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Abstract — In this article, a numerical method is presented for verifying the existence
and the uniqueness of solutions to two-point boundary value problems of second order
ordinary differential equations. By solving the bilinear form of the problem, a weak
solution is a zero point of a certain nonlinear map. The Fréchet differentiability of
this nonlinear map is shown. Based on the Newton-Kantorovich theorem, a numerical
existence and local uniqueness theorem is presented for a zero point of the nonlinear
map. It is shown that taking into account all errors of numerical computations such
as discretization errors and rounding errors, conditions of this theorem can be checked
by numerical computations with result verification. Finally, an illustrative numerical
result is presented for showing the usefulness of the method.

1 Introduction

Let (0,1) be an open interval. This article is concerned with the two boundary value problem
of the second order ordinary differential equation:

{ —(pu) =fu) O<z<1, ' )
u(0) = u(1) = 0, (1)

where p(z) is a smooth function on (0,1) with p(z) > po > 0 for some po. Here, f : H}(0,1) —
L?(0,1) is assumed to be Fréchet differentiable. For example, the following function

fu) = —qu —cru+cou + czud + ... +eyu¥ + ¢

with N € N, ¢(z),ci(z) € L*°(0,1), (i =1,...,N) and g(z) € L?(0,1) satisfies this condition. We
shall propose a numerical verification method for proving the existence of solutions to problem (1).

Studies on this type of computer assisted proofs for the existence of solutions to two point
boundary value problems have been started by pioneering works of Kantorovich [1] and Urabe [2].
The works of McCarthy and Tapia [3] and of Kedem [4] have followed. In 1988, M. T. Nakao [5] has
presented a method of a computer assisted proof for the existence of solutions to elliptic problems
including the problem (1). This method has shown to be quite useful to generate tight numerical
inclusion of solutions [6]. Nakao’s method can be considered as an interval extension of the finite
element method based on some fixed-point theorem. In 1991, Plum (7] has also presented another
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method of proving the existence and uniqueness of solutions for the problem (1). In his method,
the norm of the inverse of linearlized operator is bounded by an eigenvalue enclosing technique
based on the homotopy method. In these two decades, both Nakao’s method and Plum’s method
have been demonstrated to be quite useful for the computer assisted existence proof of solutions of
various boundary value problems of differential equations.

This article presents another method of a computer assisted proof procedure for the existence
of solutions to the problem (1). In the verification theory, a weak formulation is led from the
original problem. A weak solution is defined as a zero point of a certain nonlinear map from
H}(0,1) into H71(0,1) in this formulation. Then the Fréchet differentiability of this nonlinear
map is shown. Based on the Newton-Kantorovich theorem [1], a numerical existence and local
uniqueness theorem is derived for a zero point of this nonlinear map. This method is based on
the theorem of estimating operator norm of inverse. This theorem makes it possible to obtain a
numerical existence and local uniqueness theorem. It is also shown that taking into account all
errors of numerical computations such as discretization errors and rounding errors, conditions of
this theorem applied to this nonlinear map can be checked by numerical computations with result
verification. One of features in this method is that verification conditions can be derived by a pure
analytic way.

2 Verification Theory

In this section, we shall present a numerical method for verifying the existence and the unique-
ness of solutions to two-point boundary value problems of the second order ordinary differential
equation (1).

2.1 Preliminary

Throughout this article, let L?(0, 1) denote the functional space of Lebesgue-measurable square-
integrable functions with L2-inner product and L2-norm

1
(u,v) =/ u(z)v(z)dr and |lullz = V(u,u), (u,v€ L*0,1)),
0
respectively. Let H™(0,1) denote L2-Sobolev space of order m with the inner product
(u’ U)m = (u,v) + (’U,’, U,) 4+ (u(m)7u(m))

and the norm [§]

lullgm = v {u, um = \/IIUIIiz iz + -+ ™z,

Here, both ' and % denote the differentiation with respect to z and u(™ is the m-th derivative of
u with respect to z. Let further

H}0,1) = {u € H' : w(0) = u(1) = 0}

with the inner product (v, v') and the norm ||ul| 3 = llu'|| 2. Let H~1(0,1) be the topological dual

space of HY(0,1), i.e. the space of linear continuous functionals on H§(0,1). Let T € H~'(0,1)
and u € H}(0,1). We denote Tu € R as < T,u >. The norm of T' € H71(0,1) is defined as

