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Abstract
We will use a polynomial collocation method to compute the kernel dimension of
singular integral operators with reflection and piecewise continuous functions as
coefficients. The so-called k-splitting property of the operators is also discussed.
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1 Introduction
Let $L^{2}(T, \varpi)$ be the weighted Lebesgue space over $\mathbb{T}$ $:=\{t\in \mathbb{C} : |t|=1\}$ equipped
with the norm

$\Vert f\Vert_{2,\varpi}:=\Vert\varpi f\Vert_{2}$ , (1.1)

where $\Vert\cdot\Vert_{2}$ denotes the usual norm of the Hilbert space $L^{2}(T)$ . We will assume that all
weights $\varpi$ : $Tarrow[0, +\infty]$ are such that $\varpi,$ $\varpi^{-1}\in L^{2}(T)$ , and

$c_{\varpi}$
$:= \sup_{t\in T}\sup_{\epsilon>0}(\frac{1}{\epsilon}\int,\varpi(\tau)^{2}|d\tau|)^{1/2}(\frac{1}{\hat{c}}\int_{T(t,\epsilon)}\varpi(\tau)^{-2}|d\tau|)^{1/2}<\infty$ , (1.2)

where
$\mathbb{T}(t, \epsilon):=\{\tau\in T:|\tau-t|<\epsilon\}$ , $\epsilon>0$ .

The property (1.2) is the so-called $Hunt-Muckenhoupt$-Wheeden condition, and $A_{2}(T)$ is
referred to as the set of $Hunt-Muckenhoupt$-Wheeden weights.

In the present work we deal with the singular integral operators

$A=a_{0}\Gamma_{T’}+b_{0}S_{T}+a_{1}J+b_{1}S_{T’}J:L^{2}(T, w)arrow L^{2}(T, w)$ , (13)
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with essentially bounded piecewise continuous coefficients $a_{0},$ $b_{0},$ $a_{1}.b_{1}\in PC(T)$ , the
identity operator $I_{T}$ , the Cauchy singular integral operator $S_{T}$ defined almost everywhere
by

$(S_{r}f)(t)= \frac{1}{\pi i}p.v\int_{T}\frac{f(\tau)}{\mathcal{T}-f}d\tau,$ $t\in T$ ,

the reflection operator
$(J\varphi)(t)=\varphi(-t),$ $t\in T$ , (1.4)

and where the weighted Lebesgue space $L^{2}(T. w)$ is considered for weights $w$ belonging
to $A_{2}^{6}(\mathbb{T}):=\{w\in A_{2}(T):w(-t)=w(t), t\in T\}$ .

We will apply a collocation method to the operator $\mathcal{A}$ which will help us to obtain
information about the k-splitting property and the kernel dimension of the operators in
consideration.

The paper is organized as follows: Section 2 is devoted to the collocation method,
which will be used to compute de kernel dimension of the operators under consideration.
The approximation and projection methods, as well as the notion of singular values and
stability are considered in a general setting in subsection 2.1 and applied to our case
in subsection 2.2. These previous results will be useful in Section 3 for obtaining an
estimation of the operator $\mathcal{A}$ kernel dimension. A specific example where the singular
values of some associated operators are computed is provided at the end of the paper.

2 A polynomial collocation method for singular in-
tegral operators

Under the assumption that the operator $\mathcal{A}$ given by (1.3) is a Fredholm operator (see
[2] for corresponding criteria), we will study their kernel dimension by means of a poly-
nomial collocation method for singular integml operators proposed by A. Rogozhin and
B. Silbermann in [8].

2.1 General framework
2.1.1 Approximation numbers.

Let $F$ be a finite dimensional Banach space with $\dim F=m$ . The k-th approximation
number $(k\in\{0,1, \ldots, m\})$ of an operator $A\in \mathcal{L}(F)$ is defined as

$s_{k}(A)=$ dist $(A, \mathcal{F}_{m-k}):=\inf\{\Vert A-F\Vert : F\in \mathcal{F}_{m-k}\}$ ,

where $\mathcal{F}_{n-k}$ denotes the collection of all operators (or matrices from $\mathbb{C}^{n\cross n}$) having the
dimension of the range equal to at most $n-k$ . It is clear that

$0\leq s_{1}(A)\leq\cdots\leq s_{m}(A)=\Vert A\Vert_{\mathcal{L}(F^{\backslash })}$ .
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Notice that the approximation numbers can be also defined as the singular values of a
square matrix $A_{n}\in \mathbb{C}^{nN\cross nN}$ which are the square: roots of the spectral points of $A_{n}^{*}A_{n}$ ,
where $A_{n}^{*}$ denotes the adjoint matrix of $A_{n}$ .

