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Abstract

Two existing and one new Galerkin schemes for the Time-Dependent Ginzburg-
Landau (TDGL) equations are presented. The schemes have an welcome feature
in common that each keeps a discrete counterpart of the original energy dissipa-
tion property of the TDGL. Based on the Lyapunov theory, asymptotic behavior
of the solutions of the schemes are discussed, which is then confirmed by numerical
experiments.

1 Introduction
The phenomelogical behavior of superconductivity is governed by the so-called Ginzburg-
Landau model. The model in the so-called “zero electric potential gauge” is described as
the following time-dependent Ginzburg-Landau (TDGL) equations:

$\eta\frac{\partial\psi}{\partial t}+\frac{1}{2}\{(\frac{i}{\kappa}\nabla+A)^{2}\psi+(|\psi|^{2}-1)\psi\}=0$ in $\Omega$ , (la)

$\frac{\partial A}{\partial t}+{\rm Re}[\overline{\psi}(\frac{i}{\kappa}\nabla+A)\psi]+\nabla\cross(\nabla\cross A-H)=0$ $i_{l1}\Omega$ , (lb)

where $\Omega\subset \mathbb{R}^{d}$ is a bounded subdomain with smooth boundary, $\kappa>0$ is the material
constant called the Ginzburg-Landau parameter, $\eta>0$ is the friction coefficient, $H\in \mathbb{R}^{d}$

is the applied magnetic field, $\psi$ : $\Omega\cross[0, T]arrow \mathbb{C}$ is the complex-valued order parameter
which denotes the conducting state of the material, and $A$ : $\Omega\cross[0, T]arrow \mathbb{R}^{d}$ is the
magnetic potential. By $\overline{\psi}$ we mean the complex conjugate of $\psi$ . The associated boundary
conditions are:

$\nabla\psi\cdot n=0$ , $A\cdot n=0$ , $n\cross(\nabla\cross A-H)=0$ on $\partial\Omega$ . (lc)

where $n$ is the exterior unit normal of the boundary $\partial\Omega$ . For this gauge choice and the
well-posedness of the associated Cauchy problem, see [2].

The advantage of this particular gauge choice is that the problem can be viewed as a
gradient-flow of the Ginzburg-Landau energy functional:

$E( \psi, A)=\int_{\Omega}\{\frac{1}{2}|(\frac{i}{\kappa}\nabla+A)\psi|^{2}+\frac{1}{4}(1-|\psi|^{2})^{2}+\frac{1}{2}|\nabla\cross A-H|^{2}\}dx$, (2)

$\eta\frac{\partial\psi}{\partial t}=-\frac{\overline{\delta}E}{\delta\overline{\psi}}$, $\frac{\partial A}{\partial t}=-\frac{\delta E}{\delta A}$ , (3)
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where $\delta E/\delta\overline{\psi}$ and $\delta E/\delta A$ denote variational derivatives. This energy in other words serves
as a Lyapunov functional of the system, and this suggests us to employ numerical schemes
having some discrete counterpart of this property for stability and correct asymptotic
behavior. So far several fully-implicit schemes having discrete Lyapunov functional have
been proposed [3, 10], but due to their nonlinearity some iterative solver was necessarily
required, and thus they were relatively expensive. A remedy to overcome this difficulty is
to introduce some linearization technique, such as the one proposed in [9], which enables
us to design a linearly-implicit scheme that still keeps discrete dissipation property in
some sense. As its price, however, the resulting scheme can be unstable, since the discrete
energy function in this case does not necessarily serve as Lyapunov functional.

In the present paper, after briefly reviewing the existing fully-implicit schemes [3, 10],
we present a linearly-implicit scheme with the linearization technique [9]. Then the qual-
itative behavior of discrete solutions for each scheme is discussed based on the Lyapunov
theory. In order to simplify the discussion, in what follows we limit ourselves to the
simplified model ignoring all the magnetic effects:

$\eta\frac{\partial\psi}{\partial t}=\frac{1}{2}\{\frac{\triangle\psi}{\kappa^{2}}+(1-|\psi|^{2})\psi\}$ in $\Omega$ , $\nabla\psi\cdot n=0$ on $\partial\Omega$ . (4)

This still deserves investigation since it still keeps interesting physical solutions such as
vortices, and a Lyapunov functional:

