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Abstract
We consider the formulas used by Julia Robinson in her proof that number

fields are first order undecidable. We extend the result of [1]. We prove that
it defines subrings in some infinite algebraic extensions of the rationals. As an
application we discuss undecidablities of those infinite algebraic extensions.

1 Introduction
In 1959 Julia Robinson [8] proved that any number field, as well as the corresponding
ring of algebraic integers, is undecidable, by showing that $\mathbb{N}$ is $\emptyset$-definable (in the ring
language) in the ring, and the ring is $\emptyset$-definable in its number field.

She first considered the formula
$\varphi_{m}(s, u, t)$ : ョ$x,$ $y,$ $z(1-sut^{2m}=x^{2}-sy^{2}-uz^{2})$ ,

where $m$ is a positive integer such that $\mathfrak{p}^{m}\wedge 2$ for all prime ideals $\mathfrak{p}$ of a given
number field $F$ , that is, $m$ is an integer greater than all the ramification indices of
prime ideals of $F$ which divide 2. Then she proved that for a given prime $\mathfrak{p}_{1}$ of
$F$ there are $a,$ $b\in F$ such that $\varphi_{m}(a, b, t)$ defines a finite intersection of valuation
rings $\bigcap_{\mathfrak{p}\in\Delta}O_{\mathfrak{p}}$ where $\triangle$ is a finite set of primes of $F$ containing $\mathfrak{p}_{1}$ . (We actually
can define the valuation ring of $\mathfrak{p}_{0}$ using two $\varphi_{m}(s, t, u)$ with some choice of those
parameters. ) We denote by $\varphi_{m}(a, b, F)$ the solution set of $\varphi_{m}(a, b, t)$ in $F$ , that is,
$\varphi_{m}(a, b, F)=\{\alpha\in F : F\models\varphi_{m}(a, b, \alpha)\}$. It is easy to see that $\bigcap_{a,b\in F}\varphi_{m}(a, b, F)=0$.
Therefore in order to define the ring of algebraic integers $0_{F}$ in a given number field
$F$ , J. Robinson considered the intersection of all $\varphi_{m}(a, b, F)$ containing $\mathbb{Z}$ , which is
defined by $\psi_{m}(t)$ :

$\forall s,$ $u(\forall c(\varphi_{m}(s, u, c)arrow\varphi_{m}(s, u, c+1))arrow\varphi_{m}(s, u, t))$ .

Note that $\varphi_{m}(s, u, t)rightarrow\varphi_{m}(s, u, -t)$ . We denote by $\psi_{m}(F)$ the solution set of $\psi_{m}(t)$

in $F$ as before. It is possible to define $0_{F}$ since $\mathbb{Z}\subseteq\psi_{m}(F)\subseteq 0_{F}$ and $F$ has an
integral basis over the rationals $\mathbb{Q}$ . (The defining formula of $0_{F}$ depends on $F$ . )

In this paper we calculate the solution set of $\psi_{2}(t)$ in some infinite algebraic
extensions of $\mathbb{Q}$ .
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2 Construction of $\psi(t)$

Let $F$ be a number field (a finite algebraic extension of the rationals $\mathbb{Q}$ ) and let $0_{F}$

be the ring of algebraic integers of F. $F^{*}$ will denote the set of non-zero elements of
$F$ . By $\mathfrak{p}$ we denote a place of $F$ and by $F_{\mathfrak{p}}$ the completion of $F$ with respect to $\mathfrak{p}$ .
Since non-archimedean places of $F$ are p-adic valuations for some prime ideal $\mathfrak{p}$ of $F$ ,
we use the same letter $\mathfrak{p}$ for both the place and the prime ideal. The ring of integers
of $F_{\mathfrak{p}}$ is denoted by $(0_{F})_{\mathfrak{p}}$ , its maximal ideal is also denoted by $\mathfrak{p}$ . Let $\mathfrak{p}$ be a prime
ideal of $F$ and $a\in F$ . By $\nu_{\mathfrak{p}}(a)$ we denote the order of $a$ at $\mathfrak{p}$ . Given $a,$ $b\in F^{*}$ , we
use Hilbert symbol $(a, b)_{\mathfrak{p}}$ , which is defined to be $+1$ if $ax^{2}+by^{2}=1$ is solvable in
$F_{\mathfrak{p}}$ , otherwise defined to be-l. For $a,$ $b\in F^{*}$ we denote by $S_{F}(a, b)$ the set of places

$\mathfrak{p}$ of $F$ such that $(a, b)_{\mathfrak{p}}=-1$ . We know that it contains even number of places of. $F$ .
The following lemma is well-known.

Lemma 1 A nonzero element $h$ of $F$ can be represented by the the temary quadmtic
form $x^{2}-ay^{2}-bz^{2}$ in $F$ if and only if $h/(-ab)\not\in F_{\mathfrak{p}}^{*2}$ for any place $\mathfrak{p}$ such that
$(a, b)_{\mathfrak{p}}=-1$ .

This follows from the properties of quaternary quadratic forms and the Hasse-
Minkowski theorem on quadratic forms. See [7, p. 187].

Lemma 2 Given even number of distinct prime ideals $\mathfrak{p}_{1},$

$\ldots,$
$\mathfrak{p}_{2k}$ of $F$ there are

$a$ and $b$ in $F^{*}$ such that $S_{F}(a, b)=\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2k}\}$ and $\nu_{\mathfrak{p}_{i}}(a)=1,$ $\nu_{\mathfrak{p}_{i}}(b)=0$ for
$i=1,$ $\ldots,$

$2k$ .

Proof. By weak approximation, we get an element $a$ of $F^{*}$ with $\nu_{\mathfrak{p}_{i}}(a)=1$ for all $i$ .
We know by [7, 71:19. Theorem p. 203] that there is $b\in F^{*}$ such that $S_{F}(a, b)=$

$\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2k}\}$ . In the proof of [7, 71:19. Theorem p. 203], we can take $b$ with $\nu_{\mathfrak{p}_{i}}(b)=0$

for $i=1,$ $\ldots,$
$2k$ 口

J. Robinson actually proved in [8, Lemma 9] that given a prime ideal $\mathfrak{p}_{1}$ of $F$

there are relatively prime elements $a$ and $b$ in $0_{F}$ such that $(a)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{2k}$ , where
$\mathfrak{p}_{1},$

$\ldots,$
$\mathfrak{p}_{2k}$ are distinct prime ideals that include every prime ideal dividing 2, and $b$

is a totally positive prime element such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p}|a$ .

