}sco € Lr.

(b) AN®(z,9) € Lr = /\{V$¢($ U)}gco € LF.
Then TFAE.

1. p(Z) is consistent.

2. For all A®(z) € Lp, if - A ®(Z) € p(Z) then there is ¢ € ® such that
~¢(z) € p(z). i

Theorem 14 Suppose T' C Lp, and |Lr| < w.
Then S, (Lp,T) is completely metrizable.

Proof: ~ First I prove at T = 0. Let D, = {p(Z)|p(Z) is complete(in Lp)
and finitely satisfiable, |z| < n.}(I remark p mnay not be consistent). Then D,
will be a stone space and S, (L, ) is a subset of D,,. Because D,, is a second
countable stone space, it is completely netrizable. Let’s show S, (Lg,0) is a G
subset of D,. By Proposition 12, we can take

Sn(LF,8) = DA a(z.9).6@5)elr Ysed Ovgip- A $)VIgpa-g))-

So Sn(Lp,) is completely metrizable by Fact 10. If T # 0, we can take
Sn(LF,T) = Sn(LF,Q) N ﬂ¢€TO¢,. 1
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