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Abstract

We survey here Zilber $s$ attempts of developing the model theory of analytic Zariski
structures.

1 Introduction
The notion of analytic Zariski structures is introduced by Zilber in order to study analytic
structures from model theoretic point of view. This is a natural generalization of the
notion of Zariski geometry (structure) also introduced by Zilber earlier.

In case of Zariski geometries, the model theory is of first-order and carried out in $L_{\omega\omega}$ .
Main theorem states that the theory of a Zariski geometry is strongly-minimal and hence
categorical in every uncountable cardinal.

In case of analytic Zariski structures, however, the situation differs dramatically: since
the notion of analyticity needs non-Noetherian topology, we need $L_{\infty\omega}(Q)$ to develop its
full model theory.

In this note, we first review Zilber $s$ idea of showing the categoricity for non-elementary
classes called quasi-minimal excellent.

2 Quasi-minimal excellent classes and categoric-
ity
It is well known that strongly-minimal theories $T$ are $\aleph_{1}$-categorical. The proof goes like
this: the strong-minimality of $T$ gives rise to a pregeometry to each model $M$ . Then a
notion of independence can be introduced to $M$ . Hence a basis of $M$ is also defined. Note
that any basis of a structure has the same cardinality as the structure.

Consider two structures $M_{0},$ $M_{1}$ of the same uncountable cardinality. Suppose that
both $B_{0},$ $B_{1}$ are basis of $M_{0},$ $M_{1}$ respectively. Any bijection between $B_{0}$ and $B_{1}$ can be
extended to an isomorphism from $M_{0}$ to $M_{1}$ .

The essence of the argument above can be formalized as three properties as follows:. pregeometry needed for the notion of independence and in particular the basis. homogeneity, more specifically $\omega$-homogeneity for constructing isomorphisms be-
tween models by back-and-forth argument.. $\omega$-stability, i.e., there are not too many types otherwise the uncountable categoricity
breaks down.
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This analysis seems to lead Zilber to the following definition of quasi-minimal excellent
class.

Definition 1 (G-monomorphism) Suppose $H$ and $H’$ are structures and $G$ is their
common substructure. A partial mapping $\phi$ : $Harrow H’$ is called a G-monomorphism if
$\phi|_{G}=$ id and it preserves quantifier-free formulas over $G$ .

Definition 2 (Quasi-minimal excellent, [Z03]) A class $C$ of structures are called quasi-
minimal excellent if

1. $C$ is equipped with a pregeometry, i.e., for any $H\in C$ there is a closure notion cl
such that ( $H$, cl) forms a pregeometry.

2. $\omega$-homogeneity over a submodel, i.e.,

3. Any finite subset $X$ of cl $(C)$ where $C\subseteq H\in C$ is special is defined over a finite subset
$C0$ of $C$ . Here $C$ is special if there is cl-independent $A\subseteq H$ and $A_{1}$ , cdots, $A_{k}\subseteq A$

such that

$C= \bigcup_{i=1}^{k}c1(A_{i})$

Remark 3 In his definition above, Zilber does not assume the pregeometry to satisfy the
exchange principle nor the countable closure property.

Theorem 4 (Thm 1, [Z03]) Let $C$ be a quasi-minimal excellent class, $H,$ $H’\in C$ both
with the countable closure property, $A\subseteq H,$ $A’\subseteq H’$ , independent and cl$(A)=H$,
cl$(A’)=H’$ . Suppose that there is a bijection $\psi_{0}$ : $Aarrow A’$ . Then $\psi_{0}$ extends to an
isomorphism $\psi$ : $Harrow H’$ . $\blacksquare$

From this theorem we immediately have:

Corollary 5 If the class $C$ satisfies the same assumptions of the above theorem and also
the exchange property, then $C$ is categorical in every uncountable categoricity. $\blacksquare$

If in addition a quasi-minimal class is axiomatisable by an $L_{\omega_{1}\omega}$-sentence, we have a
more precise theorem:

Theorem 6 (Thm 2, [Z03]) Suppose a quasi-minimal class $C$ is axiomatisable by an
$L_{\omega_{1}\omega}$ -sentence and the relations $y\in$ cl $(x_{1}, \cdots, x_{n})$ are $L_{\omega\omega}1$-definable for all $n$ . Suppose
further that there is an $H\in C$ containing an infinite cl-independent subset.

