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On Coheir Sequences

— Indiscernible Array, Tree and Forest —

Akito Tsuboi
Institute of Mathematics
University of Tsukuba

1 Preliminaries

We study indiscernibility. Indiscernible sequences are important objects in
model theory. They are essentially used when defining certain important no-
tions in model theory, e.g. dividing, forking and simplicity are all defined via
indiscernible sequences. A coheir sequence is a special type of an indiscernible
sequence.

Indiscernible array and tree are also important objects, and they gener-
alize the notion of indiscernible sequence. Roughly, we say that an infinite
matrix (a;;);; is an indiscernible array if both the columns and the rows of
the matrix form an indiscernible sequence. Similarly a set (ay)ner with the
index set I having a tree order structure is called an indiscernible tree if it
has some indiscerniblility condition.

In this note, we discuss when we can find an indiscernible array (or an
indiscernible tree) with a given property. More precisely, we are interested
in the following type of questions:

1. Let X = (z;;) be a set of variables. Let I'(X) be a set of conditions
(written by formulas whose free variables are among X). Is it possible
to realize I' by an indiscernible array?

2. Let Y = (yp)nins be a set of variables, where I is a tree. Let A(Y') be
a set of conditions. Is it possible to realize A by an indiscernible tree?

First we give some general results concerning these questions. Later we apply
our results to the study of theories with kinp(T") < 00.
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Let us recall some basic definitions.

Definition 1 1. Let M C A. We say that p(z) € S(A) is a coheir exten-
sion of p|A, if p(z) is finitely satisfiable in M.

2. Let p(z) be a finitely satisfiable type in M. We say that I = (a;);c,, is
a coheir sequence over M in p(z) if the following hold for all 1,

(a) tp(ait+1/Aaog, ..., a;) is a coheir extension of p(z).
(b) tp(ai+1/Aao, ..., a;) D tp(a;/Aag, ...,a;_1).
The following are easily verified.

Fact 2 1. If I is a coheir sequence over M in p € S(A) then I is an
indiscernible sequence over A in p.

2. A coheir sequence can be extended to an arbitrary length.

2 Existence of Indiscernible Array

Definition 3 Let I and J be indiscernible sequences over A.

1. We say that (a;;)ier jea is an array of type (I, J) if every I; = (ai;)jen
is isomorphic to I over A and every J; = (a;j)ier is isomorphic to J
over A.

2. Moreover, we say that the array is an indiscernible array over A, if

(a) (I;)ier is an indiscernible sequence over A, and

(b) (Jj)jea is an indiscernible sequence over A.

Remark 4 1. If there is an array of type (I,J), then there is an A-
indiscernible array of type (I, J). This can be shown by an easy argu-
ment using Ramsey’s theorem.

2. If (a;j)i jew is an A-indiscernible array, then for any increasing n, v € w”,
we have tp((an(i)v())ijew) = tP((ai)ijew)

3. Let I be any indiscernible sequence over A. Then there is an indis-
cernible array of type (I,I). This can be shown by extending I to an
indiscernible sequence of length w?.
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Proposition 5 Let p(x) € S(M). Let I be an M-indiscernible sequence in
p(x). Then there is an array (aij); jew and an M-coheir sequence J such that
(aij)ijew s an M-indiscernible array of type (I, J). Moreover, we can choose
(a,-j)i’j&, so that (ai,n(i))iew %J]” J hOldS fO’F anyn € wv.

Proof:  Let I = (b;);ew? be an extension of I with the order type w?. We
prepare two sets of variables X = {z; : i € w?} and X; = {y; : i € w?}. Let
['(Xo, X1) be the following set of formulas.