Lemma 3 Let $a,$ $b,$ $c\in F.$ If $a$ and $b$ satisfy Lemma 2 and $m$ be a positive integer
such that $\mathfrak{p}^{m}\int 2$ for every prime ideal $\mathfrak{p}$ . Then

$1-abc^{2m}=x^{2}-ay^{2}-bz^{2}$ is solvable for $x,$ $y$ and $z$ in $F$ iff $\nu_{\mathfrak{p}_{i}}(c)\geq 0$ for each $i$ .

Proof. By Lemma 1, $h=1-abc^{2m}$ can be represented by $x^{2}-ay^{2}-bz^{2}$ iff $h/(-ab)\not\in$

$F_{\mathfrak{p}_{i}}^{*2}$ for $1\leq i\leq 2k$ .
If $\nu_{\mathfrak{p}_{i}}(c)\geq 0$ for each $i$ , then we have $\nu_{\mathfrak{p}_{i}}(h/(-ab))=-1$ , hence $h/(-ab)$ is not a

square of $F_{\mathfrak{p}_{i}}$ for each $i$ .
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Suppose $\nu_{\mathfrak{p}_{i}}(c)<0$ for some $i$ . We know in $F_{\mathfrak{p}}$ that $(1+\mathfrak{p}^{r})^{2}=1+2\mathfrak{p}^{r}$ if $\mathfrak{p}^{r}\subseteq 2\mathfrak{p}$

by [7, p. 163]. Noting $h/(-ab)=c^{2m}(1-1/(abc^{2m}))$ , we see that $h/(-ab)$ is a square
of $F_{\mathfrak{p}_{i}}$ since $\nu_{\mathfrak{p}:}(1/(abc^{2m}))\geq 2m-1$ and $\mathfrak{p}^{2m-1}\subseteq 2\mathfrak{p}$ . $\square$

Thus we have that if $a$ and $b$ satisfy Lemma 2, $\varphi_{m}(a, b, F)=\bigcap_{1\leq i\leq 2k}O_{\mathfrak{p}_{i}}$ , and
$\forall c(\varphi_{m}(a, b, c)arrow\varphi_{m}(a, b, c+1)$ holds in $F$ since $\varphi_{m}(a, b, F)$ is a ring containing $\mathbb{Z}$ .

For a given $c\in F^{*}$ there are $a,$ $b\in F^{*}$ such that $c\not\in\varphi_{m}(a, b, F)$ since we can
construct $a,$ $b\in F^{*}$ such that $1-1/(abc^{2m})$ is a square of $F_{\mathfrak{p}}$ for some $\mathfrak{p}$ with $(a, b)_{\mathfrak{p}}=$

$-1$ . Noting $0\in\varphi_{m}(a, b, F)$ for all $a,$
$b$ we have $\bigcap_{a,b\in F}\varphi_{m}(a, b, F)=0$ .

Nevertheless we have that $\psi_{m}(F)$ is a subset of $0_{F}$ containing $\mathbb{Z}$ since $\psi_{m}(F)$ is
the intersection of all the solution set of

$\forall c(\varphi_{m}(a, b, c)arrow\varphi_{m}(a, b, c+1))arrow\varphi_{m}(a, b, t)$.

If the premise of the above formula fails, the solution set is $F$ .
We don’t know what $\psi_{m}(F)$ is. But we can show what $\psi_{2}(K)$ is, if $K$ is a certain

infinite algebraic extension of $\mathbb{Q}$ .

Remark 4 For a given prime ideal $\mathfrak{p}_{1}$ we can define the valuation ring of $\mathfrak{p}_{1}$ . Take
three prime ideal $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$ of $F$ and $a,$ $b,$ $c,$ $d\in 0_{F}$ such that $S_{F}(a, b)=\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\}$ and
$S_{F}(c, d)=\{\mathfrak{p}_{1}, \mathfrak{p}_{3}\}$ , then we easily see that $\varphi_{m}(a, b, F)+\varphi_{m}(c, d, F)$ defines $O_{\mathfrak{p}_{1}}$ .

3 The solution set of $\psi(t)$ in some nfinite algebraic
extensions

Let $F$ be a number field and let $\mathscr{P}$ be an infinite set of finite Galois extensions $M$

of $F$ such that $[M : F]$ is odd and every prime ideal of $M$ dividing 2 is unramified
in $M/\mathbb{Q}$ . (We say that 2 is unramified in $M/\mathbb{Q}$ . Note $\mathfrak{p}^{2}\parallel 2$ for all prime ideals $\mathfrak{p}$ of
M. $)$ Let $K$ be the composite field of all fields in $\mathscr{P}$ . Then $K$ is an infinite Galois
extension of $F$ and every finite Galois subextension $M$ has odd extension degree over
$\mathbb{Q}$ . We denote by $\mathfrak{O}_{K}$ the ring of algebraic integers of $K$ .

In this section we will prove that the solution set $\psi_{2}(K)$ of $\psi_{2}(t)$ in $K$ is a subset
of $J\supset_{K}$ containing $\mathbb{Z}$ .

We need the following lemma, which is proved in [2, pp. 272,337].

Lemma 5 Let $M,$ $L$ be number fields with $L\supset M$ and let $\mathfrak{P}\supset \mathfrak{p}$ be primes of $L$

and $M$ respectively. For $\alpha\in L_{\mathfrak{P}}^{*}$ , let $a=N_{L_{\mathfrak{P}}/M_{\mathfrak{p}}}(\alpha)$ and $b\in M_{\mathfrak{p}}$ . Then we have
$(\alpha, b)_{\mathfrak{P}}=(a, b)_{\mathfrak{p}}$ .