$E( \psi)=\int_{\Omega}\{\frac{1}{2}|\frac{\nabla\psi}{\kappa}|^{2}+\frac{1}{4}(1-|\psi|^{2})^{2}\}dx$ . (5)

The simplified equation (4) is formally a gradient flow with respect to the energy:

$\eta\frac{\partial\psi}{\partial t}=-\frac{\delta E}{\delta\overline{\psi}}$ . (6)

We also assume $d=2$ for brevity (we consider, say, a unit disk). Let $H_{c}^{1}(\Omega)$ be the standard
Sobolev space of complex-valued functions and $(\cdot,$ $\cdot)$ be its associated inner product. Let $S_{d}$

and $W_{d}$ be the finite-dimensional subspaces in $H_{c}^{1}(\Omega)$ for trial and test functions satisfying
$S_{d}\subseteq W_{d}$ (in most cases we simply take $S_{d}=W_{d}$ , in particular to the standard piecewise
linear function space).

2 Fully-implicit Schemes for the simplified GL equa-
tion

A method for designing Galerkin schemes preserving energy dissipation property has been
proposed in [8]. By applying the method, we reach the following fully-implicit scheme as
below. We denote the numerical solution by $\psi^{(m)}(x)\simeq\psi(m\triangle t, x)$ .

75



Scheme 1 (Fully-implicit scheme 1 [10]). Suppose an initial data $\psi^{(0)}\in S_{d}$ is given. Find
$\psi^{(m)}\in S_{d}(m=1,2, \ldots)$ such that for any $\phi\in W_{d}$

$\eta(\frac{\psi^{(m+1)}-\psi^{(m)}}{\Delta t},$ $\phi)=-(\frac{\partial E_{d}}{\partial(\nabla\overline{\psi}^{(m+1)},\nabla\overline{\psi}^{(m)})},$ $\nabla\phi)-(\frac{\partial E_{d}}{\partial(\overline{\psi}^{(m+1)},\overline{\psi}^{(m)})},$ $\phi)$ ,

where

$\frac{\partial E_{d}}{\partial(\nabla\overline{\psi}^{(m+1)},\nabla\overline{\psi}^{(m)})}$
$=$ $\frac{1}{2\kappa^{2}}(\frac{\nabla\psi^{(m+1)}+\nabla\psi^{(m)}}{2})$ ,

$\frac{\partial E_{d}}{\partial(\overline{\psi}^{(m+1)},\overline{\psi}^{(m)})}$
$=$ $- \frac{1}{2}(1-\frac{|\psi^{(m+1)}|^{2}+|\psi^{(m)}|^{2}}{2})(\frac{\psi^{(m+1)}+\psi^{(m)}}{2})$ .

This scheme has a desired dissipation property.

Proposition 1 (Dissipation property of Scheme 1 [10]). Let $\psi^{(m)}(m=1,2, \ldots)$ be the
solutions of Scheme 1. Then the following discrete dissipation property holds:

$\frac{1}{\triangle t}\int_{\Omega}E(\psi^{(m+1)})-E(\psi^{(m)})dx=-2\eta\int_{\Omega}|\frac{\psi^{(m+1)}-\psi^{(m)}}{\triangle t}|^{2}dx\leq 0$ .

That is, in Scheme 1 the original energy $E$ dissipates as in the continuous case. This
implies that the asymptotic behavior of the approximate solutions must be quite similar
to that of the original TDGL (strictly speaking, to that of the corresponding ODE derived
by discretizing the space variable).

In [3], an implicit Euler type scheme is derived from the energy functional based on
minimization theory. Here only the resulting scheme is shown.

Scheme 2 (Fully-implicit scheme 2 [3]). Suppose an initial data $\psi^{(0)}\in S_{d}$ is given. Find
$\psi^{(m)}\in S_{d}(m=1,2, \ldots)$ such that for any $\phi\in W_{d}$

$\eta(\frac{\psi^{(m+1)}-\psi^{(m)}}{\triangle t},$ $\phi)=-\frac{1}{2\kappa^{2}}(\nabla\psi^{(m+1)}, \nabla\phi)-\frac{1}{2}((|\psi^{(m+1)}|^{2}-1)\psi^{(m+1)}, \phi)$ .