[Tl = sp  LSD2>]
veH0 N0y lellm
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Let L*°(0,1) denote the space of functions that are essentially bounded on [0, 1] with the norm
lulloo = esssup |u(z)].
0<z<1

Let X and Y be Banach spaces. The set of bounded linear operators is denoted by £(X,Y) with
the operator norm

Tu
ITleeeny = s 407 ¢ (x, vy,
wex\{o} llullx
Here, || - || x is the norm of X and | - ||y is the norm of Y. The Sobolev embedding theorem states

[6, 8] that
(1) for (k > 1) the embedding H*(0,1) — H'(0,1) is compact and continuous,
(2) the embedding H}(0,1) — C°(0,1) is compact and continuous,
(3) and H}(0,1) € LP(0,1) for p > 2 with

1
9 1
lvllzr < Ce,p“'U”Haa ('U € H&(O, 1) ex Ce,p = ( >P> . (2)

p+2
2.2 Weak Formulation and its Fréchet Differentiability

Let us be concerned with the two-point boundary value problem of the form

) =f(v) O<z<],
{ u(0) = (1) = 0. (3)

In this part, we shall present a numerical verification method of proving the existence of weak
solutions for Eq. (3). For u,v € H}(0,1) let us define a continuous bilinear form a(u, v) as

a(u,v) = (pu',v").

If we fix u € H}(0,1), then a(u,-) € H~1(0,1). Thus, we can define an operator A : H}(0,1) —
H71(0,1) by |

< Au,v >= a(u,v),
which can be seen as a weak form of the differential operator —ad; (pad;). It is noted that the bilinear
form a is coercive, i.e., a(u,u) > p0||u||';’11. Then, for v € H}(0,1) Lax-Milgram’s theorem states
the existence of a unique solution for the 0following equation:

a(u,v) =<T,v>, (T € H(0,1)). 4)

If we denote the operator which maps T to the solution u of Eq. (4) by K : H~1(0,1) — H(0,1),
then this theorem also declares that K becomes an isomorphism between H~1(0,1) and H}(0,1).
It is easy to see that

AK = IH‘l and KA = IH&'

Here, Ty-: and Ty are identity operators on H~1(0,1) and H}(0,1), respectively. In the rest
of this article, we 3enote the identity operator by Z omitting the subscript. Thus, we see K :
H=1(0,1) — H}(0,1) is the inverse of A : H3(0,1) —» H~1(0,1), i.e. K= A1

Similarly, for u,v € H}(0,1) we can define an operator A : H}(0,1) — H~1(0,1) by

< Nu,v >= N(u,v) = (f(u),v).
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Then, a weak form of Eq. (3) can be written as
Au = Nu. (5)

In the following, we will discuss how to verify the existence and the uniqueness of the solution
of Eq. (5), the weak solution of the problem (3). Here, we note that the bilinear form a(u, v) is an
inner product on H}(0,1) and there exist positive constants C, and ¢, satisfying

callull gz < llulla < Callullgy for u e Hg(0,1), (6)

where |lull, = v/a(u,u). In fact, we can choose ¢, = /pg and Cq = +/||p|[L~. We define the
operator F : H}(0,1) — H=1(0,1) by Fu = (A — N)u. Then, Eq.(5) can be written as

Fu = 0. (7)

Definitely, the weak solution of (3) is defined as a zero point of this nonlinear map F.

Next, we now show that F : H}(0,1) — H~1(0,1) is Fréchet differentiable. For a fixed u, 4 €
H}(0,1) we can define N'(4)(u,v) for v € H3(0,1). It is clear that N'(@)(u,-) € H~1(0,1). Thus,
we can define an operator N’ (4) : H}(0,1) — H~1(0,1) by

< N'(@)u, v >= N'(@)(u,v) = (f'(@)u, v).
Here, f'(@) : H}(0,1) — L2(0,1) is the Fréchet derivative of f : H2(0,1) — L2(0,1) at &. We
now show that for a given u € H}(0,1) the Fréchet derivative F'(u) : H}(0,1) — H~1(0,1) of
F: H}0,1) — H™1(0,1) is given as
F(u)v = (A - N(u))v.
" In fact, for u,v € H3(0,1), we have
| < N(u+v) = Nu—-N(wv,w>|

[F(u+v) = Flu) = (A= N'(u))vllg-r = sup
weH(0,1)\{0} lwll £
- swp [(f(u+ ) = f(u) = f'(v)v, w)]
weHL(0,1\{0} lwll g
< lp(u, v) || 2

Here, pu(u,v) = f(u+v)—f(u)— f'(u)v. From the Fréchet differentiability of f : H3(0,1) — L2(0,1),
we have
llp(w, v)| L2

ol
This shows the Fréchet differentiability of F : H}(0,1) — H~1(0,1) at u € H(0,1) and
Fu)=A—-N(u).
Now, we define the natural embedding operator iy2c, g1 : L?(0,1) — H~1(0,1) by
i g-1w =Ty, Tyw(v) = (w,v) for ve HE0,1).