Then for any uncountable cardinal $\kappa$ there is a structure $H_{\kappa}\in C$ of cardinality $\kappa$ with
the countable closure property. A structure with these properties is unique in $C$ provided
$C$ satisfies the exchange property. $\blacksquare$

3 Categoricity of algebraically closed fields with
pseudo-exponentiation
The notion of quasi-minimal excellent classes is not an abstract non-sense. We have a
very beautiful and successful example, that is a class $\mathcal{K}_{ex}$ of algebraically closed fields of
pseudo-exponentiation.

$\mathcal{K}_{ex}$ is a class of algebraically closed fields of characteristic zero equipped with a pseudo-
exponentiation ex:
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$\bullet$ Any $F\in \mathcal{K}_{ex}$ is an algebraically closed field of characteristic zero.
ex: $Farrow F^{\cross}$ , ex$(x+y)=$ ex $(x)$ . ex $(y)$ .

$\bullet ker(ex)\simeq \mathbb{Z}$ .
$\bullet$ Each $F\in \mathcal{K}_{ex}$ is strongly exponentially-algebraically closed, i.e.) for any ex-irreducible

free, ex-normal variety $V$ in $2n$ variables ex-defined over a finite $C\subset F$ , with
$\dim V=n$ , there is a generic over $C$ solution of $V$ in $F$ . Roughly speaking this
means that any finite system of exponentially-algebraic equations has a solution if
the system of equations do not violate the property above for ex.

Lemma 7 (Thm 5.13, [Z05]) If $F_{1},$ $F_{2}$ are strongly exponentially-algebraically closed
and of infinite cl-dimension, then $F_{1}$ and 2 are $L_{\omega_{1}\omega}$-equivalent. $\blacksquare$

For the uncountable categoricity of $\mathcal{K}_{ex}$ , we need to show that some element $F$ in the
class have the countable closure property. This can be shown that there is an infinite-
dimensional countable member in the class $\mathcal{K}_{ex}$ .

Lemma 8 The class $\mathcal{K}_{ex}$ is axiomatized by an $L_{\omega_{1}\omega}(Q)$ -sentence, where $Q$ stands for a
quantffier expressing there are uncountably many. $\blacksquare$

Theorem 9 (Thm 5.16, [Z05]) $\mathcal{K}_{ex}$ is quasi-minimal excellent with countable closure
property. Hence, for any uncountable cardinality $\kappa$ there is a unique, up to isomorphism,
structure $F\in \mathcal{K}_{ex}$ of cardinality $\kappa$ . $\blacksquare$

Remark 10 In Zilber $s$ original paper [Z05], the class $\mathcal{K}_{ex}$ above is described as $\mathcal{E}C_{st,ccp}^{*}$

where “st” stands for standard kernel and “ccp” for the countable closure property.

Remark 11 Zilber realized that a theorem of J. Ax which is a solution to a function
field version of the famous Schanuel conjecture is a key to the proof of showing that $\mathbb{C}_{\exp}$ ,
the complex field with the complex exponentiation, has the countable closure property,
(Lemma 5.12, [Z05]). However showing that $\mathbb{C}_{\exp}\in \mathcal{K}_{ex}$ is extreamly hard.

4 Analytic Zariski structures and categoricity
Analytic Zariski structures are structures with topology defined such that certain closed
sets capture the notion of analiticity. Those closed sets should reflect properties of genuine
analytic subsets.

4.1 Language for analytic Zariski structures
To develop the model theory of such structures there are two ways to define the natural
language of topological structures.

1. Start with a topological space $M$ with certain properties. Then consider a language
having all predicate symbols corresponding to closed sets. This is the style of [HZ96].

