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This manuscript is an expansion of my talk at Kirishima meeting. In this
talk, we mainly gave a counter-example of Baldwin $s$ question. Proofs of our
results can be found in [18]. So we do not explain all of those details here.

1 Baldwin’s question
Many papers [5, 8, 10, 11, 12, 19, 21, 25] have laid out the basics of generic
structures in various situations. In particular, this manuscript was influenced
by papers of Wagner [25] and Baldwin-Shi[8].

Generic structures Let $L$ be a countable relational language. Let $K$ be
a class of finite L-structures that is closed under substructures. Let $\leq$ be a
refiexive and transitive relation on $K$ satisfying the following:

(Cl) $A\leq B\in K$ implies $A\subset B$ ;

(C2) $A\leq B\leq C\in K$ implies $A\leq C$ ;

(C3) $A,$ $B\leq C\in K$ implies $A\cap B\leq C$ ;

(C4) $A\in K$ implies $\emptyset\leq A$ .

Then, for each $A,$ $B$ with $A\subset B$ there is the smallest set $C\leq B$ containing
$A$ . We call such a $C$ the closure of $A$ in $B$ , and denoted by $c1_{B}(A)$ . $(K, \leq)$

has the amalgamation property (for short AP), if whenever $A\leq B\in K$ and
$A\leq C\in K$ then there is a $D\in K$ such that $B$ and $C$ are closedly embedded
in $D$ over $A$ .
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Definition 1.1 A countable L-structure $\Lambda I$ is said to be $(K, \leq)$ -generic, if
it satisfies the following:

1. Any finite $A\subset M$ belongs to $K$ ;

2. $M$ is rich, i.e., For any $A\leq B\in K$ with $A\leq M$ there is $B’\cong_{A}B$ with
$B’\leq M$ ;

3. $M$ has finite closures, i.e., for any finite $A\subset M,$ $|c1_{M}(A)|$ is finite.

If $(K, \leq)$ has AP, then there exists a $(K, \leq)$-generic M. By the back-and-
forth argument, if $M,$ $N$ are $(K, \leq)$-generic then $M\cong N$ . It can be seen also
that the generic $M$ is ultra-homogeneous over closed sets, i.e., if $B,$ $B’\leq\Lambda I$

and $B\cong B’$ then tp$(B)=$ tp$(B’)$ .

Ab initio generic structures Let $L$ be a countable relational language,
where each $R\in L$ is symmetric and irreflexive, i.e., if $\models R(\overline{a})$ then the
elements of $\overline{a}$ are without repetition and $\models R(\sigma(\overline{a}))$ for any permutation $\sigma$ .
Thus, for an L-structure $A$ and $R\in L$ with arity $n,$

$R^{A}$ can be thought of as
a set of n-element subsets of $A$ . For a finite L-structure $A$ , a predimension
of $A$ is defined by

$\delta(A)=|A|-\sum_{R\in L}\alpha_{R}|R^{A}|$

where $0<\alpha_{R}\leq 1$ for $R\in L$ . Write $\delta(B/A)=\delta(BA)-\delta(A)$ .
Let $K^{*}$ denote the class of all finite L-structures $A$ with $\delta(B)\geq 0$ for

every $B\subset A$ . For $A\subset B\in K^{*}$ , define $A\leq B$ to have $\delta(X/A\cap X)\geq 0$ for
any finite $X\subset B$ . Note that $(K^{*}, \leq)$ satisfies (Cl)$-(C4)$ . Take any $K\subset K^{*}$

closed under substructures. Clearly $(K, \leq)$ also satisfies $(C1)-(C4)$ . So, if
$(K, \leq)$ has AP, then there exists the generic M. $\Lambda 4$ is a generic structure
derived from the predimension $\delta$ . Such a $M$ is called ab initio generic.

Theories having finite closures By definition, an ab initio generic struc-
ture $M$ has finite closures, however each model of Th$(M)$ does not always
have finite closures. We say that a theory $T$ has finite closures, if any model
of $T$ has finite closures.

Let $M$ be an ab initio generic structure such that Th$(M)$ has finite
closures, and $\mathcal{M}$ a big model of Th(M). For a finite $A\subset \mathcal{M}$ , a dimen-
sion of $A$ is defined by $d(A)=\delta(c1_{\mathcal{M}}(A))$ . For finite $A,$ $B\subset M$ , put
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$d(A/B)=d(A\cup B)-d(B)$ . For an infinite $B$ , let $d(A/B)= \inf\{d(A/B_{0})$ : $B_{0}$

is a finite subset of $B$ }. For $A,$ $B,$ $C\subset \mathcal{M}$ with $B\cap C\subset A$ , we say that
$B$ and $C$ are free over $A$ (write $B\perp {}_{A}C$), if $R^{ABC}=R^{AB}\cup R^{AC}$ for each
$R\in L$ . The free amalgamation of $B$ and $C$ over $A$ , denoted by $B\oplus_{A}C$ , is
the structure $B\cup C$ with $B1_{A}C$ .