Definition 1 A sequence $(A_{n})$ of matrices $nN\cross nN$ is said to have the k-splitting
property if there is an integer $k\geq 0$ such that

$\lim_{narrow\infty}s_{k}(A_{n})=0$ and $\lim_{narrow}\inf_{\infty}s_{k+1}(A_{n})>0$ .

The number $k$ is called the splitting number. Altematively, we say the singular values
$\Lambda_{n}$ (computed via $A_{n}^{*}A_{n}$) of a sequence $(A_{n})$ of $k(n)\cross l(n)$ matrices $A_{n}$ have the splitting
property if there exist a sequence $c_{n}arrow 0(c_{n}\geq 0)$ and a number $d>0$ such that

$A_{n}\subset[0, c_{n}]\cup[d$ ; oo $)$ for all $n$ ,

and the singular values of $A_{n}$ are said to meet the k-splitting property if, in addition, for
all sufficiently large $n$ exactly $k$ singular values of $A_{n}$ lie in $[0, c_{n}]$ .

2.1.2 Approximation method.

For the sake of self-contained global presentation we will describe here the approximation
method in the scope of Banach spaces. Afterwards, we will show the natural adaptation
to our cases. More information about this method can be found, for instance, in [3, 7, 8].

Let $X$ be a Banach space. Given a bounded linear operator $A$ on $X,$ $A\in \mathcal{L}(X)$ , and
an element $f$ of $X$ , consider the operator equation

$A\varphi=f$ . (2.1)

To obtain approximate solutions of this equation, we consider approximate closed sub-
spaces $X_{n}$ in which the approximate solutions $\varphi_{n}$ of (2.1) will be sought. In practice,
the $X_{n}$ spaces usually have finite dimension but we will not require this assumption. We
will assume that $X_{n}$ are ranges of certain projection operators $L_{n}$ : $Xarrow X_{n}$ so that
these projections converge strongly to the identity operator: $s- \lim_{narrow\infty}L_{n}=I$ . This
strong convergence implies that $U_{n=1}^{\infty}X_{n}$ is dense in $X$ .

Having fixed subspaces $X_{n}$ , we choose convenient linear operators $A_{n}$ : $X_{n}arrow X_{n}$

and consider in the place of (2.1) the equations

$A_{n}\varphi_{n}=L_{n}f$ , $n=1,2,$ $\ldots$ , (2.2)

with their solutions sought in $X_{n}={\rm Im} L_{n}$ .
A sequence $(A_{n})$ of operators $A_{n}\in \mathcal{L}({\rm Im} L_{n})$ is an approximation method for $A\in$

$\mathcal{L}(X)$ if $A_{n}L_{n}$ converges strongly to $A$ as $narrow\infty$ .
Note that even if $(A_{n})$ is an approximation method for $A$ , we do not yet know anything

about the solvability of the equations (2.2), and about the relations between $\langle$eventual)
solutions $\varphi_{n}$ of (2.2) and the (possible) solution $\varphi$ of (2.1).
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The approximation method $(A_{n})$ for $A$ is applicable if there exists a number $n_{0}$ such
that the equations (2.2) possess unique solutions $\varphi_{n}$ for every $n\geq n_{0}$ and every right-
hand side $f\in X$ , and if these solutions converge in the norm of $X$ to a solution of
(2.1). An equivalent characterization of applicable approximation methods is the notion
of stability, where a sequence $(A_{n})$ of operators $A_{n}\in \mathcal{L}({\rm Im} L_{n})$ is called stable if there
exists a number $n_{0}$ such that the operators $A_{n}$ are invertible for every $n\geq n_{0}$ and if the
norms of their inverses are uniformly bounded:

$\sup_{n\geq\iota 0}\Vert A_{n}^{-1}L_{\iota}\Vert<\infty$ .