2. Start with a first-order structure $M$ . Consider a collection $C$ of first-oder definable
with parameters subsets of $M^{n}$ for each $n$ . The collection $C$ has certain proper-
ties enable to define a topological structure. Then consider a language having all
predicate symbols to all sets in $C$ . Zilber calls this structure a topological struc-
ture $(M, C)$ . He then defines the natuml language for topological structure having
predicate symbol for each closed set in $C$ .

We follow the second approach in this note.
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4.2 Axioms for analytic Zariski structures
There are four sorts of axioms; the first group is for the topology of the underlying set,
the second group for the property of dimensions, the third for the analytic sets, and the
last one is for the analytic rank.

(Ll) closed sets are closed under arbitrary intersections
(L2) closed sets are closed under finite unions
(L3) the domain of the structure is closed
(L4) the graph of the equality is closed

(L5) any singleton of the domain is a closed
(L6) Cartesian products of closed sets are closed
(L7) closed sets are closed under permutations of coordinates
(L8) for any closed set and any point the fiber over the point is closed

(Ll) through (L8) define the notion of topological structures. Next Zilber introduces
the notion of dimension for projective sets. Here projective sets are finite unions of
projections of certain closed sets.

Remark 12 (Ll) is very confusing; Zilber is assuming here that for any $C_{0},$ $\cdots\in C$ , there
is a set $C\in C$ such that $C= \bigcap_{i=0}^{\infty}C_{i}$ .

Definition 13 (projective) C-constructibe sets are finite unions of sets $S$ with $S\subseteq_{cl}$

$U\subseteq_{op}M^{n}$ . Projective sets are finite unions of projections $prS$ where $S\subseteq_{cl}U\subseteq_{op}M^{n}$ .
To each non-empty projective set, a non-negative integer called its dimension is attached.

(SI) for any irreducible set $S\subseteq_{cl}U\subseteq_{op}M^{n}$ and its closed subset $S’\subseteq S$ , if $\dim S’=$

$\dim S$ then $S’=S$ ,

(DP) for a nonempty projective $S,$ $\dim S=0$ if and only if $S$ is at most countable,

(CU) If $S= \bigcup_{i\in N}S_{i}$ with all $S_{i}$ projective, then $\dim S=\max\{\dim S_{i} : i\in N\}$ ,
(WP) given an irreducible $S\subset_{cl}U\subseteq_{op}M^{n}$ and $F\subset dV\subseteq_{op}M^{n+k}$ with the projection

$pr$ : $M^{n+k}arrow M^{n}$ such that $prF\subseteq S$ and $\dim prF=\dim S$ , then there exists
$D\subseteq_{op}S$ such that $D\subseteq prF$ .

(AF) for any irreducible $S\subseteq_{cl}U\subseteq_{op}M^{n}$ and a projection map $pr:M^{n}arrow M^{m}$ ,

$\dim S=$ dim pr$(S)+ \min_{a\in pr(S)}\dim(pr^{-1}(a)\cap S)$

(FC) for any irreducible $S\subseteq_{cl}U\subseteq_{op}M^{n}$ and a projection map $pr$ : $M^{n}arrow M^{m}$ , there
exists $V\subseteq_{op}prS$ (relatively open) such that

$\min\{\dim(pr^{-1}a)\cap S))\}=\dim(pr^{-1}(v)\cap S)$
$a\in pr(S)$

for any $v\in pr(V)\cap pr(S)$ .

WP above is an acronym for the weak properness and it works as a kind of quantifier
elimination. Topological structures with the function $\dim$ satisfying the above properties
(SI) through (WP) is called topological structures with good dimension.

Definition 14 (Analytic subsets, [Z10]) A subset $S$ such that $S\subseteq_{cl}U\subseteq_{op}M^{n}$ is
called analytic if for each $a\in S$ there is an open set $V_{a}\subseteq_{op}U$ with $a\in V_{a}$ and $S\cap V_{a}$ is
the union of finitely many relatively closed irreducible subsets.
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Analytic subsets should satisfy the following properties;

(INT) For any open subset $U$ , the intersection of analytic subsets of $U$ is analytic in $U$ .