The next lemma follows from Lemma 5.
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Lemma 6 Let $L$ be a finite Galois extension of a number field $M$ with $[L:M]$ odd.
Let $\mathfrak{p}$ be a prime ideal of $M$ and let $\mathfrak{P}$ be a prime of $L$ lying over $\mathfrak{p}$ . Then for
$a,$ $b\in M^{*}$ , we have $(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$ .

Proof. Since $L/M$ is a Galois extension, the local degree at as divides the degree of
$L/M$ , that is, $[(L)_{\mathfrak{P}} : (M)_{\mathfrak{p}}]|[L:M]$ (see [7, p. 32]). Let $u$ be the local degree at $\mathfrak{P}$ .
Then $N_{(L)_{\mathfrak{P}}/(M)_{\mathfrak{p}}}(a)=a^{u}$ and $(a, b)_{\mathfrak{P}}=(a^{u}, b)_{\mathfrak{p}}=(a, b)_{\mathfrak{p}}^{u}$ . Since $u$ is odd, it follows
that $(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$ . $\square$

We recall that $\varphi_{2}(s, u, t)$ is

$\exists x,$ $y,$ $z(1-sut^{4}=x^{2}-sy^{2}-uz^{2})$

and $\psi_{2}(t)$ is

$\forall s,$ $u(\forall c(\varphi(s, u, c)arrow\varphi(s, u, c+1))arrow\varphi_{2}(s, u, t))$ .

Lemma 7 Let $M$ be a subfield of $K$ with $M/F$ finite and Galois. Let $a,$ $b,$ $\alpha\in M$

with $ab\neq 0$ . Then

$M\models\varphi(a, b, \alpha)$ iff $K\models\varphi(a, b, \alpha)$ .

Proof. If $M\models\varphi(a, b, \alpha)$ , then we have trivially $K\models\varphi(a, b, \alpha)$ .
If $M\models\neg\varphi(a, b, \alpha)$ , then $(1-ab\alpha^{4})/(-ab)\in M_{\mathfrak{p}}^{*2}$ for some $\mathfrak{p}$ a place of $M$ such

that $(a, b)_{\mathfrak{p}}=-1$ . Let $L$ be any subfield of $K$ with $L/M$ finite and Galois and let
as be a place of $M$ lying above $\mathfrak{p}$ . Since $[L : M]$ is odd we have $(a, b)_{\mathfrak{P}}=-1$ and
$(1-ab\alpha^{4})/(-ab)\in L_{\mathfrak{P}}^{*2}$ . Hence $L\models\neg\varphi(a, b, \alpha)$ and $K\models\neg\varphi(a, b, \alpha)$ . Note that for
archimedean places $\mathfrak{p}\subset$ as, it iS also true that $(a,$ $b)_{\mathfrak{p}}=1$ iff $(a,$ $b)$ Pt $=1$ 口

Theorem 8 The solution set $\psi_{2}(K)$ of $\psi_{2}(t)$ in $K$ is a subset of $\mathfrak{O}_{K}$ containing
$\mathbb{Z}(\mathbb{Z}\subseteq\psi_{2}(K)\subseteq \mathfrak{O}_{K})$ .

Proof. We have trivially $\mathbb{Z}\subseteq\psi_{2}(K)$ . Let $t\in K\backslash 0_{K}$ . We show that there are $a,$ $b\in K$

such that

$K\models\neg\varphi_{2}(a, b, t)\wedge\forall c(\varphi_{2}(a, b, c)arrow\varphi_{2}(a, b, c+1))$ .

We fix a subfield $M$ of $K$ such that $[M : F]$ is finite and $t\in M$ . Then we have
$\nu_{\mathfrak{p}_{1}}(t)<0$ for some prime $\mathfrak{p}_{1}$ of $M$ . Take a prime $\mathfrak{p}_{2}\neq \mathfrak{p}_{1}$ of $M$ . By Lemma 2, there
are $a$ and $b$ in $M^{*}$ such that $\nu_{\mathfrak{p}_{i}}(a)=1,$ $\nu_{\mathfrak{p}_{i}}(b)=0$ and $(a, b)_{\mathfrak{p}_{i}}=-1$ for $i=1,2$ , and
$t\not\in\varphi_{2}(a, b, M)$ . By Lemma 7, $1-abt^{4}=x^{2}-ay^{2}-bz^{2}$ is not solvable for $x,$ $y,$ $z$ in
$K$ .

Let $c$ in $K$ and suppose $K\models\varphi_{2}(a, b, c)$ . Take a subfield $L$ of $K$ such that $L$

contains $c$ and $L/M$ is a finite Galois extension, then we have $L\models\varphi_{2}(a, b, c)$ by
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Lemma 7. Let $h=1-abc^{4}$ and $h’=1-ab(c+1)^{4}$ . Let $\mathfrak{P}_{1},$

$\ldots$ , $\mathfrak{P}_{k}$ be all the primes
of $L$ lying above $\mathfrak{p}_{1}$ and $\mathfrak{P}_{k+1},$

$\ldots,$
$\mathfrak{P}k+S$ be all the primes of $L$ lying above $\mathfrak{p}_{2}$ . By

Lemma 5, we have $S_{L}(a, b)=\{\mathfrak{P}_{1}, \ldots, \mathfrak{P}k+S\}$ , that is, $\sigma \mathfrak{p}_{i}$ are all the primes $\prime \mathfrak{p}$ of
$L$ such that $(a, b)_{\mathfrak{P}}=-1$ . $k$ and $s$ are odd since $L/M$ is Galois with odd extension
degree. We will show that for all $\mathfrak{P}_{i},$ $h’/(-ab)$ is not a square of $L^{\mathfrak{P}_{i}}$ , assuming
$h/(-ab)$ is not. Take one $\mathfrak{P}=\mathfrak{P}_{i}$ . We will break into cases according to whether or
not $\zeta \mathfrak{p}$ divides 2.

