On superstable generic structures

池田宏一郎(Koichiro IKEDA)* 法政大学経営学部 (Faculty of Business Administration, Hosei University)

This manuscript is an expansion of my talk at Kirishima meeting. In this talk, we mainly gave a counter-example of Baldwin's question. Proofs of our results can be found in [18]. So we do not explain all of those details here.

1 Baldwin's question

Many papers [5, 8, 10, 11, 12, 19, 21, 25] have laid out the basics of generic structures in various situations. In particular, this manuscript was influenced by papers of Wagner [25] and Baldwin-Shi [8].

Generic structures Let *L* be a countable relational language. Let **K** be a class of finite *L*-structures that is closed under substructures. Let \leq be a reflexive and transitive relation on **K** satisfying the following:

(C1) $A \leq B \in \mathbf{K}$ implies $A \subset B$;

(C2) $A \leq B \leq C \in \mathbf{K}$ implies $A \leq C$;

(C3) $A, B \leq C \in \mathbf{K}$ implies $A \cap B \leq C$;

(C4) $A \in \mathbf{K}$ implies $\emptyset \leq A$.

Then, for each A, B with $A \subset B$ there is the smallest set $C \leq B$ containing A. We call such a C the *closure* of A in B, and denoted by $cl_B(A)$. (\mathbf{K}, \leq) has the *amalgamation property* (for short AP), if whenever $A \leq B \in \mathbf{K}$ and $A \leq C \in \mathbf{K}$ then there is a $D \in \mathbf{K}$ such that B and C are closedly embedded in D over A.

^{*}The author is supported by JSPS Grants-in-Aid for Scientific Research No. 19540150.

Definition 1.1 A countable *L*-structure *M* is said to be (\mathbf{K}, \leq) -generic, if it satisfies the following:

- 1. Any finite $A \subset M$ belongs to **K**;
- 2. *M* is *rich*, i.e., For any $A \leq B \in \mathbf{K}$ with $A \leq M$ there is $B' \cong_A B$ with $B' \leq M$;
- 3. M has finite closures, i.e., for any finite $A \subset M$, $|cl_M(A)|$ is finite.

If (\mathbf{K}, \leq) has AP, then there exists a (\mathbf{K}, \leq) -generic M. By the back-andforth argument, if M, N are (\mathbf{K}, \leq) -generic then $M \cong N$. It can be seen also that the generic M is ultra-homogeneous over closed sets, i.e., if $B, B' \leq M$ and $B \cong B'$ then $\operatorname{tp}(B) = \operatorname{tp}(B')$.

Ab initio generic structures Let L be a countable relational language, where each $R \in L$ is symmetric and irreflexive, i.e., if $\models R(\bar{a})$ then the elements of \bar{a} are without repetition and $\models R(\sigma(\bar{a}))$ for any permutation σ . Thus, for an *L*-structure A and $R \in L$ with arity n, R^A can be thought of as a set of *n*-element subsets of A. For a finite *L*-structure A, a predimension of A is defined by

$$\delta(A) = |A| - \sum_{R \in L} \alpha_R |R^A|$$

where $0 < \alpha_R \leq 1$ for $R \in L$. Write $\delta(B/A) = \delta(BA) - \delta(A)$.

Let \mathbf{K}^* denote the class of all finite *L*-structures A with $\delta(B) \geq 0$ for every $B \subset A$. For $A \subset B \in \mathbf{K}^*$, define $A \leq B$ to have $\delta(X/A \cap X) \geq 0$ for any finite $X \subset B$. Note that (\mathbf{K}^*, \leq) satisfies (C1)-(C4). Take any $\mathbf{K} \subset \mathbf{K}^*$ closed under substructures. Clearly (\mathbf{K}, \leq) also satisfies (C1)-(C4). So, if (\mathbf{K}, \leq) has AP, then there exists the generic M. M is a generic structure derived from the predimension δ . Such a M is called *ab initio generic*.

Theories having finite closures By definition, an *ab initio* generic structure M has finite closures, however each model of Th(M) does not always have finite closures. We say that a theory T has *finite closures*, if any model of T has finite closures.