Since 42, g-1 : L?(0,1) — H~1(0,1) is compact and f'(4) : H}(0,1) — L?(0,1) is continuous, the
composite operator

—0, (ol — 0.

N'(@Q) =ig2e,g-10 f(@) : H3(0,1) - H™1(0,1)

is compact.

Now, we assume that an approximate solution @ € H}(0,1) is given for Eq.(7). In order to
prove the existence and the uniqueness of solution of Eq.(7) in the neighborhood of @, the following
Newton-Kantorovich Theorem [1] is applicable.
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Theorem 1 (Newton-Kantorovich Theorem). Let @ € Hj. Let F : H}(0,1) — H71(0,1) be
Fréchet differentiable at 4. Assume that the Fréchet derivative F'(ii) is nonsingular and satisfies

17 (@)~ Fallg; < o,

for a certain positive . Then, let F : H3(0,1) — H~1(0,1) be Fréchet differentiable on B(i, 20) =
{ve H5(0,1) : v —allg <2a} C HJ(0,1) and assume that for a certain positive w and for any
v,w € B(@,2a), the following holds:

17 (@) ™ (F'(v) = F' ()l gy, 3y < wllv = wll g3

If
aw < 1
-— 2’
then there is a solution u* € H}(0,1) of Fu = 0 satisfying
. - 1-+v1-20w
o — gy < pr= TV

Furthermore, the solution u* is unique in B(i, p).

This form of Newton-Kantorovich Theorem is called an affine invariant form. Verification
constants a and w have an invariance. Namely, we consider o which is defined by

I (@) Fall gy < o
If we define G : H}(0,1) — H}(0,1) by
G=AT"F=I-A"N,

then
I6'(@) Gl gy = IIF' (@) AAT Fall gy = |7/ ()7  Fll -
This invariance also holds for w. Thus,

Gu=0 (8)
is equivalent to Eq. (7) if one tries to prove the existence and uniqueness of solution of Eq. (8) in
the neighborhood of @ by the Newton Kantorovich theorem. Eq. (8) has been proposed by Nakao
[5].

2.3 Finite Element Approximation

Let X, denote a finite-dimensional space spanned by linearly independent H}-conforming finite
element basis functions S, = {¢1,¢2, - ,¢n} depending on the mesh size h, (0 < h < 1):

Xn = Spa'n{¢la ¢2) eeey ¢'n} C H&(Oa 1)
The Ritz-projection Py : H}(0,1) — X, is defined by
(p(z) (v ~ (Pnu)),v') =0, VweXn. 9)

Since P, is the orthogonal projection with respect to the bilinear form a(, -), ||Prufla < |Jullq holds.

Now, let us consider a finite dimensional approximation of Eq. (7) of the following form:

PaAT FPru = PnA™H (A = N)Pru = Po(u — AN Pru) = 0.
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Let up, € X, be a solution of
Prlup — A NPrup) = 0. (10)

From Eq. (10), we have
(p(z)(un — PeA ' Nun)', ¢) =0, (i=1,2,---,n). (11)
The left hand side of Eq.(11) can be rewritten as
(p(z)up, — p(@)(PaAT Nun), ¢)) = (p(@)u}, — p(@) (A7 Nun)', &)
= (p(z)up, ¢5) — (f(un), di).
Thus, it turns out that Eq. (10) becomes
(p(z)up, $h) = (f(un), @), (Von € Sh),
which is nothing but the finite element approximation [9] of the nonlinear equation (7).