Examples and Question The following are examples of ab initio generic
structures:

$\bullet$ $L$ is finite, and the generic is saturated: An $\aleph_{0}$-categorical stable pseu-
doplane (Hrushovski [13]), A strongly minimal structure with a new
geometry (Hrushovski [14]), An $\aleph_{1}$ -categorical non-Desarguesian pro-
jective plane (Baldwin [4]), An almost strongly minimal generalized
n-gon (Debonis-Nesin [9], Tent [23]), A minimal but not strongly min-
imal structure with arbitrary finite dimension (Ikeda [15]).

$\bullet$ $L$ is finite, and the generic is not saturated: A sparse random graph
(Shelah-Spencer [22], Baldwin-Shelah [7], Laskowski [20]).

$\bullet$ $L$ is infinite, and the generic is saturated: A stable small structure with
infinite weight (Herwig [12]).

All known examples are either strictly stable or $\omega$-stable. Therefore the
following question arises naturally.

Question 1.2 (Baldwin [3, 6]) Is there an ab initio generic structure which
is superstable but not $\omega$-stable?

2 Results
Here we deal with an ab initio generic graph $M$ with coefficient 1: Let $L=$

$\{R(*, *)\}$ and $\delta(A)=|A|-|R^{A}|$ .

Proposition 2.1 Let $M$ be an ab initio generic grapli with coefficient 1.
Then Th$(M)$ is $\lambda$-stable for each $\lambda\geq|S$(Th$(M)$ ) $|$ .
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Sketch of Proof. Let $\mathcal{M}$ be a big model. Take any $N\prec \mathcal{M}$ with $|N|=\lambda$ ,

and take any $p\in S(N)$ . For $b\models p$ , there is a finite $A\subset N$ with $d(b/N)=$

$d(b/A)$ . Let $B=$ cl $(bA)$ . We can assume that $B\oplus_{A}N\leq \mathcal{M}$ . Note that
Th$(M)$ is not always ultra-homogeneous over closed sets. As $\alpha=1$ , tp$(B/N)$

is determined by tp$(B/A)$ . Hence $|S(N)|\leq|N|^{<\omega}\cdot|S(Th(M))|=\lambda$ .

Remark 2.2 The case of $\alpha=1$ is particular. When $\alpha$ is rational with $\alpha<1$ ,

the above statement does not necessarily hold. However, if $M$ is saturated,
it can be shown that Th$(M)$ is $\omega$-stable.

First Example Here we construct an ab initio generic graph which has
coefficient 1 and is not saturated.

A graph $A=\{a_{0}, a_{1}, \ldots, a_{k}\}$ is called a line, if the relations of $A$ are
$R(a_{0}, a_{1}),$

$\ldots,$
$R(a_{k-1}, a_{k})$ . A graph $A=\{a_{0}, a_{1}, \ldots, a_{k}\}$ is called a cycle, if the

relations of $A$ are $R(a_{0}, a_{1}),$
$\ldots,$

$R(a_{k-1}, a_{k}),$ $R(a_{k}, a_{0})$ . A connected acyclic
graph is called a tree.

Let $T$ be the class of all finite trees. Let $C$ be the class of all cycles. Let
$K_{1}=\{A_{0}\oplus\cdots\oplus A_{n} : A_{0}, \ldots, A_{n}\in T\cup C, n\in\omega\}$ . Clearly $K_{1}$ is closed under
substructures. Moreover, the following lemma can be seen easily.

Lemma 2.3 $K_{1}$ has the free amalgamation property, i.e., if $A\leq B\in K_{1},$ $A\leq$

$C\in K_{1}$ and $B1_{A}C$ , then $B\oplus_{A}C\in K_{1}$ .

By Lemma 2.3, we can take the $(K_{1}, \leq)$-generic $\Lambda I_{1}$ . Let $\mathcal{M}_{1}$ be a big
model. By compactness, $\mathcal{M}_{1}$ has infinite lines without endpoints as con-
nected components. So we have the following lemma.

Lemma 2.4 $M_{1}$ is not saturated.

It is seen that any connected component of $\mathcal{M}_{1}$ is isomorphic to either a
cycle, an infinite line without endpoints, or a tree with $\deg=\infty$ . Then we
have the following lemma.

Lemma 2.5 Th $(M_{1})$ is small.

By Proposition 2.1 and Lemma 2.4, 2.5, we have the following theorem.

Theorem 2.6 ([18]) There is an ab initio generic graph which has coeffi-
cient 1 and is not saturated. Moreover, the theory is $\omega$-stable.
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Second Example As an answer to Question 1.2, we construct an ab initio
generic graph with coefficient 1 such that the theory is superstable but not
$\omega$-stable.

The construction is as follows. Let $F_{0}=\{a_{0}\}$ and $F_{1}=\{a_{1}, b_{1}\}$ be graphs
with no relations. For $n\in\omega$ and $\eta\in n2$ , a graph $E_{\eta}=(E_{\eta}, R^{E_{\eta}})$ is defined
as follows:

$\bullet$ $F_{\eta(k)}^{k}\cong F_{\eta(k)}$ for each $k$ with $0\leq k\leq n$ ;

$\bullet E_{\eta}=\{e_{k}:-n\leq k\leq n\}\bigcup_{0\leq k\leq n}\cup F_{\eta(k);}^{k}$

$\bullet$ $R^{E_{\eta}}=\{(e_{k}, e_{k+1}):-n\leq k\leq n-1\}\cup\{(e_{k}, a):a\in F_{\eta(k)}^{k}, 0\leq k\leq n\}$ .