These notions are connected by the Polski $s$ Theorem.

Theorem 1 (Polski; see [3, Theorem 1.4]) Let $(L_{n})$ be a sequence of projections
which converges strongly to the identity opemtor, and let $(A_{n})$ with $A_{n}\in \mathcal{L}({\rm Im} L_{n})$ be
an approstmation method for the operator $A\in \mathcal{L}(X)$ . This method is applicable if and
only if the opemtor $A$ is invertible and the sequence $(A_{n})$ is stable.

2.1.3 Projection methods and the algebraization of stability.

Let $A$ be a bounded linear operator on $X$ and $(L_{n})$ a sequence of projections converging
strongly to the identity $I\in \mathcal{L}(X)$ . The idea of any projection method for the approx-
imate solution of (2.1) is to choose a further sequenoe $(R_{m})$ of projections which also
converges strongly to the identity and which satisfy ${\rm Im} R_{n}={\rm Im} L_{n}$ . Thus, we choose
$A_{\mathfrak{n}}=R_{m}AL_{n}:{\rm Im} L_{n}arrow{\rm Im} L_{n}$ as the approximate operators of $A$ . In fact, Lemma 1.5
in [3] proves that $(R_{m}AL_{n})$ is indeed an approximate method for $A$ .

Let $X$ be an infinite dimensional Banach space and let $(X_{n})$ be a sequence of finite
dimensional subspaces of $X$ . Moreover, we assume that there is a sequence $(L_{n})$ of
projections from $X$ onto $X_{n}$ with strong limit $f\in X$ as $narrow\infty$ . Let $\mathcal{F}$ refer to the
set of all sequences $(A_{n})_{n=0}^{\infty}$ of operators $\Lambda_{n}\in \mathcal{L}({\rm Im} L_{n})$ which are uniformly bounded:
$\sup\{\Vert A_{n}L_{n}\Vert : n\geq 0\}<\infty$. The ”algebraization” of $\mathcal{F}$ is given by the natural operations

$\lambda_{1}(A_{n})+\lambda_{2}(B_{n}):=(\lambda_{1}A_{n}+\lambda_{2}B_{n})$, $(A_{n})(B_{n}):=(A_{n}B_{n})$ (2.3)

and
$\Vert(A_{n})\Vert_{F}:=\sup\{\Vert A_{n}L_{n}\Vert : n\geq 0\}$

which make $\mathcal{F}$ to be an initial Banach algebra with identity $(I_{1_{{\rm Im} L_{\hslash}}})$ . The set $\mathcal{G}$ of all
sequences $(G_{n})$ in $\mathcal{F}$ with $\lim_{narrow\infty}\Vert G_{\iota}L_{n}\Vert=0$ is a closed two sided ideal in $\mathcal{F}$ . The
Kozak $s$ Theorem (Theorem 1.5 in [3]) establish that a sequence $(A_{n})\in \mathcal{F}$ is stable if
and only if its coset $(A_{\iota})+\mathcal{G}$ is invertible in the quotient algebra $\mathcal{F}/\mathcal{G}$ .

If instead of a Banach space $X$ we consider a Hilbert space $\mathcal{H}$ and $L_{n}$ to be the
orthogonal projections $P_{n}$ from $\mathcal{H}$ onto $\mathcal{H}_{n}$ , then $(A_{n})^{*}=(A_{n}^{*})$ defines an involution in
$\mathcal{F}$ which makes $\mathcal{F}$ a C’-algebra. Note that in this case the approximation numbers of
an operator $A_{n}\in \mathcal{L}(\mathcal{H}_{n})$ are just the singular values of $A_{n}$ .
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Let further $T$ be a (possible infinite) index set and suppose that, for every $t\in T$ ,
we are given an infinite dimensional Hilbert spaee $\mathcal{H}^{t}$ with identity operator $I^{t}$ as well
as a sequence $(E_{n}^{t})$ of partial isometries $E_{n}^{t}$ : $\mathcal{H}^{t}arrow \mathcal{H}$ such that the initial projections
$P_{n}^{t}$ of $E_{n}^{t}$ converge strongly to $I^{t}$ as $narrow\infty$ , the range projection of $E_{n}^{t}$ is $P_{n}$ and the
separation condition