(CMP) For any open subset $U$ , an analytic subset $S$ of $U$ and $a\in S$ , there are analytic
subsets $S_{a},$ $S_{a}’\subseteq U$ such that

1. $S_{1}$ is a finite union of irreducible analytic subsets of $U$

2. $a\in S_{a}\backslash S_{a}’$ , and $S=S_{a}\cup S_{a}’$

(CC) For any open subset $U$ and any analytic subset $S$ of $U$ , there are at most countably
components of $S$ such that $S$ is its union.

Definition 15 (Analytic Rank, [Z10]) To each subset $S\subseteq dU\subseteq_{op}M^{n}$ , we define
the analytic rank of $S$ in $U$ which is a natural number satisfying:

1. ark$u(S)=0$ if and only if $S=\emptyset$ ;

2. ark$U(S)\leq k+1$ if and only if there is a set $S’\subseteq_{cl}S$ such that ark$(S’)\leq k$ and with
the set $S^{0}=S\backslash S^{f}$ being analytic in $U\backslash S^{f}$ .

4.3 Quasi-minimal excellent class of analytic Zariski struc-
tures
Suppose $M$ is an analytic Zariski structure. $M$ should capture some aspects of analyt-
icity from model theoretic point of view. Naturally we try to form a class of structures
associated with the structure $M$

We now review Zilber $s$ idea of constructing a quasi-minimal excellent class of struc-
tures associated with the structure $M$ .

4.3.1 Core substructure of analytic Zariski structures

Definition 16 (Defn 6.3.1, [Z10]) Let $(M, C)$ be a topological structure. Suppose $M_{0}$

is a non-empty subset of $M$ and $C_{0}$ a subfamily of $C$ . We say that $(M_{0)}C_{0})$ is a core
substructure if

1. if $\{(x_{1}, \cdots, x_{n})\}\in C_{0}$ then each $x_{i}\in M_{0}(i=1, \cdots n)$

2. $C_{0}$-closed sets are closed under finite intersection

3. $C_{0}$ satisfies $(L1)-(L7)$ , and (L8) with $a\in M_{0}^{k}$

4. $C_{0}$ satisfies (WP), (AF), (FC) and (AS)

5. for any $C_{0}$-constructible $S\subseteq_{an}U\subseteq_{op}M^{n}$ , every irreducible component $S_{i}$ of $S$ is
$C_{0}$-constructible

6. for any non-empty $C_{0}$-constructible $U\subseteq M,$ $U\cap M_{0}\neq\emptyset$ .

Lemma 17 For any countable $N\subseteq M$ and $C\subseteq C$ there exist countable $M_{0}\supseteq N$ and
$C_{0}\supseteq C$ such that $(M_{0}, C_{0})$ is a core substructure. $\blacksquare$

We then fix a core substructure $(M_{0}, C_{0})$ with $M_{0}$ and $C_{0}$ countable.

Remark 18 (Core-substructures of $\mathcal{K}_{ex}$ ) Start with the prime field of the algebraically
closed field $K$ we can construct a core substructure.
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Definition 19 ($C_{0}$-predimension) For any finite subset $X$ of $M$ , we define the $C_{0^{-}}$

predimension

$\delta(X)=\min${$\dim S:X\in S,$ $S\subseteq_{an}U\subseteq_{op}M^{n},$ $S$ is $C_{0}$-constructible}

and the dimension
$\delta(X)=\min\{\delta(XY)$ : finite $Y\subset M\}$ .

From now on we assume that $\dim M=1$ and $M$ is irreducible. Under this assumption
we have that for any $y\in M$

$0\leq\delta(Xy)\leq\delta(X)+1$

since $Xy\in S\cross M$ and $\dim(M)=1$ .
By the addition formula axiom (AF) we have that for any $F\subseteq_{an}U\subseteq_{op}M^{k}$ with

positive dimension, there is $i\leq k$ such that $\dim pr_{i}F>0$ .
Zilber proves a main proposition stating the relation between the original dimension

$dim$” and the dimension defined by the $C_{0}$-predimension.