$e_{-4}e_{-3}e_{-2}e_{-1}e_{0}e_{1}$ $e_{2}e_{3}e_{4}$

Figure 1: The graph $E_{\eta}$ where $n=4$ and $\eta=(01101)$

Take a 1-1 onto map $f$ : $\omega>2arrow\omega-\{0,1,2\}$ . Using $f$ and $E_{\eta}$ , a graph
$D_{\eta}=(D_{\eta}, R^{D_{\eta}})$ is defined as follows:

$\bullet$ $e_{-n}^{i}E_{\eta}^{i}\cong e_{-n}E_{\eta}$ for each $i$ with $0\leq i<f(\eta)$ ;

$\bullet D_{\eta}=\bigcup_{0\leq i<f(\eta)}E_{\eta}^{i}$
;

$\bullet R^{D_{\eta}}=\cup R^{E_{\eta}^{i}}0\leq i<f(\eta)\cup\{(e_{-n}^{0}, e_{-n}^{1}), \ldots, (e_{n}^{\underline{f}(\eta)-2}, e_{n}^{\underline{f}(\eta)-1}), (e_{n}^{\underline{f}(\eta)-1}, e_{-n}^{0})\}$
.

Let $T$ be the class of all finite trees. Let $D$ be the class of all finite
substructures of $D_{\eta}$ for every $n\in\omega$ and $\eta\in n2$ . Let $K_{2}=\{A_{0}\oplus\cdots\oplus A_{n}$ :
$A_{0},$

$\ldots,$
$A_{n}\in T\cup D,$ $n\in\omega\}$ .

Lemma 2.7 $K_{2}$ has the amalgamation property.
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Figure 2: The graph $D_{\eta}$ where $f(\eta)=6$

Sketch of Proof. Suppose that $A\leq B\in K_{2}$ and $A\leq C\in K_{2}$ . We can
assume that $B$ and $C$ are connected, $B1_{A}C$ and $A\neq\emptyset$ . If both $B$ and $C$

have no cycles, then we have $D\in T\subset K_{2}$ . So we can assume that either
$B$ or $C$ has a cycle. Then any cycle in $B$ or $C$ must be contained in $A$ .
Moreover it has the unique n-cycle for some $n\in\omega$ . Let $\eta=f^{-1}(n)$ . We can
assume that $A\leq D_{\eta}$ . Then both of $B$ and $C$ can be closedly embedded over
$A$ in $D_{\eta}\in K_{2}$ . Hence $B$ and $C$ are amalgamated over $A$ .

Figure 3: $B$ and $C$ can be closedly embedded over $A$ in $D_{f^{-1}(5)}$ .
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By Lemma 2.7, we can take the $(K_{2}, \leq)$ -generic $M_{2}$ . Let $\mathcal{M}_{2}$ be a big
model. For $\beta\in\omega 2$ , a graph $E_{\beta}$ is defined as the following figure:

$E\beta$

$0$ 1 1 $0$ 1

Figure 4: The graph $E_{\beta}$ where $\beta=(01101\cdot\cdot\cdot)$

By compactness, in a big model $\mathcal{M}_{2}$ , there are continuously many $E_{\beta}$ ’s
as connected components. Hence we have the following lemma.

Lemma 2.8 $|S(Th(M_{2}))|=2^{\aleph_{0}}$

By Proposition 2.1 and Lemma 2.11, we have the following theorem.

Theorem 2.9 ([18]) There is an ab initio generic structure which is super-
stable but not $\omega-stable$ .

In Kirishima meeting, Baldwin suggested to me that the following ques-
tion should arise naturally.

Question 2.10 Is there an ab initio generic structure which is small and
$supel\cdot Stable$ but not $\omega-stable$?

This question is still open.

Saturated Generic Structures We have a negative answer to Question
1.2 under the assumption that $L$ is finite and the generic is saturated. To get
this result, we need the following lemma. The proof of the lemma is similar
to that of Lemma 2.4 in [1].

Lemma 2.11 Let $M$ be an ab initio generic structure and $\mathcal{M}$ a big model of
Th$(M).$ Suppose that $M$ is saturated. If $A\leq B\leq M$ and $B\cap ac1(A)=A$ ,
then $BUac1(A)\leq \mathcal{M}$ .

The following theorem is a generalization of that of [17], and the proof is
a modification of [1].
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Theorem 2.12 ([18]) Let $M$ be an ab initio generic L-structure. If $L$ is
finite and $M$ is saturated, then Th$(M)$ is strictly stable or $\omega$-stable.

Question 2.13 Let $M$ be an ab initio generic structure in a countable re-
lational language. If $M$ is saturated, then is the theory strictly stable or
$\omega$-st able?
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