4 - *x 9
“Xo =m X1 =y I

U U {—p(zr,ye) : ¢(br,yc) not satisfiable in M}.
F.GCw?
p(zr.ya)EL(M)
Choose I} = (c;);cw2 such that tp(I7 /M) is a coheir extension of tp(I5/M).
Then I§, I7 satisfies I'(Xo, X1). Moreover, (by;)jew?(Cn;)jen? satisfies I', when-
ever {n; : j € w?} is an increasing sequence. So, by a compactness argument
using Ramsey’s theorem, we can assume that (b;¢;);e,2 forms an indiscernible

sequence. By continuing this process, we can find copies I = (b;;) ecw? of I
such that

1. (I})iew is a coheir sequence over M,
2. (J;)jsz is an indiscernible sequence over M, where J} = (bij)icw-
For i,j € w, we put
@ij = biwitj,

I, = (aij)jew-,

Ji = (ai)icw-
Claim A (I;)ic, s an M-coheir sequence.

By condition 1, clearly tp(li+1/MIy---1I;) is finitely satisfiable. Again
by condition 1, tp([,_l_l/]WIO s Ii—l) = t‘p((bi,wi+j)j€w/MIO cee Ii—l)' By
condition 2, tp((bi,wi+j)j6w/MIO o Iz 1) = tp(Iz/A{IO s Ii——l)- Thus
tp(Lig1/MIy---I;_1) = tp(I;/MIy-- - I;_1), and hence (I;);c., is an M-coheir
sequence.
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Similarly, we can show that (J;);e, is an M-indiscernible sequence. Fur-
ther, by condition 2 above, the type of (b;,(i))icn over M is fixed for all
strictly increasing sequence v € (w?)*. However, for any n € w¥, the ordinal
wt + n(¢) increases as i increases. Hence the moreover part holds.

Definition 6 Let O C w<¥.

1. Let Ly = {<ien, <ini, <,N, @} and Ly = LoU{P, : n € w}. We consider
the following structure on O:

a) P,(n) <= len(n) = n i.e. the length of n is n. (n € w).

(
(b) 1 <jen ¥ <= len(n) < len(v).

) F,
)

(c) N <ini ¥ <= 7 is a proper initial segment of v.

(d) n < v <= nis less than v in the lexicographic order.
)

(e) mNv = the longest common initial segment of n and v.

2. Let X,Y C O be two finite subsets. We write X ~; Y if X and Y have
the same atomic type with respect to L;. We write X ~q Y if X and
Y have the same atomic type with respect to L.

3. Let H be an infinite subset of w and let {h; : i € w} be the enumeration
of H in increasing order. For a sequence n = (9(0), ..., n({—1)) of length
[, we define oy (n) of length h;_; + 1 by

o (n)(3) = {n(j) ifi= hj.,

0 otherwise.

In different notation,

on(n) = (0",n(0))~ (0"~ n(1))~ - TN M2 (1~ 1)),

where 0' denotes the I-time iteration of 0. oy is an order preserving
mapping with respect to <jen, <in and <.

Remark 7 1. Let us consider the case hg = 1 and h; = 3. For simplicity,
we write n* for og(n). Then (0,1) N (0,0) = (0) N (0), but (0,1)* N
(0,0)* = (0,0,0,1) N (0,0,0,0) = (0,0,0) and (0)* N (0)* = (0,0) N
(0,0) = (0,0). So the mapping oy does not preserve the operation N.
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2. For m;, ..., my, there are ¢ < j < n such that ;; N --- N7, = m;Nn;. So
Ly-atomic formulas are assumed to have the form nNv = n; Ny, or
nNv <*n Nup, where <* is either one of <, <jen, <ini-

Lemma 8 Let h,k : w — w ~\ {0} be two increasing functions satisfying
h(3+1)—h(i) >1 and k(i + 1) — k(i) > 1 for alli. Let H =ranf and K =
rank. Then, for any X,Y C w<¥ with X ~o Y, we have ocg(X) ~q ox(Y).