Case 1: $\mathfrak{P}\parallel 2$ .
As mentioned before we have $(1+\mathfrak{p}^{r})^{2}=1+2\mathfrak{p}^{r}$ if $\mathfrak{p}^{r}\subseteq 2\mathfrak{p}$ by [7, p. 163]. Hence

we have $(1+\mathfrak{P})^{2}=1+\mathfrak{P}$ . If $\nu_{\mathfrak{P}}(c)\geq 0$ , then $h’=1-ab(c+1)^{4}$ is a square of
$L_{\mathfrak{P}}$ since $\nu_{\mathfrak{P}}(-ab(c+1)^{4})>0$ . Since $(a, b)_{\mathfrak{P}}=(a, -ab)$ as $=-1$ we $have-ab$ is not a
square of $L_{\mathfrak{P}}$ , hence $h’/(-ab)$ is also not.

We consider the case $\nu_{\mathfrak{P}}(c)<0$ . Since $h/(-ab)=c^{4}(1-1/(abc^{4})$ it follows that
$\nu_{\mathfrak{P}}(-abc^{4})\geq 0$ . Let Ep lie above $\mathfrak{p}_{i}$ and let $e=e(\mathfrak{P}/\mathfrak{p}_{i})$ be the ramification index of

$\prime \mathfrak{p}$ . $e$ must be odd since $L/M$ is Galois with odd extension degree. Hence we have
$\nu_{\mathfrak{P}}(-abc^{4})>0$ . Then we have $\nu_{\mathfrak{P}}(-ab(c+1)^{4})=\nu_{\mathfrak{P}}(-ab)+4\nu_{\mathfrak{P}}(c)=\nu_{\mathfrak{P}}(-abc^{4})>0$ ,
hence $h’=1-ab(c+1)^{4}$ is a square of $L_{\mathfrak{P}}$ and $h’/(-ab)$ is not.

Case 2: as $|2$ .
Since 2 is unramified in $L/\mathbb{Q}$ we have $\nu_{\mathfrak{P}}(2)=1$ and $\nu_{\mathfrak{P}}(-ab)=1$ . Furthermore

we know $(1+\mathfrak{P})^{2}=1+\mathfrak{P}^{3}$ by [7, p. 163]. If $\nu_{\mathfrak{P}}(c)<0$ then $h/(-ab)=c^{4}(1-1/(abc^{4})$

would be a square of $L^{\mathfrak{P}}$ , hence we have $\nu_{\mathfrak{P}}(c)\geq 0$ . It follows that $\nu_{\mathfrak{P}}(h’/(-ab))=-1$

and $h’/(-ab)$ is not a square of $L_{\mathfrak{P}}$ . $\square$

Example 9 1. Let $F=\mathbb{Q}((\zeta_{l}))$ and $\mathscr{P}$ be a set of all $M_{n}=\mathbb{Q}(\zeta_{l^{n}})(n>1)$ , where
$l$ is an odd integer $>1$ and $\zeta_{l^{n}}$ is a primitive $l^{n}$-th root of unity. $K= \bigcup_{n}M_{n}$ .

2. Let $F=\mathbb{Q}$ and $\mathscr{P}$ be a set of all $\mathbb{Q}(\cos(2\pi/l^{n}))$ , where $n\in \mathbb{N}$ and $l$ is an odd
prime with $l\equiv-1(mod 4)$ . $K=\mathbb{Q}(\{\cos(2\pi/l^{n})$ : $n\in N,$ $l$ a prime, $l\equiv-1$

$(mod 4)\})$ .

Remark 10 In the proof of Theorem 8, we have $\varphi_{2}(a, b, M)=O_{\mathfrak{p}_{1}}^{M}\cap O_{\mathfrak{p}_{2}}^{M}$ . Here $O_{\mathfrak{p}_{\mathfrak{i}}}^{M}$

denotes the valuation ring of $\mathfrak{p}_{i}$ in $M$ . But it is not necessarily true that $\varphi_{2}(a, b, L)=$

$\bigcap_{i}O_{\mathfrak{P}_{i}}^{L}$ . Actually we have $\varphi_{2}(a, b, M)\subseteq\bigcap_{i}\mathcal{O}_{\mathfrak{P}_{i}}^{L}\subseteq\varphi_{2}(a, b, L)$ .
Nevertheless we can prove $\varphi_{2}(a, b, L)=\bigcap_{i}O_{\mathfrak{P}_{i}}^{L}$ for $K= \bigcup_{n}\mathbb{Q}(\zeta_{l^{n}})$ , where $l$ is an

odd prime and $\zeta_{l^{n}}$ is a primitive $l^{n}$-th root of unity.

4 The structure of $\psi(K)$

In this section we let $F=\mathbb{Q}$ , that is, let $K$ be the composite of all fields in $\mathscr{P}_{0}$ where
$\mathscr{P}_{0}$ is a set of infinitely many finite Galois extensions $M$ of $\mathbb{Q}$ such that $[M : \mathbb{Q}]$ is odd
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and 2 is unramified in $M/\mathbb{Q}$ . We let $\mathscr{P}$ be the family of all finite Galois subextensions
of $K$ . Then every $M$ also has odd extension degree over $\mathbb{Q}$ and 2 is unramified in
$M/\mathbb{Q}$ . We write $\varphi$ and $\psi$ instead of $\varphi_{2}$ and $\psi_{2}$ respectively.

We shall investigate what $\psi(K)$ is. For $a,$ $b\in K$ we let $T_{a,b}$ be the set of elements
$\alpha$ of $K$ such that

$K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))arrow\varphi(a, b, \alpha)$ .

Then we have $\psi(\mathfrak{O}_{K})=\bigcap_{a,b\in K}T_{a,b}$ . We easily see $T_{a,b}=K$ for $a,$
$b$ with $ab=0$ .