Let M be an *ab initio* generic structure such that $\operatorname{Th}(M)$ has finite closures, and \mathcal{M} a big model of $\operatorname{Th}(M)$. For a finite $A \subset \mathcal{M}$, a *dimension* of A is defined by $d(A) = \delta(\operatorname{cl}_{\mathcal{M}}(A))$. For finite $A, B \subset \mathcal{M}$, put

 $d(A/B) = d(A \cup B) - d(B)$. For an infinite B, let $d(A/B) = \inf \{ d(A/B_0) : B_0$ is a finite subset of $B \}$. For $A, B, C \subset \mathcal{M}$ with $B \cap C \subset A$, we say that B and C are free over A (write $B \perp_A C$), if $R^{ABC} = R^{AB} \cup R^{AC}$ for each $R \in L$. The free amalgamation of B and C over A, denoted by $B \oplus_A C$, is the structure $B \cup C$ with $B \perp_A C$.

Examples and Question The following are examples of *ab initio* generic structures:

- L is finite, and the generic is saturated: An ℵ₀-categorical stable pseudoplane (Hrushovski [13]), A strongly minimal structure with a new geometry (Hrushovski [14]), An ℵ₁-categorical non-Desarguesian projective plane (Baldwin [4]), An almost strongly minimal generalized n-gon (Debonis-Nesin [9], Tent [23]), A minimal but not strongly minimal structure with arbitrary finite dimension (Ikeda [15]).
- L is finite, and the generic is not saturated: A sparse random graph (Shelah-Spencer [22], Baldwin-Shelah [7], Laskowski [20]).
- L is infinite, and the generic is saturated: A stable small structure with infinite weight (Herwig [12]).

All known examples are either strictly stable or ω -stable. Therefore the following question arises naturally.

Question 1.2 (Baldwin [3, 6]) Is there an *ab initio* generic structure which is superstable but not ω -stable?

2 Results

Here we deal with an *ab initio* generic graph M with coefficient 1: Let $L = \{R(*,*)\}$ and $\delta(A) = |A| - |R^A|$.

Proposition 2.1 Let M be an *ab initio* generic graph with coefficient 1. Then $\operatorname{Th}(M)$ is λ -stable for each $\lambda \geq |S(\operatorname{Th}(M))|$. Sketch of Proof. Let \mathcal{M} be a big model. Take any $N \prec \mathcal{M}$ with $|N| = \lambda$, and take any $p \in S(N)$. For $b \models p$, there is a finite $A \subset N$ with d(b/N) = d(b/A). Let $B = \operatorname{cl}(bA)$. We can assume that $B \oplus_A N \leq \mathcal{M}$. Note that Th(\mathcal{M}) is not always ultra-homogeneous over closed sets. As $\alpha = 1$, tp(B/N)is determined by tp(B/A). Hence $|S(N)| \leq |N|^{<\omega} \cdot |S(\operatorname{Th}(\mathcal{M}))| = \lambda$.

Remark 2.2 The case of $\alpha = 1$ is particular. When α is rational with $\alpha < 1$, the above statement does not necessarily hold. However, if M is saturated, it can be shown that Th(M) is ω -stable.

First Example Here we construct an *ab initio* generic graph which has coefficient 1 and is not saturated.

A graph $A = \{a_0, a_1, ..., a_k\}$ is called a *line*, if the relations of A are $R(a_0, a_1), ..., R(a_{k-1}, a_k)$. A graph $A = \{a_0, a_1, ..., a_k\}$ is called a *cycle*, if the relations of A are $R(a_0, a_1), ..., R(a_{k-1}, a_k), R(a_k, a_0)$. A connected acyclic graph is called a *tree*.

Let **T** be the class of all finite trees. Let **C** be the class of all cycles. Let $\mathbf{K}_1 = \{A_0 \oplus \cdots \oplus A_n : A_0, ..., A_n \in \mathbf{T} \cup \mathbf{C}, n \in \omega\}$. Clearly \mathbf{K}_1 is closed under substructures. Moreover, the following lemma can be seen easily.

Lemma 2.3 \mathbf{K}_1 has the free amalgamation property, i.e., if $A \leq B \in \mathbf{K}_1$, $A \leq C \in \mathbf{K}_1$ and $B \perp_A C$, then $B \oplus_A C \in \mathbf{K}_1$.

By Lemma 2.3, we can take the (\mathbf{K}_1, \leq) -generic M_1 . Let \mathcal{M}_1 be a big model. By compactness, \mathcal{M}_1 has infinite lines without endpoints as connected components. So we have the following lemma.

Lemma 2.4 M_1 is not saturated.

It is seen that any connected component of \mathcal{M}_1 is isomorphic to either a cycle, an infinite line without endpoints, or a tree with deg = ∞ . Then we have the following lemma.