Proposition 2 (Dissipation property of Scheme 2 [3]). Let $\psi^{(m)}(m=1,2, \ldots)$ be the
solutions of Scheme 2. Then the following discrete dissipation property holds:

$\frac{1}{\triangle t}\int_{\Omega}E(\psi^{(m+1)})-E(\psi^{(m)})dx\leq-2\eta\int_{\Omega}|\frac{\psi^{(m+1)}-\psi^{(m)}}{\triangle t}|^{2}dx\leq 0$ .

Thus the scheme should have similar asymptotic behavior as above; in fact, in [3], a
detailed discussion on the asymptotic behavior is given for the full TDGL (1).

In these two silnilar schelnes, however, we find several cssential differences. First,
notice that the first equality in Prop. 1 is replaced with an inequality in Prop. 2, whose
equality does not holds in general (this can be understood by carefully inspecting its proof;
interested readers may refer to [3] $)$ . Since in the continuous case, the equality holds:
$( d/dt)\int Edx=-2\eta\int|\psi_{t}|^{2}dx$ , we can say that Scheme 1 is closer to the original TDGL.
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Although the implicit Euler scheme happily keeps the Lyapunov functional, the dissipation
(how the energy is dissipated) is slightly stronger there than it should be. Second, Scheme 1
should be second order with respect to $\triangle t$ due to its temporal symmetry, while Scheme 2
is only first order.

Both schemes have an unwelcome feature in common: they are fully-implicit, and
necessarily require time-consuming iterative solver. This disadvantage becomes even more
crucial, if we consider the full TDGL, or like to proceed to the $d=3$ cases. In the next
section, we consider a linearly-implicit scheme in order to overcome this disadvantage.

3 A Linearly-Implicit Scheme for the simplified GL
equation

By combining the method [8] and the linearization technique [9], we can derive the follow-
ing linearly-implicit scheme.

Scheme 3 (Linearly-implicit scheme). Suppose an initial data $\psi^{(0)}\in S_{d}$ and a starting
value $\psi^{(1)}$ are given. Find $\psi^{(m)}\in S_{d}(m=2,3, \ldots)$ such that for any $\phi\in W_{d}$

$\eta(\frac{\psi^{(m+1)}-\psi^{(m-1)}}{2\triangle t},$ $\phi)=-(\frac{\partial E_{d}}{\partial(\nabla\overline{\psi}^{(m+1)},\nabla\overline{\psi}^{(m)},\nabla\overline{\psi}^{(m-1)})},$ $\nabla\phi)-(\frac{\partial E_{d}}{\partial(\overline{\psi}^{(m+1)},\overline{\psi}^{(m)},\overline{\psi}^{(m-1)})},$ $\phi)$

where

$\frac{\partial E_{d}}{\partial(\nabla\overline{\psi}^{(m+1)},\nabla\overline{\psi}^{(m)},\nabla\overline{\psi}^{(m-1)})}$
$=$ $\frac{1}{2\kappa^{2}}\{b\nabla\psi^{(m)}+(1-b)\frac{\nabla\psi^{(m+1)}+\nabla\psi^{(m-1)}}{2}\}$ ,

$\frac{\partial E_{d}}{\partial(\overline{\psi}^{(m+1)}.\overline{\psi}^{(m)},\overline{\psi}^{(m-1)})}$
$=$ $\frac{a}{2}(-1+\frac{\psi^{(m+1)}+\psi^{(m-1)}}{2}\overline{\psi}^{(m)})\psi^{(m)}$

$+ \frac{1-a}{2}(-1+|\psi^{(m)}|^{2})(\frac{\psi^{(m+1)}+\psi^{(m-1)}}{2})$ ,

and $a,$ $b\in \mathbb{R}$ are scheme parameters.

The scheme parameters $a,$
$b$ should be chosen carefully, since they severely affect the

stability of the resulting scheme as will be shown below. Observe that the scheme is
linear with respect to the latest value $\psi^{(m+1)}$ . This scheme enjoys the following dissipation
property.