So we shall investigate what $T_{a,b}$ is, for $a,$ $b\in K^{*}$ . We recall that for $a,$ $b\in M^{*}$ ,
$M\models\neg\varphi(a, b, \alpha)$ iff $\alpha^{4}-1/ab\in M_{\mathfrak{p}}^{*2}$ for some $\mathfrak{p}\in S_{M}(a, b)$ . Hence we easily see
the following: for $a,$ $b\in K^{*}$ , if $S_{M}(a, b)=\emptyset$ for some $M\in \mathscr{P}$ with $a,$ $b\in M$ , then
$\varphi(a, b, K)=T_{a,b}=K$ by Lemma 6. So we shall investigate what $T_{a,b}$ is, for $a,$ $b\in K^{*}$

such that for some $M\in \mathscr{P}$ with $a,$ $b\in M,$ $S_{M}(a, b)\neq\emptyset$ .
From now on we use the following notation. For a number field $M$ , the ring of

integers of $M_{\mathfrak{p}}$ is denoted by $(0_{M})_{\mathfrak{p}}$ , its maximal ideal is also denoted by $\mathfrak{p}$ , its residue
field $(0_{M})_{\mathfrak{p}}/\mathfrak{p}$ by $(\overline{M})_{\mathfrak{p}}$ , and the group of units of $(0_{M})_{\mathfrak{p}}$ by $(U_{M})_{\mathfrak{p}}$ . For $\alpha\in \mathcal{M}$ , we
denote by a its residue class in $(\overline{M})_{\mathfrak{p}}$ . Furthermore we usually let $\mathfrak{p}$ lie above a rational
prime $p$ . Note that $(\overline{M})_{\mathfrak{p}}\simeq 0_{M}/\mathfrak{p}\simeq F_{p^{f}}$ where $f$ is the residue degree of $M$ at $\mathfrak{p}$ .

Lemma 11 Let a , $b\in K^{*}$ such that

$K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$

holds. Then for every $M\in \mathscr{P}$ with $a,$ $b\in M$ , every $\mathfrak{p}\in S_{M}(a, b)$ is not archimedean.

This is proved similarly as Lemma 14 in [1].

Lemma 12 Let $M\in \mathscr{P}$ . Let $a,$ $b\in M^{*},$ $\alpha\in 0_{M}$ and $\mathfrak{p}_{0}\in S_{M}(a, b)$ with $\mathfrak{p}_{0}\parallel 2$ such
that

1. $K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ and

2. $\alpha^{4}-1/ab\in M_{\mathfrak{p}_{0}}^{*2}$ hold.

Then $\nu_{\mathfrak{p}_{0}}(-ab)=0$ and $\nu_{\mathfrak{p}_{0}}(\alpha)=0$ .

This is also proved similarly as Lemma 15 in [1].
Now we will prove the following lemma on finite fields.

Lemma 13 Let $p$ be an odd prime and $q=p^{f}$ . Let $F_{q}$ be a finite field with $q$ elements
other than F3, F5. We let $\eta$ be the quadmtic chamcter of $F_{q}$ , that is, $\eta(0)=0,$ $\eta(c)=1$

if $c\in F_{q}^{*2}$ and $\eta(c)=-1$ otherwise.
Then for all $a\in F_{q}^{*}$ with $\eta(a)=-1$ ,

$(\dagger$ $)$ there are $b\in F_{q}$ and $j\in F_{p}$ such that $\eta(b^{4}+a)\eta((b+j)^{4}+a)=-1$ .
Exceptional cases are, F3 and $a=2$ , and, F5 and $a=2$ .
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Pmof. We will first prove the following; for all $a\in F_{q}^{*}$ with sufficiently large $q$ , we can
take $j=1$ in the statement $(\dagger$ $)$ . We use Weil $s$ Theorem [5, p. 225, Theorem 5.41],
from which we have that for $a\in F_{q}^{*}$ ,

$| \sum_{c\in F_{q}}\eta\{(c^{4}+a)((c+1)^{4}+a)\}|\leq 7q^{1/2}$ .

Thus if $q$ satisfies inequality $7q^{\iota/2}<q-8$ then for all $a\in F_{q}^{*}$ there is $b\in F_{q}$ such that
$\eta(b^{4}+a)\eta((b+1)^{4}+a)=-1$ . Hence for all $F_{q}$ with $q>64$ the assertion holds. For
the small values of $q\leq 64$ we can check the assertion directly. $\square$

Note that in the statement $(\dagger$ $)$ we cannot always take $j=1$ if $q\leq 64$ ; for
example in F7 there is no $b$ such that $\eta(b^{4}+5)\eta((b+1)^{4}+5)=-1$ but in F7
$\eta(1^{4}+5)\eta((1+2)^{4}+5)=-1$ holds. Note also that we need the assumption $\eta(a)=-1$

for F9 since for $a=1,2$ , for which $\eta(a)=1$ , the statement $(\dagger$ $)$ dose not hold.

Lemma 14 Let $M\in \mathscr{P}$ . Let $a,$ $b\in M^{*}$ . Suppose that $S_{M}(a, b)$ contains a non-
archimedean place $\mathfrak{p}_{0}$ such that $\mathfrak{p}_{0}\sqrt 2,$ $\nu_{\mathfrak{p}_{0}}(-ab)=0$ and $(\overline{M})_{\mathfrak{p}_{0}}\neq F_{3},$ $\mathscr{P}_{5}$ .

Then $K\models\neg\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ .

The proof is similar to that of Lemma 16 in [1].

Proposition 15 Let $M\in \mathscr{P}$ . For $a,$ $b\in M^{*}$ , if $S_{M}(a, b)$ contains no primes dividing
2, then we have $J\supset_{K}\subseteq T_{a,b}$ , that is,

$K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))arrow\varphi(a, b, \alpha)$ for all $\alpha\in l\supset_{K_{l}}$ .

Proof. We first note the following; if we take $N\in \mathscr{P}$ such that $a,$ $b\in N^{*}$ then $S_{N}(a, b)$

also contains no primes dividing 2 by Lemma 6. Suppose not. Then there is $\alpha\in 1\supset_{K}$

such that

$K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ but $K_{l}\models\neg\varphi(a, b, \alpha)$ .

Take $N\in \mathscr{P}$ such that $a$ , $b,$ $\alpha\in N$ . We have by Lemma 7,

$N\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ but $N\models\neg\varphi(a, b, \alpha)$ .