2.4 Norm Estimation of Inverse Operator

Let @ € H}(0,1). For the estimation of ||(Z — A‘l./\/"(ﬁ))“lﬂc(H&’H&), we present the following
theorem, which is a modification of the main theorem in [10, 11] presented by one of authors (S.
Oishi):

Theorem 2. Let & € H}(0,1). Let further N'(%) : H}(0,1) — H~1(0,1) be a linear compact
operator. Let X, be a finite dimensional subspace of H3(0,1) spanned by the finite element bases
Sp = {¢1,02, - ¢n}. Let Py : H}(0,1) — X, be the Ritz-projection and T = A-IN (). We
assume that P, T : H3(0,1) — HJ(0,1) is bounded and satisfies

IPnT |l oz, mg) < K
the difference between T and PnT is bounded and enjoys
|T = PrT | cemg,mpy < L
and the finite dimensional operator Pn(Z — T)|x, : Xn — Xn is invertible with
1Pl = T)Ix) M ez, gy < M.

Here, Pp(T — T)|x, : Xn — Xn is the restriction of the operator Pp(Z — T) : H}(0,1) — X, on
X,. If 1+ MK)L <1, then T — T : H}(0,1) — H}(0,1) is invertible and enjoys

1+ MK
_ _1 < = .
IZ-1T) Hz;(Hg,Hs)—l_(HMK)L' “

Proof. Since
u=(Z—-T)u+ (T —PrT)u+PrTuy,

we have

IZ = Dullgz + T = PaT)ll ey, el g + IPrTull gy
1T = Tyullgs + Dl + IPaTuly. (12

lul 3
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From
PuT-T)PrTu = Pro(T-T)PnT —T)u+Pp(Z-T)Tu
= PpT(T —PpT)u+PrT(ZT-T)u
and the invertibility of Pn(Z — T)|x, : Xn — X with

1(Pn(Z = T)Ix) " leqaz. oy < M,
we have

IPaTully < MIPST ey gy 1T — PaT)ll gy lullgy + MIPRT ooy sy IZ = Thullzy

<
< MELjullg + MKI(E = Thul. (13
Substituting the inequality (13) into the inequality (12), we have

lullgy < 0+ MENT - Tull gy + (1 + ME)L|jul| ;.-
Thus, if (1+ MK)L < 1, then we obtain

lull < —T MK
} ST+ ME)L

I(T — T)ulg- (14)

From the inequality (14), if (Z — T)u = 0, u = 0 follows. This implies the operator (Z — T) :
H(0,1) — H}(0,1) is injective. Since the the operator (Z—T) : H}(0,1) — HZ(0, 1) is of Fredholm
type with the index 0, it is also surjective. Thus, T — 7 : H}(0,1) — H}(0,1) is invertible and
enjoys K
1+ M
-1
1@ =) ey < 7= A MEL

2.5 Estimating Constants K and L
Let @,v € H}(0,1). By (6), we have

IPaT @)0l% < 5 @(@)(PaT @), (PaT (@)0)).

Here, T (@) = A~N’(4). From the definition of the Ritz-projection (9), it follows

(p(2)(PrT (@)v)', (PaT (2)v)') = (p(2)(T()v)', (PnT (@)v))
(f'(@)v, PaT (a)0).

We note here that

(f'(@)o,PaT(@)v) < [If(@)0ll L2l PaT (@)l 2
< N @l eeg, 21l g Ce 2l PaT (@)v]l g

where C, 2 is an embedding constant defined by (2). Thus, it turns out that

. Ce2 .
P T (@)l g3 < Ce?z “f’(u)“[,(H&,Lz)“U”H(}v
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which implies

IPnT (@)l £ a1y < (@)l ez L2)-

Consequently, one can put K as

Ce,? ~
K = =1 @)l -
a

Now, we derive the constant L. For w € L?(0,1) we define T,, € H1(0,1) by
Tw(v) = (w,v) for ve H0,1).
We assume for w € L%(0, 1)
(AT = PeA™) Tl gy < Co(h)|wll L2 (15)

holds. In case of p(z) = 1, one can take Co(h) = 2 for one-dimensional piecewise linear hat
functions. From Eq. (15), for v € H}(0,1) we have

1A = PaA )N @pllgy = (A" = PuA™ ) Tpapollag
< Co(W)f (@)l
< CoMF (@)l cear,z2) vl s

which implies
1T (@) = PuT @l sy 113y < CoIIF (@)l ey, oy-

Thus, as the constant L, one can put

L = Co(Mf' (@)l £(zz3,z2)-
2.6 Method of Calculating M
Let @& € H}(0,1). We shall show how to calculate the constant M defined by