Theorem 1 (Dissipation property of Scheme 3). Let $\psi^{(m)}(m=2,3, \ldots)$ be the solutions

of Scheme 1. Then the following discrete dissipation property holds:

$\int_{\Omega}E_{d}(\psi^{(m+1)}, \psi^{(m)})-E_{d}(\psi^{(m)}, \psi^{(m-1)})dx=-2\eta\int_{\Omega}|\frac{\psi^{(m+1)}-\psi^{(m-1)}}{2\triangle t}|^{2}dx\leq 0$ ,
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where

$E_{d}(\psi^{(m+1)}, \psi^{(m)})$

$=$ $\frac{1}{4}\{a(1-\psi^{(m+1)}\overline{\psi}^{(m)})(1-\overline{\psi}^{(m+1)}\psi^{(m)})+(1-a)(1-|\psi^{(m+1)}|^{2})(1-|\psi^{(m)}|^{2})\}$

$+ \frac{1}{2\kappa^{2}}\{b(\frac{\nabla\psi^{(m)}\cdot\nabla\overline{\psi}^{(m+1)}+\nabla\overline{\psi}^{(m)}\cdot\nabla\psi^{(m)}}{2}I+(1-b)(\frac{|\nabla\psi^{(m+1)}|^{2}+|\nabla\psi^{(m)}|^{2}}{2})\}\cdot$

(7)

Note that now the discrete energy function (7) depends on two consecutive numerical
solutions (i.e. it is “multistep”), and quadratic with respect to the latest value $\psi^{(m+1)}$ ;
this is the key for the linearization. The scheme parameters $a,$ $b$ appear as the coefficients
of the linear combination of the quadratic approximations. The theorem states that for
any choice of $a,$

$b$ , the discrete dissipation property holds in the above sense. The dis-
crete energy function (7) is, however, totally different from the original one (5), and as
a consequence the discrete dissipation property does not immediately imply the correct
asymptotic behavior, as was the case in the fully-implicit schemes.

Still, the discrete energy function gives us useful information for designing good (stable)
schemes; more specifically, for the choice of appropriate scheme parameters $a,$ $b$ . Below we
demonstrate this. The first step is to rewrite the energy function as follows.

$E_{d}(\psi^{(m+1)}, \psi^{(m)})$ $=$ $\frac{1}{4}\{|1-\psi^{(m+1)}\overline{\psi}^{(m)}|^{2}+(0-1)|\psi^{(m+1)}-\psi^{(m)}|^{2}\}$

$\frac{1}{2\kappa^{2}}\{|\frac{\nabla\psi^{(m+1)}+\nabla\psi^{(m)}}{2}|^{2}+(1-2b)|\frac{\nabla\psi^{(m+1)}-\nabla\psi^{(m)}}{2}|^{2}\}.(8)$

Let us then consider a “doubled” phase space $(\psi^{(m+1)}.\psi^{(m)})$ , and regard that Scheme 3
defines a discrete map on the doubled space: $(\psi^{(m-1)}, \psi^{(m-2)})\mapsto(\psi^{(m+1)}, \psi^{(m)})$ . We then
observe that depending on the parameters $a,$ $b$ the dynamical system can behave in the
following three ways.

1. When $a<1$ or $b>1/2,$ $E_{d}(\psi^{(m+1)}, \psi^{(m)})$ obviously is not bounded from below, and
thus it can never serve as Lyapunov functional. In this case, by losing the Lyapunov
property the system can be unstable.

2. When $a=1$ and $b=1/2$ , which here we call the “critical” case, the energy function
is bounded and can serve as Lyapunov functional. By the Lyapunov theory, the
dynamical system it governs asymptotically tends to the minimizers. But by a careful
glance we notice that the dynamics is a bit different from the original one. Let us
consider the global minimizers $\int F_{d}\lrcorner(\psi^{(m+1)}, \psi^{(m)})dx=0$ . In view of (8), we see that
the global minimizers are such points that $\psi^{(m+1)}\overline{\psi}^{(m)}=1$ and $\nabla(\psi^{(m+1)}+\psi^{(m)})=0$ .
This allows an oscillatory (steady state” solution $\psi^{(m)}=c,$ $\psi^{(m+1)}=1/\overline{c}$ where
$c\in \mathbb{C}$ is an arbitrary constant. This is in fact “steady state” in that in the doubled
phase space, it corresponds to a fixed point $(c, 1/\overline{c})$ of the dynamical system; in the
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original undoubled space, however, it represents an oscillatory solution $carrow 1/\overline{c}arrow$

$carrow 1/\overline{c}arrow\cdots$ . Thus we conclude that in the critical case, the system is equipped
with a Lyapunov functional, but the dynamics is different such that it allows spurious
fixed points (in the doubled space).

3. When $a>1$ and $b\leq 1/2$ , the spurious fixed points vanish, and the Lyapunov
functional allows only original steady state solutions as its fixed points.