Then there is a $\mathfrak{p}_{0}\in S_{N}(a, b)$ such that $\alpha^{4}-1/ab\in N_{\mathfrak{p}_{0}}^{*2}$ .
We see that $\mathfrak{p}_{0}$ is not archimedean by Lemma 11 and that $\nu_{\mathfrak{p}_{O}}(-ab)=0$ and

$\nu_{\mathfrak{p}_{0}}(\alpha)=0$ by Lemma 12. If $(\overline{N})_{\mathfrak{p}_{0}}\neq F_{3},$ $\mathscr{P}_{5}$ , we get a contradiction by Lemma 14.
Suppose that $(\overline{N})_{\mathfrak{p}_{0}}=\mathscr{P}_{5}$ . Since $(a, b)_{\mathfrak{p}_{0}}=-1$ and $N\models\psi(1)$ , we $have-1/ab\in$

$N_{\mathfrak{p}_{0}}^{*2}$ and 1 $-1/ab\in N_{\mathfrak{p}_{0}}^{*2}$ , hence $-1/ab\equiv 2(mod \mathfrak{p}_{0})$ . Since $\nu_{\mathfrak{p}_{0}}(\alpha)=0$ , we have
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$\alpha^{4}\equiv 1(mod \mathfrak{p}_{0})$ . Then we have $\alpha^{4}-1/ab\equiv 3(mod \mathfrak{p}_{0})$ , hence $\alpha^{4}-1/ab\not\in N_{\mathfrak{p}_{0}}^{*2}$ ,
acontradiction.

Suppose that $(\overline{N})_{\mathfrak{p}_{0}}=\mathscr{P}_{3}$ . We first deal with the case where $\mathfrak{p}_{0}$ is not ramified in
$N/\mathbb{Q}$ . Then 3 is a prime element of $N_{\mathfrak{p}_{0}}$ and we can $write-1/ab=2+s_{1}3+s_{2}3^{2}+\cdots$ ,
where $s_{i}\in\{0,1,2\}$ . We note that $N\models\varphi(a, b, n)$ for all $n\in \mathbb{N}$ . If $s_{1}=0$ , then
$2^{4}-1/ab=(s_{2}+2)3^{2}+\cdots,$ $7^{4}-1/ab=s_{2}3^{2}+\cdots$ and $11^{4}-1/ab=(s_{2}+1)3^{2}+\cdots$ .
Thus we have one of these three must be contained in $N_{\mathfrak{p}_{0}}^{*2}$ , a contradiction. Likewise
if $s_{1}=1$ , then $4^{4}-1/ab=(s_{2}+2)3^{2}+\cdots,$ $13^{4}-1/ab=s_{2}3^{2}+\cdots$ and $5^{4}-1/ab=$
$(s_{2}+1)3^{2}+\cdots$ . And if $s_{1}=2$ , then $1^{4}-1/ab=(s_{2}+1)3^{2}+\cdots,$ $8^{4}-1/ab=s_{2}3^{2}+\cdots$

and $10^{4}-1/ab=(s_{2}+1)3^{2}+\cdots$ . Thus in the case where $\mathfrak{p}_{0}$ is not ramified in $N/\mathbb{Q}$ ,
we get contradictions.

Secondly We deal with the case where $\mathfrak{p}_{0}$ is ramified in $N/\mathbb{Q}$ . Let $\nu_{\mathfrak{p}_{0}}(3)=e$

and let $\pi$ be a prime element of $N_{\mathfrak{p}_{0}}$ . We can write $-1/ab=2+s_{1}\pi+s_{2}\pi^{2}+\cdots$ ,
where $s_{i}\in\{0,1,2\}$ . We may write $\alpha=1+c_{1}\pi+c_{2}\pi^{2}+\cdots$ where $c_{i}\in\{0,1,2\}$ ,
since if $\alpha\equiv 2(mod \mathfrak{p}_{0})$ then $-\alpha\equiv 1(mod \mathfrak{p}_{0})$ . Since $N\models\neg\varphi(a, b, \alpha)$ , we have
$N\models\neg\varphi(a, b, \alpha-n)$ for all $n\in \mathbb{N}$ . But $(\alpha-1)^{4}-1/ab\equiv 2(mod \mathfrak{p}_{0})$ , hence there
must be another prime $\mathfrak{p}_{1}\in S_{N}(a, b)$ with $(\alpha-1)^{4}-1/ab\in N_{\mathfrak{p}_{1}}^{*2}$ . $\mathfrak{p}_{1}$ must be a
prime lying above 3 and $\alpha\equiv 2(mod \mathfrak{p}_{1})$ . And we have $(\alpha-(3k+1))^{4}-1/ab\equiv 2$

$(mod \mathfrak{p}_{0})$ and $(\alpha-(3k+2))^{4}-1/ab\equiv 0(mod \mathfrak{p}_{0})$ . Likewise $(\alpha-(3k+1))^{4}-1/ab\equiv 0$

$(mod \mathfrak{p}_{1})$ and $(\alpha-(3k+2))^{4}-1/ab\equiv 2(mod \mathfrak{p}_{1})$ . Since there are finitely many
primes in $S_{N}(a, b)$ , we must have for some $k(\alpha-(3k+2))^{4}-1/ab\equiv 0(mod \mathfrak{p}_{0})$ and
$(\alpha-(3k+2))^{4}-1/ab\in N_{\mathfrak{p}_{0}}^{*2}$ .

We have $s_{1}+c_{1}\equiv 0(mod \mathfrak{p}_{0})$ since $\alpha^{4}-1/ab=(s_{1}-c_{1})\pi+\cdots$ . And we have
$s_{1}-c_{1}\equiv 0(mod \mathfrak{p}_{0})$ since $(\alpha-(3k+2))^{4}-1/ab=(s_{1}-c_{1})\pi+\cdots$ . Thus we have
$s_{1}\equiv 0(mod \mathfrak{p}_{0})$ and $c_{1}\equiv 0(mod \mathfrak{p}_{0})$ . Likewise we have $s_{2}\equiv 0(mod \mathfrak{p}_{0})$ and $c_{2}\equiv 0$

$(mod \mathfrak{p}_{0})$ . We can proceed to $\pi^{e-1}$ . It follows $that-1/ab=2+s_{e}\pi^{e}+s_{e+1}\pi^{e+1}+\cdots$ .
Then we have $2^{4}-1/ab=(s_{e}+2)3^{2}+\cdots,$ $7^{4}-1/ab=s_{e}3^{2}+\cdots$ and $11^{4}-1/ab=\square$
$(s_{e}+1)3^{2}+\cdots$ , a contradiction.