Proof: ~ We show that the Lo-atomic type of oy (X) is determined by the
Lo-atomic type of X without using specific properties of H. We simply write
n* for oy (n). Let ¢ be a given atomic Lo(X*)-formula. We describe how the
validity of ¢ is determined. Since other cases are treated similarly, we only
consider typical cases. First we consider the formula n* Nv* = n} Nvf, where
n,v,m, V1 € X. By the definition of oy, we have

Ayt = (nNv)*= 0™ ifn Ly,
7 lmnv)” otherwise,

where m = h(len(nNv)) —h(len(nNv)—1)—1> 0, and 1 L v is the formula
expressing that 7 and v are not <j;-comparable. In particular, we have
len(n*Nv*) = h(len(nNv)) if n L v and len(n* Nv*) = h(len(nNv) —1) + 1
otherwise. From this we see

nlv and n Ly
"NV =niNv] < nNv=mn Nv, and or
-(nLv) and —(m L 1y).

The right-hand side does not depend on H, and whether or not it holds is
determined by the Lg-atomic type of X. We also see

(—(n Lv)and n L1

OV <M NV] <= NNV <iiym Ny or J and
nv=mnNuy
(-(p Lv)and m L1,
NNV <jen M NV] <= NNV <gen M1 Ny or and
\ nml/glennlmyl

OV <N NY] <= "NV <guni Nvy or nNv <y Nuy.

Again the right-hand side is determined by the Lg-atomic type of X. So the
Lo-type of X* is completely determined by that of X.
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Definition 9 Let A = {a,:n € w<*}.

1. We say that A is an indiscernible tree over B if whenever X ~¢ Y then
ax =g ay, where ax = {a, : n € X}.

2. We say that A is a weakly indiscernible tree over B if whenever X ~, Y
then ax =g ay.

3. We say that an indiscernible tree A over B is a strongly indiscernible
tree, if whenever H is an infinite subset of w, then the subtree de-
termined by H is B-isomorphic to A4, ie. A =g og(A), where
o1 (A) = (Goy () Inewse- -

Proposition 10 Let I'((z,)ew<w) be a set of L(B)-formulas with free vari-
ables among x,’s. Suppose that I' has the subtree property in the following
sense: If A realizes I then any subtree of the form oy(A) also realizes T.
Then the following conditions are equivalent:

1. T 1s realized by a weakly indiscernible tree over B,
2. T 1s realized by an indiscernible tree over B,

3. T is realized by a strongly indiscernible tree over B.

Proof: ~ The implications 3 = 2 = 1 are trivial. To prove 1 = 3, assume
(ay)pew<w is a weakly indiscernible tree satisfying I'. We prove that the strong
indiscernibility is attained by modifying (a,)peu<v. Our aim is to prove the
finite satisfiability of the union TUA U ©:

A((zg)pewss) = | J {elzx) ¢ o(zy) : XY Cw<, X ~ Y},
pEL(M)

O((zp)newsw) = | J {olax) € 0(@or(x) : X Cw™, K Cw, |K|=uw}.
pEL(M)

Let Z C w<“ be a finite set and n = |{len(n) : n € Z}|. For an n-element
subset F' of w, by the weak indiscernibility, the L-type of ax with X ~q Z
and {len(n) : n € Z} = F depends only on F (does not depend on the specific
choice of X). Fix L-formulas ¢;, ..., ¢ with free variables z, ..., Tix|-1- By
the above argument, the following function f : [w]® — 2F is well-defined:

F(F) = ((F), o fe(F))
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0 otherwise.

£(F) = {1 wi(ax) holds’,

By Ramsey’s theorem, we can get a homogeneous set H = {h; : i € w} Cw
for this f. We can assume that h; ; — h; > 1 for every 7.
Now we define the tree (b,)pcu,<v by

by = UH(an) = Qoy(n)-

By the subtree property of I', (b,)new<~ satisfies I So what is left to show
is that (by)pew<w satisfies the restriction of AU © to the formulas @1, ..., Q.
But this holds by Lemma 8.

Corollary 11 Let p(z) € S(M). Let I be an M-indiscernible sequence
in p. Let J = (bj)jew be an M-indiscernible sequence in p such that
tp(bo -+ - bn/Mb,11) does not divide over M for every n. Then there is a
tree (apn)new<w such that

1. (ay|j)jew =n J for every path v.