(T = PT @)% coar iy < M-
Let ¢, € X, be related by (T — P,T())|%: ¢ = ¢. Since ¢,% € Xn, we can put
6=2 885 V=) t;d;.
j=1 j=1
From (Z ~ PaT(@)y = 6, we have

(P(w)(d’ - ,P’n-A_lN,(’a‘)d}),a ¢;) = (p($)¢/, ¢;)’ ('l = la 2a e ’n)' (16)

The left hand side of Eq.(16) can be rewritten as
th 2)¢5 = p(2) (PaATN'(0)¢5),¢) = D_t;(p(2)¢} — pl@)(ATN(@)¢5)', 65)
=1

= Yt [p@)¢¢) - (F@end)]. (D)
j=1
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The right hand side of Eq.(16) can be rewritten as

n

> si(p(z)¢}, ¢))- (18)

=1

Let D and G be n x n real matrices whose i-j elements are given by (p(:z:)¢3., ¢;) and
(p(z)85, ;) — (f' ()¢, ¢i), respectively. Then, from (17) and (18) it turns out that

Gt = Do,

where o = (51,82, ,8,)t and 7 = (t1,t2,--- ,t,)t. Here, the superscript ‘ ¢ ’ denotes the transpose.
Since stiffness matrix D is symmetric positive definite, there exists a lower triangular matrix L
forming the Cholesky decomposition, D = LL!. We denote the Euclidean norm of o as ||o]jz =
V/$2 + 85+ -+ + s2. Then, we have

Igll2 = 0*Do = o*LLto = ||(L'0)!(L'0)ll2 = | L'ol3.

Thus, it turns out that ||¢||s = ||Ltc|l2. Similarly, we have ||9||o = [|Lt7||2. The invertibility of G
can be checked by the numerical computation with result verification. Here, assuming the existence
of G~1, we consider

|2 = 7*Dr = DG~ Do = (L*r)/(L!G1L)(Lto). (19)
Using Schwarz’s inequality for n-dimensional vectors w, y, wty < ||w||2||y||2, from Eq. (19) we have
9112 < |l (EGT L) (Ero)ll2 < |¥llall LG Lil2l|$la-

Thus, it turns out that one can put
Coonr o vo
M= c—“||L‘G LL]2. (20)
a

We note that this kind of arguments can be found in Nakao, Hashimoto and Watanabe [12]. The
spectral norm of (20) can be obtained by the method in [13], which is suggested by Prof. Rump at
Hamburg Institute of Technology.

2.7 Method of Calculating Norm of Residual

Let @ € X, C H}(0,1) be an approximate solution of the problem (1). In this subsection, we
shall show how to calculate the upper bound of the norm of the residual:

IGalg; = &~ AT N g

i = Po AT NG — AN+ PaAT Wi
1%~ PrAT Nl gy + (A7~ PnA™ )N gy
< |l = PuAT Wil gz + Co(m)IIf (@)ll22 =: Ca.

IA

We show now how to calculate || — Pn.A_lN(ﬁ)IIH&. Since 4 € Xn, one can put @ = >0, 4;4;.
Let 4" = (43,12, - ,@n). From @& — P, A7IN () € X,,, we put

u— Pn.A_lNﬁ = Z Tj¢j
j=1



57

and 7P = (r1,r9,+++ ,rn)t. For ¢4, (i=1,...,n), we have
(p(x)(u lN ZT‘J(p(CC)QZSJ,(}Sz), ( - 5 e )n)' (21)
j=1

The left hand side of Eq.(21) can be rewritten as
Zu_] ¢]a¢1, ( (ﬁ)’¢1)

Put f* = (f1, fa, -+, fn)t with f; = (F(2),¢:), (i=1,2,--,n). Then, Eq.(21) reduces to
Drh = D — f*.

Thus, we have r* = D=1(Dah — fP), which implies

N _ . 1 1 - X
&~ PrA Nl = -/ (#)Dr* < =/ IDTRIDE" = £z

2.8 Estimation of Lipschitz Constant

Finally, we estimate the Lipschitz constant of 7 (u) by assuming f’ : H}(0,1) — L%*(0,1) is
Lipschitz continuous on B(4, 2a). We note that for u,v,w € H}(0,1) we have

(T (@) = T))ullyy <

ci21|A—1(N’(v) — N (w))ul2

= L) - P AT W) - M)
1
2

IA

(/@) = £ (w)ullz2 AT A (v) = N (w))ull e

Thus, it follows that

Cez | ((v) — f'(w)) ull 2.

a

(T (v) = T(w))ullgz <

Here, if f' : H3(0,1) — L?(0,1) is Lipschitz continuous on B(%,2a), i.e., there exists a positive
constant Cf, satisfying

17/ (@) = f'@)llgqa 2y < Crllv —wllgz o), (vsw € B(@,20)),
then we have

Ce2 .
c% Crllv - wllg, (v,w € B(d, 20)).