In the last case, the dynamical system is expected to behave the same way as the
fully-implicit cases, although the corresponding linearly-implicit scheme is far cheaper.
We like to generalize the above observation as follows: as an unavoidable consequence of
the linearization, the resulting scheme should be necessarily multistep, and the associated
dynamical system should be understood in the doubled (or more higher) phase space.
There are often degrees of freedom in the definition of multistep energy functions, and it
crucially determines the dynamics, which is then observed as its (numerical) stability. In
some happy cases, such as the above, by carefully choosing the free (scheme) parameters
we can enforce the scheme (the dynamical system) to behave the same as the original
system. A question, however, still remains that in which circumstances we can find such
“happy” cases. In particular, whether or not we can do that for any PDEs is an important
open problem to be answered.

4 Numerical Examples

In this section we present numerical examples that illustrate the discussion in the previous
section. We here test Scheme 3, with two parameter sets $(a.b)=(0.9,0.5)$ and $(2. -0.5)$ ,
each of which corresponds to the first and third patterns described above. For comparison,
we also test the standard semi-implicit scheme, where the diffusion term is discretized in
time by the implicit Euler, and the nonlinear term by the explicit Euler. We set the TDGL
parameters to be $\eta=1,$ $\kappa=15$ , and solved the simplified TDGL on the unit disk with a
triangulation of 9,375 elements by FreeFEM. As the initial data, we set the two vortices
of indices $+1$ and $-1$ . With this setting, it is known that the annihilation (disappearing
by merging) of vortices should occur.

First we show a result with a fine time mesh $\triangle t=0.1$ . We tested the semi-implicit
scheme and Scheme 3 with $(a, b)=(2, -0.5)$ . and found no difference; both schemes run
quite happily in this case. We show the result in Fig. 1.

The corresponding energy profiles are shown in Fig. 2. For Scheme 3, we calculated
$E_{d}$ (the multistep energy function (7)) and $E$ (the original energy function (5)). For the
semi-implicit scheme, we calculated only the latter. In this setting, all the three lines well
agree.

The semi-implicit scheme, however, becomes unst able as $\triangle t$ increases. We demonstrate
it by setting $\triangle t=1.1$ in Fig. 3; they are the snapshots of four consecutive time steps around
$t=50$ . We can observe severe numerical oscillation there. In contrast, Scheme 3 holds
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t.n2 $s\iota$ ,. $1\infty D$

Figure 1: Evolution of the solution with $\triangle t=0.1$ : the semi-implicit scheme and Scheme 3
with $(a.b)=(2, -0.5)$

$\omega\subset\frac{O\lambda}{\omega})$

$0$ 20 4) 60 80 100
time

Figure 2: Evolution of the energies with $\triangle t=0.1$ : the semi-implicit scheme and Scheme 3
with $(a.b)=(2, -0.5)$
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out with the same coarse time step as shown in Fig. 4. The energy profiles are shown in
Fig. 5, where we can observe oscillation in the semi-implicit scheme.

Figure 3: Evolution of the solution with $\triangle t=1.1$ : the semi-implicit scheme

$t=0D$ $t=ua$ $t\cdot 473$

$t=517$ $t=55D$ $t=\infty 9$

Figure 4: Evolution of the solution with $\triangle t=1.1$ : Scheme 3

Finally we test Scheme 3 with the parameters $(a, b)=(0,9,0.5)$ with $\triangle t=0.5$ . As
shown in Fig. 6, the result is catastrophic. This agrees with the discussion in the previous
section.

5 Concluding Remarks
In this paper, we presented a new linearly-implicit dissipative scheme for the time-dependent
Ginzburg-Landau (TDGL) equations without magnetic effects. and discussed its asymp-
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Figure 5: Evolution of the energies with $\triangle t=1.1$ : the semi-implicit scheme and Scheme 3
with $(a.b)=(2, -0.5)$
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Figure 6: Evolution of the solution with $\triangle t=0.5$ : Scheme 3 with $(a.b)=(O.9.0.5)$
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totic behavior from the perspective of the Lyapunov theory. Two existing fully-implicit
schemes were also shown and discussed.

It is possible to construct linearly-implicit dissipative scheme for the full TDGL (with
magnetic effects) based on the same idea employed in this paper. That will be reported
elsewhere soon.
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