2. (ap~i)iew Zm I for every n € w<¥.
Furthermore we can choose (ap)pew<w as a strongly indiscernible tree over M.
Proof:  The conditions 1 and 2 are expressed by a set of formulas, say
I'. The existence of (a,)pew<v satisfying I'((zy)pew<~) is easily proven. By
Theorem 2.6 of [Sh, AP., §2], since the length of J can be made arbitrarily
long, we may assume that the tree (a,),ew<v is a weakly indiscernible tree. It

is easy to see that ['((z,)pew<«) has the subtree property. So, by proposition
10, we can choose a strongly indiscernible tree (a,)pew<~ satisfying T'.

Proposition 12 Let p(x) € S(M). Let I = (ap)pew<~ be an indiscernible
tree in p. Then there are copies I; = (a;p)new<w of I such that

1. (I;)iew forms an M-indiscernible sequence,

2. (@i 3i))iew 1S an M-indiscernible sequence, for any sequence 7 € (w<w)¥,
and the type of (a;n))icw over M is fized.

Proof: A similar method as used in proposition 5 can be applied. Let
O = A\<*, where X\ > w?. Preparing X = (x,),co of variables, we consider
the set I'(X) consisting of
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3. “($n)n€w<w ——A-JM I”,
4. Uperonle(zr) © p(ze) : F,G CO,F ~ G}.

Since I is an indiscernible tree, I is consistent. So we can find I* = (b,),c0
satisfying I'. We put

Qig buz‘An’

where p; is the constant sequence (wi,wi,---) of length wi. By letting
I; = (@ipn)new<w, we show that the requirements are fullfilled. First note
that Oy = w<¥ and O; = {u;"n : n € Op} have the same Ly-atomic type.
So I;’s are all isomorphic to I over M. Moreover, (O;)icy is an Lg-atomic
indiscernible sequence. From this we know that (I;);c, is an M-indiscernible
sequence. Further, for any sesquence n € O¢“, (1t;” 1(i))icw is an Lo-atomic
indiscernible sequence and the L¢-atomic type is fixed. Hence, (a;n())iew is
an M-indiscernible sequence, for any 7 € w*, and the type of (a;,))icw Over
M is fixed.

3 Application to theories with «;,,(T) < o0
In this section we assume kinp(7T") < 00.
Fact 13 The following are equivalent:

1. o(z,a) divides over M;

2. There is a coheir sequence J over M with a € J such that {©(z,b) :
b€ J} is inconsistent.

Proof:  Suppose that ¢(x,a) divides over M and choose an M-indiscernible
sequence I in tp(a/M) such that {¢(z,b) : b € I} is inconsistent. Then, by
Proposition 5, choose an indiscernible array (a;;);jew such that I; = (a;;)jew
is isomorphic to I and that each (a@in(i))icw is a coheir sequence. By kinp(T') <
oo, there must be a path 7 such that {¢(z,a; ) : 4 € w} is consistent.

Proposition 14 (Chernikov-Kaplan) 0(x) divides over M if and only if 6(x)
forks over M.

Proof:  For this, we show that
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(*) if each of ¢(z,a) and v¥(zx,a) divides over M, then w(z,a) V ¥(z,a)
divides over M.

Choose M-indiscernible sequences I witnessing the dividing of ¢ and J =
(b;)icw Witnessing the dividing of 1. By Fact 13 and compactness, we can
assume that tp(bo - - - b,/Mb,+1) does not fork over M (n € w). By Corollary
11, there is a strongly indiscernible tree A = (a;,)yew<wsuch that

L. (ay);)jew =um J for every path v.

2. (ay~i)icw =n I for every n € w<v.

By Proposition 12, there are A; = (a;,)pew<~ (¢ € w) such that for any
n € w”, Iy = (i) )icw is an M-indiscernible sequence and that I,’s are
mutually isomorphic over M.