$(E_{w\iota}^{s})^{*}E_{r\iota}^{t}arrow 0$ weakly as $narrow\infty$ (2.4)
holds for every $s,$ $t\in T$ with $s\neq t$ . Recall that an operator $E:\mathcal{H}’arrow \mathcal{H}’’$ is a partial
isometry if $EE^{*}E=E$ and that $E^{*}E$ and $EE^{*}$ are orthogonal projections (which are
called the initial and the range projections of $E$ , respectively). The restriction of $E$ to
${\rm Im}(E^{*}E)$ is an isometry from ${\rm Im}(E^{*}E)$ onto ${\rm Im}(EE^{*})={\rm Im} E$ . We write $E_{-n}^{\ell}$ instead of
$(E_{n}^{t})^{*}$ , and set $\mathcal{H}_{n}$ $:={\rm Im} P_{n}$ and $\mathcal{H}_{n}^{t}$ $:={\rm Im} P_{n}^{\ell}$ .

Let $\mathcal{F}^{T}$ stand for the set of all sequences $(A_{n})\in \mathcal{F}$ for which the strong limits

$s- \lim_{?tarrow\infty}E_{-n}^{t}A_{n}E_{n}^{t}$ and $s- \lim_{narrow\infty}(E_{-n}^{\ell}A_{n}E_{n}^{t})^{*}$

exist for every $t\in T$ , and define mappings $W^{t}:\mathcal{F}^{T}arrow \mathcal{L}(\mathcal{H}^{t})$ by

$W^{t}(A_{n})$ $:=s- \lim_{narrow\infty}E_{-n}^{t}A_{n}E_{n}^{t}$ .

The algebra $\mathcal{F}^{T}$ is a $C^{*}$ -subalgebra of $\mathcal{F}$ which contains the identity, and $W^{t}$ are $*-$

homomorphisms. Moreover, $\mathcal{F}^{T}$ is a standard algebra. This means that any sequence
$(A_{n})\in \mathcal{F}^{T}$ is stable if and only if all the operators $W^{t}(A_{n})$ are invertible.

The separation condition (2.4) ensures that, for every $f\in T$ and every compact
operator $K^{t}\in \mathcal{K}(\mathcal{H}^{t})$ , the sequence $(E_{n}^{t}K^{t}E_{-n}^{t})$ belongs to the algebra $\mathcal{F}^{T}$ , and for all
$s\in T$

$W^{s}(E_{n}^{t}K^{t}E_{-n}^{t})=\{\begin{array}{ll}K^{t} if s=t0 if s\neq t.\end{array}$ (2.5)

Conversely, the above identity implies the separation condition (2.4). Moreover, the ideal
$\mathcal{G}$ belongs to $\mathcal{F}^{T}$ . So we can introduce the smallest closed ideal $\mathcal{J}^{T}$ of $\mathcal{F}^{T}$ which contains
all sequences $(E_{n}^{t}K^{t}E_{-n}^{t})$ with $t\in T$ and $K^{t}\in \mathcal{K}(\mathcal{H}^{t})$ , as well as all sequences $(G_{n})\in \mathcal{G}$ .

Corresponding to the ideal $\mathcal{J}^{T}$ , we introduce a class of Fredholm sequences by calling
a sequence $(A_{n})\in \mathcal{F}^{T}$ Fredholm if the coset $(A_{n})+\mathcal{J}^{T}$ is invertible in the quotient algebra
$\mathcal{F}^{T}/\mathcal{J}^{T}$ . It is also known (see [3]) that if $(A_{n})\in \mathcal{F}^{T}$ is Fredholm, then all operators
$W^{t}(A.)$ are Fredholm on $\mathcal{H}^{t}$ , and the number of the non-invertible operators among the
$W^{t}(A_{n})$ is finite.

The main result concerning standard algebras reads as follows:
Theorem 2 (see [3]) Let $(A_{n})$ be a sequence from the standard $C^{*}$ -algebm $\mathcal{F}^{T}$ .