We will deal with primes dividing 2.

Lemma 16 Let $M\in \mathscr{P}$ . Let $a,$ $b\in M^{*},$ $\alpha\in 0_{M}$ and $\mathfrak{p}_{0}\in S_{M}(a, b)$ with $\mathfrak{p}_{0}|2$ such
that

1. $K\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ and

2. $\alpha^{4}-1/ab\in M_{\mathfrak{p}_{0}}^{*2}$ hold.

Then $\nu_{\mathfrak{p}_{0}}(-ab)=\pm 2$ .

The proof is similar to that of Lemma 18 in [1].

We shall prove a similar result to Lemma 14.
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Lemma 17 Let $M\in \mathscr{P}$ and $a,$ $b\in M^{*}$ . Suppose that $S_{n}(a, b)$ contains a $\mathfrak{p}_{0}$ such
that $\mathfrak{p}_{0}|2$ and $\nu_{\mathfrak{p}_{0}}(-ab)=-2$ .

Then $K_{l}\models\neg\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ .

The proof is similar to that of Lemma 19 in [1]
Thus we get the following proposition. The proof is similar to that of Proposition

15.

Proposition 18 Let $l$ be an odd prime such that $l\equiv-1(mod 4)$ . For $a,$ $b\in F_{n}^{*}$ , if
$S_{n}(a, b)$ contains no primes $\mathfrak{p}$ such that $\mathfrak{p}|2$ and $\nu_{\mathfrak{p}}(-ab)=2$ , then we have $1\supset_{K_{l}}\subseteq T_{a,b}$ ,
that is,

$K_{l}\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))arrow\varphi(a, b, \alpha)$ for all $\alpha\in \mathfrak{O}_{K_{l}}$ .

Since $\psi(K)=\bigcap_{a,b\in K^{*}}T_{a,b}\subseteq \mathfrak{O}_{K}$ , Proposition 18 implies $\psi(K)=\bigcap_{(a,b)\in\Delta}T_{a,b}$ ,
where $\triangle$ is the set of $(a, b)\in K^{*}\cross K^{*}$ such that for some $M$ with $a,$ $b\in M,$ $S_{M}(a, b)$

contains a prime $\mathfrak{p}$ with $\mathfrak{p}|2$ and $\nu_{\mathfrak{p}}(-ab)=2$ . Such $a$ and $b$ exist, for example, let
$a=2$ and $b=10$ .

Let $M\in \mathscr{P}$ and (2) $=\mathfrak{p}_{1}\cdots \mathfrak{p}_{k}$ in $M$ . Put $P_{M}= \bigcap_{i}((1+\mathfrak{p}_{i})\cup \mathfrak{p}_{i})$ . Then $P_{M}$ is
a subring of $0_{M}$ containing 1. Let $P_{K}=\cup\{P_{M} : M\in \mathscr{P}\}$ . $P_{K}$ is a subring of $\mathfrak{O}_{K}$

containing 1.

Theorem 19 $\psi(K)=P_{K}$ .

The proof is similar to that of Proposition 20 in [1].

Example 20 1. $K_{l}=U_{n}\mathbb{Q}(\cos(2\pi/l^{n}))$ with $l$ a prime and with $l\equiv-1(mod 4)$ .

2. $K_{W}= \prod_{l\in W}K_{l}$ . $(W=\{l a prime: l\equiv-1(mod 4)\})$

3. $K_{0}=\mathbb{Q}(\{\cos(2\pi/l)$ : $l$ a prime, $l\equiv-1(mod 4)\})$ .

5 Undecidability results
Let $K_{l}= \bigcup_{n}\mathbb{Q}(\cos(2\pi/l^{n}))$ . In [1] we proved that if $l$ is a prime such that $l\equiv-1$

$(mod 4)$ and 2 is a prime of $\mathfrak{O}_{K_{l}}$ , then $K_{l}$ is undecidable. But in 2000 C.R. Videla
[12] proved that $K_{l}$ is undecidable for every prime $l$ . He considered $K/F$ a pro-p
Galois extension over a number field $F$ and using Rumely’s formula in [6] he proved
that $\mathfrak{O}_{K_{l}}$ is definable with parameters. Then he also used the results of Kronecker
and J. Robinson.

Kronecker [3] determined all sets of conjugate algebraic integers in the interval
$c-2\leq x\leq c+2$ , provided that $c$ is a rational integer; they have the form

$x=c+2\cos(2k\pi/m)$ with $0\leq k\leq m/2$ and $(k, m)=1$ .
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Note that if $m=1,2,3,4$ , then $x=c+2,$ $c-2,$ $c\pm 1,$ $c$ respectively. Furthermore it is
known that an interval of length less than 4 can contain only finitely many complete
sets of conjugate algebraic integers. (See [11].)

Therefore we see that the interval $(0,4)$ contains infinitely many complete conju-
gate sets of totally real algebraic integers and that no sub-interval does.

These facts are used by J. Robinson in [9]. Her results concerns the integral closure
of $\mathbb{Z}$ inside totally real fields, not necessarily finite over $\mathbb{Q}$ . She calls such a ring a
totally real algebraic integer ring. In 1962 she proved the following: The natural
numbers can be defined arithmetically in any totally real algebraic integer ring $A$

such that there is a smallest interval $(0, s)$ with $s$ real or $\infty$ , which contains infinitely
many complete conjugate sets of numbers of $A$ . But we can say more. We recall that
$\mathbb{Z}^{tr}$ denotes the ring of all totally real algebraic integers.

Theorem 21 $LteR$ be a subring of $\mathbb{Z}^{tr}$ containing $\mathbb{Z}$ such that there is a smallest
interval $(0, s)$ with $s$ real or $\infty$ , which contains infinitely many complete conjugate
sets of numbers of R. Here $s$ need not be in R. Then $N$ is definable in $R$ .

