On geometry of quasi-minimal structures

前園 久智 (Hisatomo MAESONO) 早稲田大学メディアネットワークセンター (Media Network Center, Waseda University)

Abstract

Itai, Tsuboi and Wakai investigated the geometric properties of qusai-minimal structures by using the countable closure [1]. I considered another closure operator in such structures.

1. Quasi-minimal structure and the countable closure

We recall some definitions.

Definition 1 An uncountable structure M is called *quasi-minimal* if every definable subset of M with parameters is at most countable or co-countable.

I introduce the examples in [1] and [2].

Example 2

1. $M = (\mathcal{Q}^{\omega}, +, \sigma, 0)$ where σ is the shift function; for $x = (x_0, x_1, x_2, \cdots), \sigma(x) = (x_1, x_2, x_3, \cdots)$

2. $M_0 = (2^{\omega}, E_i(i < \omega))$ such that $E_i(x, y) \iff x(i) = y(i)$ for $x, y \in 2^{\omega}$. Let $M' \prec M_0$ be a countable elementary substructure and fix $a \in M'$. And let $M_1 = (M' \cup B, E_i(i < \omega))$ where $|B| > \omega$ and stp(b) = stp(a) for all $b \in B$. Then M_1 is quasi-minimal.

Definition 3 Let M be quasi-minimal. Then a type p(x) defined by $p(x) = \{\psi(x) \in L(M) : |\psi^M| \ge \omega_1\}$ is a complete type. We call the type p(x) the main type of M.

Definition 4 Let M be an uncountable structure and $A \subset M$.

The *n*-th countable closure $\operatorname{ccl}_n(A)$ of A is inductively defined as follows : $\operatorname{ccl}_0(A) = A$ and $\operatorname{ccl}_{n+1}(A) = \bigcup \{ \phi^M : \phi(x) \in L(\operatorname{ccl}_n(A)), \ \phi^M \text{ is countable} \}$ We put $\operatorname{ccl}(A) = \bigcup_{n \in \omega} \operatorname{ccl}_n(A)$ (the countable closure of A). **Definition 5** Let X be an infinite set and cl a function from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ where $\mathcal{P}(X)$ denotes the set of all subsets of X. If the function cl satisfies the following properties, we say (X, cl) is a *pregeometry*.

(I) $A \subset B \Longrightarrow A \subset \operatorname{cl}(A) \subset \operatorname{cl}(B)$,

(II) $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A),$

(III) (Finite character)
$$b \in cl(A) \Longrightarrow b \in cl(A_0)$$
 for some finite $A_0 \subset A$,

(IV) (Exchange axiom)

$$b \in cl(A \cup \{c\}) - cl(A) \Longrightarrow c \in cl(A \cup \{b\}).$$

It is shown that the countable closure is a closure operator in [1].

Fact 6 Let M be a quasi-minimal structure. Then (M, ccl) satisfies the first three properties (I) through (III) of pregeometry.

The exchange axiom (IV) does not hold in (M, ccl) generally. In [1], Itai, Tsuboi and Wakai showed some conditions for M such that (M, ccl) satisfies the exchange axiom.

Theorem 7 Let M be a quasi-minimal structure. Then (M, ccl) satisfies the axioms of pregeometry under some conditions.

And we recall the next theorem from [1].

Theorem 8 Let M be a quasi-minimal structure. And Th(M) is ω -stable. Then M can be elementarily embedded to an ω -saturated quasi-minimal stucture M'.

The notion of quasi-minimal structures is a generalization of minimal structures. Thus the countable closure is the canonical closure operator for quasi-minimal structures. However, I tried to divide the countable closure by some P-closure.

2. P-closure in quasi-minimal structures

First we recall some definitions from [6].

Definition 9 A family P of partial types is A-invariant if it is invariant under A-automorphisms (where A is a subset of a sufficiently large saturated model as usual).

Let P be an A-invarint family of partial types.

A partial type q over A is *P*-internal if for every realization a of q, there is $B \downarrow_A a$, types \bar{p} from P based on B, and realizations \bar{c} of \bar{p} , such that $a \in \operatorname{dcl}(B\bar{c})$.

A patial type q is *P*-analysable if for any $a \models q$, there are $(a_i : i < \alpha) \in dcl(A, a)$ such that $tp(a_i/A, \{a_j : j < i\})$ is *P*-internal for all $i < \alpha$, and $a \in bdd(A, \{a_i : i < \alpha\})$.

A complete type $q \in S(A)$ is foreign to P if for all $a \models q$, $B \downarrow_A a$, and realizations \bar{c} of extensions of types in P over B, we always have $a \downarrow_{AB} \bar{c}$.

Definition 10 Let P be an \emptyset -invariant family of types.

A partial type q is co-foreign to P if every type in P is foreign to q.

The *P*-closure $cl_P(A)$ of a set *A* is the collection of all element *a* such that tp(a/A) is *P*-analysable and co-foreign to *P*. (The *P*-analysable assumption could be modified or even omitted, resulting in a larger *P*-closure.)

Fact 11 P-closure satisfies the axioms (I) and (II) of pregeometry.

The axiom (III) and the exchange axiom (IV) do not hold in general.

We define P-closures in stable quasi-minimal structures. We argue under the assumptions in the following.

Assumptions

M is an ω -saturated quasi-minimal structure such that Th(M) is ω -stable.

We may assume that the main type $p(x) \in S(M)$ strongly based on \emptyset . The set P of types is defined by

 $P = \{q \in S(A) : q \text{ is a conjugate of } p \mid A \text{ for some finite } A \subset M\}.$

We can prove the next fact.