17 (v) = F'(wll ez py <

2.9 Computer Assisted Existence Algorithm

In this subsection, we present an algorithm of verifying the existence and the uniqueness of
solution of Eq.(8) in the neighborhood of 4 by the Newton Kantorovich theorem. The following is
a computer assisted proof algorithm based on our verification method.



58

Algorithm 1 (Two-POINT BOUNDARY VALUE PROBLEMS *). (Ezistence and uniqueness test of
solutions for two-point boundary value problems of nonlinear ordinary differential equations (1). )

1. Compute an approzimate solution @ of the problem (1) by any numerical method.
2. Compute rigorous upper bound of ||(Z — T)7!|| C(H,HY) by the following steps:
2.1 Compute ||iflc and calculate K and L by

Ce 2

K = ”f (@)l eg,ezy  and L= Co(W)If' (@)l ez, 2),

respectively.

2.2 Let D and G be n x n matrices whose i-j elements are given by
(p(z)¢}, ¢;) and (p(z)¢5, ¢) — (f' ()¢5, di),

respectively. Let a lower triangular matriz L be the Cholesky decomposition of D, D =
LIt If G is invertible, then set

m=Ca ILtG1L|s.
Ca

When G is not invertible, stop with failure.
2.8 Check whether (14+ MK)L < 1 holds or not. If this holds, then by Theorem 2 we have

1+ MK
_ <: =: C).
1T~ T) Yl iy < 7— 15 MEL C1

Otherwise, stop with failure.

3. Calculate the residual by the formula
= [[a = Pu AT N(@)|| gz + Co(B)IIf (@)l 2.
Set a = C]CQ.

4. Calculate the Lipschitz constant C3 by

Set w = C1Cjs.

5. Check the condition aw —12- If this condition is satisfied, there is a solution u* € H}(0,1) of

Fu = 0 satisfying
1-+v1-20w

* g * —
[u* —dllgy < p:= »

Furthermore, the solution u* is unique in B(4, p).

Otherwise, stop with failure.

“Linear case (ex. ¢; =0, (i =2,..., N)) can be treated by more direct estimate of the error analysis: ||u— 4| <
I =T) " ez myllg — (1 - T)u||H1 < C1C;. The constant Cj is not needed.
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3 Computational Results
As a numerical example, we consider the following quadratic nonlinear two-point boundary
value problem [6]:

= 2
{ U U O0<a<l, (22)

u(0) = u(1) = 0.

An approximate solution 7 is calculated by the finite element method with bases as one-dimensional
piecewise linear hat functions. The proposal verification method is applicable to Eq. (22). Our
computer assisted proof method yields

K =2391, L =0.005, M =1.852, C,=25.568, C =0.059, C3 =0.226.

Then we have a = 0.333 and w = 1.254 so that aw < 0.417. Consequently, it follows that there
exists an unique solution in the ball B(4, p) with the radius

llu — bl gy < p=0472.

Figure 1 shows the guaranteed inclusion of the exact solution of Eq. (22). It is proved that
there exists a unique solution between two curves. Since H}(0,1) — C°(0,1), we can obtain the
guaranteed error bound in maximum norm by Poincaré’s inequality.

—ur =l

u(x)

1 L ' L L L L n
0 0.1 0.2 03 04 R 08 0.7 0.8 0.9 1

Figure 1: Guaranteed Inclusion of the Exact Solution (Mesh size slﬁ)

By increasing grid points, guaranteed error bounds are improved with O(h). The guaranteed
error and the ratio are presented in Table 1. All computations are carried out on Mac OS X,
Intel Core2 Duo 1.86GHz by using MATLAB 2009a with a toolbox for verified computations,
INTLABJ14].
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Table 1: Verification Results for Problem (22)

Grid Points: 22 Guaranteed Error: p Ratio: O(h?)

9 4.72%x10°1 -

10 1.85%1071 1.27
11 8.60x10~2 1.08
12 4.17x10™2 1.03
13 2.05%1072 1.01
14 1.02x10~2 1.01
15 5.11x1073 1.00
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