Lemma 2.5 $Th(M_1)$ is small.

By Proposition 2.1 and Lemma 2.4, 2.5, we have the following theorem.

Theorem 2.6 ([18]) There is an *ab initio* generic graph which has coefficient 1 and is not saturated. Moreover, the theory is ω -stable.

Second Example As an answer to Question 1.2, we construct an *ab initio* generic graph with coefficient 1 such that the theory is superstable but not ω -stable.

The construction is as follows. Let $F_0 = \{a_0\}$ and $F_1 = \{a_1, b_1\}$ be graphs with no relations. For $n \in \omega$ and $\eta \in {}^n 2$, a graph $E_\eta = (E_\eta, R^{E_\eta})$ is defined as follows:

- $F_{\eta(k)}^k \cong F_{\eta(k)}$ for each k with $0 \le k \le n$;
- $E_{\eta} = \{e_k : -n \le k \le n\} \cup \bigcup_{0 \le k \le n} F_{\eta(k)}^k;$
- $R^{E_{\eta}} = \{(e_k, e_{k+1}) : -n \le k \le n-1\} \cup \{(e_k, a) : a \in F_{\eta(k)}^k, 0 \le k \le n\}.$

Figure 1: The graph E_{η} where n = 4 and $\eta = (01101)$

Take a 1-1 onto map $f: {}^{\omega>}2 \to \omega - \{0, 1, 2\}$. Using f and E_{η} , a graph $D_{\eta} = (D_{\eta}, R^{D_{\eta}})$ is defined as follows:

- $e_{-n}^i E_{\eta}^i \cong e_{-n} E_{\eta}$ for each i with $0 \le i < f(\eta)$;
- $D_{\eta} = \bigcup_{0 \le i < f(\eta)} E_{\eta}^{i};$
- $R^{D_{\eta}} = \bigcup_{0 \le i < f(\eta)} R^{E_{\eta}^{i}} \cup \{(e_{-n}^{0}, e_{-n}^{1}), ..., (e_{-n}^{f(\eta)-2}, e_{-n}^{f(\eta)-1}), (e_{-n}^{f(\eta)-1}, e_{-n}^{0})\}.$

Let **T** be the class of all finite trees. Let **D** be the class of all finite substructures of D_{η} for every $n \in \omega$ and $\eta \in {}^{n}2$. Let $\mathbf{K}_{2} = \{A_{0} \oplus \cdots \oplus A_{n} : A_{0}, ..., A_{n} \in \mathbf{T} \cup \mathbf{D}, n \in \omega\}$.

Lemma 2.7 K_2 has the amalgamation property.

Figure 2: The graph D_{η} where $f(\eta) = 6$

Sketch of Proof. Suppose that $A \leq B \in \mathbf{K}_2$ and $A \leq C \in \mathbf{K}_2$. We can assume that B and C are connected, $B \perp_A C$ and $A \neq \emptyset$. If both B and Chave no cycles, then we have $D \in \mathbf{T} \subset \mathbf{K}_2$. So we can assume that either B or C has a cycle. Then any cycle in B or C must be contained in A. Moreover it has the unique *n*-cycle for some $n \in \omega$. Let $\eta = f^{-1}(n)$. We can assume that $A \leq D_{\eta}$. Then both of B and C can be closedly embedded over A in $D_{\eta} \in \mathbf{K}_2$. Hence B and C are amalgamated over A.

Figure 3: B and C can be closedly embedded over A in $D_{f^{-1}(5)}$.

By Lemma 2.7, we can take the (\mathbf{K}_2, \leq) -generic M_2 . Let \mathcal{M}_2 be a big model. For $\beta \in {}^{\omega}2$, a graph E_{β} is defined as the following figure:

Figure 4: The graph E_{β} where $\beta = (01101 \cdots)$

By compactness, in a big model \mathcal{M}_2 , there are continuously many E_{β} 's as connected components. Hence we have the following lemma.

Lemma 2.8 $|S(Th(M_2))| = 2^{\aleph_0}$

By Proposition 2.1 and Lemma 2.11, we have the following theorem.

Theorem 2.9 ([18]) There is an *ab initio* generic structure which is superstable but not ω -stable.

In Kirishima meeting, Baldwin suggested to me that the following question should arise naturally.

Question 2.10 Is there an *ab initio* generic structure which is *small* and superstable but not ω -stable?

This question is still open.