In particular such a ring is undecidable.

The proof of J. Robinson just works. See [9, pp. 300-301].
Thus it follows that for every positive integer $l>1,$ $\mathfrak{O}_{K_{l}}$ is undecidable, from

which Videla proved that $K_{l}$ is undecidable. Note that even if the defining formula
contains parameters it is possible to define N. See [12].

We give alternative proof of this fact in the case where $l$ is a prime with $l\equiv-1$

$(mod 4)$ . We know that $\psi(K_{l})$ is a subring of $\mathbb{Z}^{tr}$ containing $\mathbb{Z}$ if $l$ is a prime such
that $l\equiv-1(mod 4)$ . Furthermore we know by [11, p. 312], that 2 $+$ 2 $\cos(2\pi/l^{n})$

are units in $\mathfrak{O}_{K_{l}}$ and that 1 $+$ 2 $\cos(2\pi/l^{n})$ are units in $\mathfrak{O}_{K_{l}}$ if $l\neq 3$ , and $|N_{F_{n}/\mathbb{Q}}(1+$

$2\cos(2\pi/3^{n}))|=3$ for $n\geq 2$ . Hence we see that 2 $+$ 2 $\cos(2\pi/l^{n})$ are not in $\psi(K_{l})$

if $ln\neq 3$ . On the other hand 4 $+$ 4 $\cos(2\pi/l^{n})$ are in $\bigcap_{i}\mathfrak{P}_{i}^{(2)}-$ , hence in $\psi(K_{l})$ . Thus
we see that the interval (0,8) contains infinitely many complete conjugate sets of
numbers of $\psi(K_{l})$ and the interval $(0,4)$ does not. We show that $(0,8)$ is actually
such a smallest interval for $\psi(K_{l})$ .

Lemma 22 Let $l$ be an odd prime such that $l\equiv-1(mod 4)$ . Then $(0,8)$ is a
smallest interval of the form $(0, c)$ which contains infinitely many complete conjugate
sets of numbers of $\psi(K_{l})$ .

Pmof. We know that $K_{l}$ has only finitely many primes lying above 2. (See Lemma
13 in [1]. $)$ Thus $\psi(K_{l})=P_{K_{l}}=\bigcap_{i}((1+\mathfrak{P}_{i})-\cup \mathfrak{P}_{i})-$ , where $\mathfrak{P}_{1},$ $\ldots \mathfrak{P}_{k}$ are primes of $K_{l}$

lying above 2. We easily see that $\psi(K_{l}.)$ is a union of $2^{k}$ cosets of $\mathfrak{O}_{K_{l}}/20_{K_{l}}$ .
Suppose that $(0,8)$ is not such a smallest interval. Then some interval $(0, \delta)$ with

$\delta<8$ contains infinitely many complete conjugate sets of numbers of $\psi(K_{l})$ . Then
we have that some coset, say $\alpha+2\mathfrak{O}_{K_{l}}$ , contains infinitely many complete conjugate
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sets of numbers. It follows that an interval of length less than 4 contains infinitely
many complete conjugate sets of algebraic integers, a contradiction. $\square$

Let $K_{\Delta}= \prod_{l\in\Delta}K_{l}$ where $\triangle$ is a finite set of primes. From the result of Videla we
deduce that $K_{\Delta}$ is undecidable. If $\Delta$ is a finite set of primes with $l\equiv-1(mod 4)$ ,
then we can give another proof similarly.

Nevertheless we can give a new undecidable infinite algebraic extension of $\mathbb{Q}$ by
our method. Let $V$ be a set of Sophie Germain primes, that is, a prime $p$ such
that $2p+1$ is again a prime. It is considered that there are infinitely many Sophie
Germain primes but it is not proved. Let $K_{V}=\mathbb{Q}(\{\cos(2\pi/l)$ : $l\in V\})$ . Then we
have $\psi(K_{V})=(1+2\mathfrak{O}_{K_{V}})\cup 0_{K_{V}}$ , hence $K_{V}$ is undecidable.

References
[1] K. Fukuzaki, Undecidable infinite totally real extensions of $\mathbb{Q}$ , Kokyuroku of

RIMS, 1602 (2008), pp. 37-62.

[2] S. Iyanaga(Editor), The Theory of Numbers, North-Holland Publishing Company,
1975.

[3] L. Kronecker, Zwei S\"atze \"uber Gleichungen mit ganzzahligen Coefficienten, Reine.
Angew. Math., 53 (1857), pp. 173-175.

[4] S. Lang, Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, vol.
211, Springer-Verlag, New York, 1994.

[5] R. Lidl, H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Ap-
plications, vol. 20, Cambridge University Press, 1997.

[6] R. Rumely, The undecidability of algebraic rings and fields, Proc. Amer. Math.
Soc., 262 (1980), pp 195-217.

[7] O.T. $O$ ‘Meara, Introduction to Quadratic Forms, Springer-Verlag, Berlin Heidel-
berg New York, 1973.

[8] J. Robinson, The undecidability of algebraic rings and fields, Proc. Amer. Math.
Soc., 10 (1959), pp. 950-957.

[9] J. Robinson, On the decision problem for algebraic rings, Studies in Mathematical
Analysis and Related Topics, no. 42, Stanford Univ. Press, Stanford, Calif., 1962,
pp. 297-304.

[10] J. Robinson, The decision problem for fields, The Theory of Models: Proceedings
of the 1963 International Symposium at Berkeley (J. W. Addison et al., eds.),
North-Holland, Amsterdam, 1965, pp. 299-311.

112



[11] R.M. Robinson, Intervals Containing Infinitely Many Sets of Conjugate Algebraic
Integers, Studies in Mathematical Analysis and Related Topics, no. 43, Stanford
Univ. Press, Stanford, Calif., 1962, pp. 305-315.

[12] C.R. Videla, Definability of the ring of integers in pro-p Galois extensions of
number fields, Israel J. Math., 118 (2000), pp. 1-14.

113