Proposition 20 Let $S$ be an analytic subset of $M^{n+k}$ with $S\subseteq_{an}U\subseteq_{op}M^{n+k}$ . Consider
a $C_{0}$-constructible $P=prS$ for some projection $pr$ . Then

$\dim P=\max\{\delta(x) : x\in P\}$

$\blacksquare$

Now define the closure notion with predimension;

Definition 21 For any finite $X\subseteq M$ ,

$c1_{C_{0}}(X)=\{y\in M:\partial(Xy)=\partial(X)\}$

Proposition 20 plays a major role to show that cl $(A)$ is countable for any finite $A$ . It
follows that the operator “ cl” defines a predimension on $M$ .

4.3.2 Quasi-minimal excellent class associated with an analytic Zariski
structure

First define a class $\mathcal{A}_{0}(M)$ of structures associated with $M$ ;

$A0(M)=$ {countable $C_{0}^{\text{ョ}}$-structures $N$ : $N\simeq N’\subseteq M$ , cl$(N’)=N’$}

With this class, Zilber then defines another class $\mathcal{A}(M)$ satisfying the following properties;

1. $c1_{C_{0}}$ with respect to $H$ is defined,

2. $\mathcal{A}o(H)\subseteq \mathcal{A}_{0}(M)$ as classes with embeddings,

3. for every finite $X\subseteq H$ there is $N\in \mathcal{A}_{0}(H)$ such that $X\subseteq N$ .

We want this class $\mathcal{A}(M)$ to be

1. a class of analytic Zariski structures, and

2. uncountable categorical.

These two objectives are achieved by the following theorems and the proposition.

Theorem 22 (Thm 2.13, [Z08]) (i) Every $L_{\infty\omega}(C_{0})$-type realized in $M$ is equivalent
to a projective type.
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(ii) There are only countably many $L_{\infty\omega}(C_{0})$-types realized in $M$

(iii) $(M, C_{0}^{\text{ョ}})$ is quasi minimal $\omega$-homogeneous over countable submodels.
$\blacksquare$

Definition 23 For $H_{1},$ $H_{2}\in \mathcal{A}(M)$ with $H_{\subseteq}H_{2)}$ we define $H_{1}\preceq H_{2}$ if for every finite
$X\subseteq H_{1},$ $c1_{H_{1}}(X)=c1_{H_{2}}(X)$ .

Theorem 24 (Uncountable Categoricity, Thm 2.15, [Z08]) Given an analytic Zariski
structure $M$ and a countable core substructure $(M_{0}, C_{0})$ , assume that $\mathcal{A}_{0}(M)$ is excellent.
Then the class $\mathcal{A}(M)$ contains a structure of any infinite cardinality and is categorical in
uncountable cardinals. $\blacksquare$

Under the same assumption as above theorem, if also the language of $M$ is essentially
countable i.e., there exists a countable $C_{base}\subseteq C$ such that every $S\in C$ is of the form
$S=P(a, M)$ for some $P\in C_{base}$ and $a\in M^{l}$ , and assuming further that $C_{base}\subseteq C_{0}$ , then
we have

Proposition 25 (Prop. 2.16, [Z08]) Any uncountable $H\in \mathcal{A}(M)$ is an analytic Zariski
structure in the language $C_{0}$ with parameters in $H$ . If $M$ is presmooth, then so is each
H. $\blacksquare$

5 $\mathcal{K}_{ex}$ as a class of analytic Zariski geometries
Recall that the class $\mathcal{K}_{ex}$ is uncountable categorical (Theorem 9). On the other hand,
showing $\mathcal{K}_{ex}$ is a class of analytic Zarisky geometries is still an open problem. We still do
not know how to introduce a topology on each member of $\mathcal{K}_{ex}$ .
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