Saturated Generic Structures We have a negative answer to Question 1.2 under the assumption that L is finite and the generic is saturated. To get this result, we need the following lemma. The proof of the lemma is similar to that of Lemma 2.4 in [1].

Lemma 2.11 Let M be an *ab initio* generic structure and \mathcal{M} a big model of $\operatorname{Th}(M)$. Suppose that M is saturated. If $A \leq B \leq \mathcal{M}$ and $B \cap \operatorname{acl}(A) = A$, then $B \cup \operatorname{acl}(A) \leq \mathcal{M}$.

The following theorem is a generalization of that of [17], and the proof is a modification of [1].

Theorem 2.12 ([18]) Let M be an *ab initio* generic *L*-structure. If L is finite and M is saturated, then Th(M) is strictly stable or ω -stable.

Question 2.13 Let M be an *ab initio* generic structure in a countable relational language. If M is saturated, then is the theory strictly stable or ω -stable?

References

- [1] Y. Anbo and K. Ikeda, A note on stability spectrum of generic structures, to appear in Mathematical Logic Quarterly
- [2] Roman Aref'ev, J. T. Baldwin and M. Mazzucco, δ -invariant amalgamation classes, The Journal of Symbolic Logic 64 (1999) 1743–1750
- [3] J. T. Baldwin, Problems on pathological structures, In Helmut Wolter Martin Weese, editor, Proceedings of 10th Easter Conference in Model Theory (1993) 1–9
- [4] J. T. Baldwin, An almost strongly minimal non-Desarguesian projective plane, Transactions of American Mathematical Society 342 (1994) 695– 711
- [5] J. T. Baldwin, Rank and homogeneous structures, In *Tits Buildings and the Theory of Groups*, Cambridge University Press, Cambridge (2002) 215–233
- [6] J. T. Baldwin, A field guide to Hrushovski's constructions, http://www.math.uic.edu/~jbaldwin/pub/hrutrav.pdf, 2009
- [7] J. T. Baldwin and S. Shelah, Randomness and semigenericity, Transactions of the American Mathematical Society 349 (1997) 1359–1376
- [8] J. T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and Applied Logic 79 (1996) 1–35
- [9] A. Nesin and M. J. De Bonis, There are 2^{ℵ0} many almost strongly minimal generalized n-gons that do not interpret an infinite group, Journal of Symbolic Logic 63 (1998), no.2, 485–508

- [10] D. Evans, \aleph_0 -categorical structures with a predimension, Annals of Pure and Applied Logic 116 (2002) 157–186
- [11] J. Goode, Hrushovski's geometries, In Helmut Wolter Bernd Dahn, editor, Proceedings of 7th Easter Conference on Model Theory (1989) 106–118
- [12] B. Herwig, Weight ω in stable theories with few types, Journal of Symbolic Logic 60 (1995) 353–373
- [13] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane, preprint, 1988
- [14] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic 62 (1993) 147–166
- [15] K. Ikeda, Minimal but not strongly minimal structures with arbitrary finite dimension, Journal of Symbolic Logic 66 (2001) 117–126
- [16] K. Ikeda, A note on generic projective planes, Notre Dame Journal of Formal Logic 43 (2002) 249–254
- [17] K. Ikeda, A remark on the stability of saturated generic graphs, Journal of the Mathematical Society of Japan 57 (2005) 1229–1234
- [18] K. Ikeda, The stability spectrum of ab initio generic structures, submitted
- [19] D. W. Kueker and C. Laskowski, On generic structures, Notre Dame Journal of Formal Logic 33(1992) 147–166
- [20] C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theory, Israel Journal of Mathematics 161(2007) 157–186
- [21] B. Poizat, Amalgames de hrushovski, In *Tits Buildings and the Theory* of Groups, Cambridge University Press, Cambridge (2002) 195–214
- [22] S. Shelah and J. Spencer, Zero-one laws for sparse random graphs, Journal of the American Mathematical Society 1 (1988) 97–115
- [23] K. Tent, Very homogeneous generalized n-gons of finite Morley rank, Journal of the London Mathematical Society 62 (2000) 1–15

- [24] V. V. Verbovskiy and I. Yoneda, Cm-triviality and relational structures, Annals of Pure and Applied Logic 122 (2003) 175–194
- [25] F. O. Wagner, Relational structures and dimensions, In Automorphisms of first-order structures, Clarendon Press, Oxford (1994) 153–181