Claim A For any n, {¢(z,b) : b € I} is inconsistent.

Assume otherwise. Since I,’s are all isomorphic, {¢(z,b) : b € I} is consis-
tent, for any n. Now we consider sequences

I = (ai())jew (i € w).
By the condition 2 and the the indiscernibility, we have I; =,, I. So, for
some k, every {¢(z,b) : b € I;} is k-inconsisitent. On the other hand, by our
assumption, {¢(x, a; i) : ¢ € w} is consistent, for any n € w*. So we would
have kinp(T") = 00, a contradiction.

For the same reason as in the above claim, we can show that {¥(z,b) :
b € I,} is inconsistent. Thus we see that {p(z,b) V ¥(z,b) : b € I,} is
inconsistent.

4 Examples

Example 15 Let T be the theory of the binary tree M = (2<%, <) of height
w. Let M be an elementary extension of M and choose n € M\ M. nis a
{0, 1}-sequence of infinite length, say a. For simplicity, we assume 7(i) = 0
for any i < a. We consider the formula 7 < x with the free variable z. First
we show that this formula divides over M: For n € w, let 1, be the n-th
predecessor of 77 and define v, by
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The set {v, < z:n € w} is 2-inconsistent. So n < z divides over M.
Moreover, by compactness, there is an indiscernible sequence I such that

fv<z:vel}

is 2-inconsistent. It is not hard to show that I is a coheir sequence. Notice
that two elements from I are not comparable. On the other hand, there is a
coheir sequence J = {¢,, : n € w} such that

lns1 < lp (N € W).
Then {t, < z:n € w} is consistent.

Example 16 (Essentially in [3]) Let us consider the following example with-
out the independence property, which is essentially given by Shelah. Let
M = (M, R) be a connected graph having the following properties:

1. M has no cycle;
2. Every point in M has infinitely many R-neighbors.

Let P be the 3-ary relation defined by:
P(a,b,c) <= every path between a and c passes through b.

We consider M as a {P, R}-structure. Choose a,b € M with R(a,b), then
we have
z =zt P(z,a,b) VvV P(z,b,a).

We claim that P(z,a,b) 2-divides over (). Choose infinitely many distinct a,,
(n € w) with R(an,b). Then {P(z,an,b) : n € w} is 2-inconsistent, since
there is no cycle in M. From this we conclude that the formula z = z forks
over {.

Let d € M be an arbitrary element. Since M is a connected cycle-
less graph, we have P(d,a,b) or P(d,b,a). We assume P(d,a,b) holds. If
tp(ab/d) = tp(a't’/d) then we have d is a common solution of P(z,a,b) and
P(z,a',V'). So P(z,a,b) does not divide over d. In case P(d, b, a), the formula
P(z,b,a) does not divide over d.
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Example 17 (Forklore?) Let R be a binary relation symbol. A symmmetric
irreflexive R-structure will be referred as a graph. We say that three points
a, b, cin a graph form a triangle, if R(a,b) A R(b,c¢) A R(c,a) holds. Let M be
a random graph without triangles. To define M more precisely, let K be the
class of all finite graphs without triangles. K has the amalgamation property,
so there is a unique K-generic structure M. The theory T = Th(M) is not
simple, but we have kin,(T) < 0.

We work in a large elementary extension of M. We consider the formula
R(z,a). Let I = {a; : ¢ € w} be an indiscernible sequence over A with
ag = a. By the indiscernibility, there are no R-edges in I. So we can find b
satisfying {R(z,a;) : a; € I}, since b does not make a triangle. This shows
that R(z,a) does not divide A.

Now we see that R(z,ap) A R(x,a,) divides over A. Let J = {ag;a1;: j €
w} be an A-indiscernible sequence such that R(a;j, an) <= i # k and j #
for any 14, j, k, . Suppose that {R(z, ap;) A R(z,a1;) : j € w} is satisfied by an
element d. Then there would be a triangle d, ag, a;;. This is a contradiction.
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