Fact 12 Under the assumptions as above, the P-closure cl_P is a closure operator in M.

 (M, cl_P) satisfies the axioms (I) through (III) of pregeometry. And $\operatorname{acl}(A) \subset \operatorname{cl}_P(A) \subset \operatorname{ccl}(A)$ for $A \subset M$. If we omit the P-analysability assumption from cl_P , then $\operatorname{cl}_P(A) = \operatorname{ccl}(A)$.

Remark 13 In Example 2.1, $cl_P(A) = ccl(A)$ for $A \subset M$ under the *P*-analysability assumption. By the argument in [3], we can show the same fact for $(\omega-stable)$ quasi-minimal groups in general.

3. p-closure for regular types p

We recall some definitions from [4].

Definition 14 Let p(x), q(x) be complete types over A. We say that p is almost orthogonal to q if whenever a realizes p, and b realizes q, then

tp(a/Ab) does not fork over A.

Let $p(x) \in S(A)$, $q \in S(B)$ are stationary types.

We say that p is orthogonal to q if whenever $C \supset A \cup B$, then $p \mid C$ is almost orthogonal to $q \mid C$.

And we say that p is hereditarily orthogonal to q if every extension of p is orthogonal to q.

Definition 15 Let $p(x) \in S(A)$ be a non-algebraic stationary type.

We say that p is *regular* if for any forking extension q of p, p is orthogonal to q.

In the following, let p be a regular type over some domain.

Definition 16 Let $q(x) \in S(X)$ be a strong type, where p is non-orthogonal to X.

We say that q is p-simple if there is a set $B \supset A \cup X$, some realization a of $q \mid B$ and a set Y of realizations of p such that stp(a/BY) is hereditarily orthogonal to p.

And we say that q is p-semi-regular if q is p-simple and domination equivalent to some non-zero power $p^{(n)}$ of p.

Definition 17 Let q = stp(a/X) be *p*-simple. Then the *p*-weight of q, $w_p(q)$ is defined to be

min{ κ : there is $B \supset A \cup X$, there is a' realizing $q \mid B$, and there is J, an independent set of realizations of $p \mid B$, such that stp(a'/BJ) is hereditarily orthogonal to p and $\mid J \mid = \kappa$ }

We define the *p*-closure of X, denoted $cl_p(X)$, the set $\{b : stp(b/X) \text{ is } p$ -simple and $w_p(b/X) = 0\}$

We try to argue p-closure in quasi-minimal structures. We can check the next fact easily.

Fact 18 Let M be a quasi-minimal structure. And Th(M) is ω -stable. Then we may assume that the main type $p \in S(M)$ is a regular type.

It is well known that for regular types p of stable theory, $(p^{\mathcal{C}}, cl_p)$ is pregeometry (where \mathcal{C} is the big model).

For quasi-minimal structure M of stable theory and the main type p of M, we consider cl_p .

We can prove the next fact like Fact. 12.

Fact 19 Let M be a quasi-minimal structure of ω -stable theory. Then cl_p is a closure operator, i.e. (M, cl_p) satisfies the axioms (I) through (III) of pregeometry.

And $acl(A) \subset cl_p(A) = ccl(A)$ for $A \subset M$.

4. Further problem

We recall some definitions and theorems from [4] again.

Definition 20 Let (S, cl) be pregeometry.

(S, cl) is modular if for any closed sets $X, Y \subset S, X$ is independent from Y over $X \cap Y$. Equivalently, for any finite-dimensional closed sets X, Y,

 $dim(X) + dim(Y) - dim(X \cap Y) = dim(X \cup Y).$

(S, cl) is *locally modular* if for some $a \in S$, $(S, cl_{\{a\}})$ (the localization of S at $\{a\}$) is modular.

The next theorems are well-known.

Theorem 21 Let $p \in S(\emptyset)$ be a stationary, minimal locally modular type. Then p is trivial, or p is non-trivial modular (in which case the geometry on p is projective over a division ring), or p is non-modular in which case the geometry associated to p (over \emptyset) is affine geometry over a division ring.

Theorem 22 Let $p \in S(\emptyset)$ be a stationary, regular, locally modular type over \emptyset . Then the geometry of $(p^{\mathcal{C}}, cl_p)$ is either trivial, or affine or projective geometry over some division ring.

There are examples of quasi-minimal structures whose main type is locally modular. (See Example 2.1)

Question

Let p be the main type of a $(\omega$ -)stable quasi-minimal structure. And let p be a locally modular regular type.

Does its geometry (p^C, cl_p) have characteristics?

Apology and acknowlegement

I did not know the paper [3] by A.Pillay and P.Tanović until Kirishima meeting. Some participants told me about their work. The content of my talk is not shown in their paper on the surface.

References

 M.Itai, A.Tsuboi and K.Wakai, Construction of saturated quasi – minimal structure, J. Symbolic Logic, vol. 69 (2004) pp. 9-22
 M.Itai and K.Wakai, ω-saturated quasi-minimal models of Th(Q^ω, +, σ, 0), Math. Log. Quart, vol. 51 (2005) pp. 258-262 [3] A.Pillay and P.Tanović, Generic stability, regularity, quasi-minimality, preprint

- [4] A. Pillay, Geometric stability theory, Oxford Science Publications, 1996
- [5] F.O.Wagner, Stable groups, Cambridge University Press, 1997
- [6] F.O.Wagner, Simple theories, Kluwer Academic Publishers, 2000