(i) If the coset $(A_{n})+\mathcal{J}^{T}$ is invertible in the quotient $algebm\mathcal{F}^{7\prime}/\mathcal{J}^{T}$ , then all operators
$W^{t}(A_{n})$ are Fredholm on $\mathcal{H}^{\ell}$ , the number of the non-invertible opemtors among the
$W^{t}(A.)$ is finite, and the singular values of $A_{n}$ have the k-splitting pmperty with

$k(A_{r\iota})= \sum_{t\in T}\dim kerW^{t}(A,)$
.
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(ii) If $W^{t}(A_{n})$ is not Fredholm for at least one $t\in T$ , then for every integer $k\geq 0$

$s_{k}(A_{n})arrow 0$ . as $narrow\infty$ .

2.2 The collocation method for singular integral operators on
$[L^{2}(T, w)]^{2}$

In this part we will consider pure (matrix) singular integral operators defined on weighted
Lebesgue spaces $[L^{2}(T, w)]^{2}$ , where the weight $w$ belongs to $A_{2}(T)$ .

In addition, let us consider the following singular integral equation on $[L^{2}(T, w)]^{2}$ :

$(aI_{\mathbb{I}’}+bS_{T})u=f$ . (2.6)

In view to obtain an approximate solution of (2.6) by the collocation method, we seek
to polynomials $u_{n}$ by solving the linear $(2r|+1)\cross(2n+1)$ -system

$a(\approx j)u_{n}(z_{j})+b(z_{j})(S_{T})u_{n}(z_{j})=f(z_{j})$ , $j\in\{-n, \ldots.n\}$ ,

which can be equivalently written in the form

$L_{n}(aI_{\Gamma}+bS_{\Gamma})P_{n}u_{n}=L_{n}f$

and our goal is to examine the stability of the sequence $(L_{n}(aI_{r}+bS_{\Gamma})P_{n})$ .
The algebraization of the stability runs as follows in this case. We start by considering

the Fourier projection $P_{\mathfrak{n}}\in \mathcal{L}([L^{2}(T,$ $w)]^{2})$ that in terms of the Fourier coefficients of a
function $\psi\in[L^{2}(T, w)]^{2}$ acts componentwise according to the rule

$\psi=\sum_{k\in Z}\psi_{k}t^{k}\mapsto\sum_{k=-n}^{n}\psi_{k}t^{k}$ , $n\in$ N.

In addition, we take the Lagrange interpolation operator $L_{n}$ (which is bounded in
$[L^{2}(T, w)]^{2}$ , see for instance [1] $)$ associated to the points

$t_{j}= \exp(\frac{2\pi ij}{2n+1})$ , $j=0,1,$ $\ldots,$
$2n$ .

That is, $L_{n}$ assigns to a function $\psi$ its Lagrange interpolation polynomial $L_{n}\psi\in{\rm Im} P_{n}$ ,
uniquely determined, on each component, by the conditions $(f_{n}\lrcorner\psi)(t_{j})=\psi(t_{j}),$ $j=$
$0,1,$

$\ldots,$
$2n$ . One can show that $\Vert P_{n}\psi-\psi\Vert_{2,w}arrow 0$ as $\mathcal{T}larrow\infty$ for every $\psi\in[L^{2}(T, \tau\iota))]^{2}$

and in [5] it was proved (for the scalar case) that 1 $L_{n^{1}}/$) $-\psi\Vert_{2,w}arrow 0,$ $narrow\infty$ .
For $r\in \mathbb{Z}_{+}$ given, we construct

$A_{n,r}$ $:=L_{n}(aI_{T}+bS_{T})P_{n}(P_{n}-lt^{\gamma}{}_{\mathfrak{n}}P_{r-1}W_{n})$ . $n\in \mathbb{Z}_{+}$ , (2.7)
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where the operator $W_{n}\in \mathcal{L}([L^{2}(T,$ $w)]^{2})$ acts by the rule

$W_{n} \psi=\sum_{k=0}^{n}\psi_{n-k}t^{k}+\sum_{k=-n}^{-1}\psi_{-n-k-1}t^{k}$.

Note that if $r=0$ , then we get a polynomial collocation method $A_{n}$ for the solution of
the singular integral equation (2.6).

First, note that the operators $W_{n}$ and $P_{n}$ are related as follows:

$W_{n}^{2}=P_{n}$ , $W_{n}P_{n}=P_{n}W_{n}=W_{n}$ . (2.8)

On the other hand, in [3, 4, 6] it was shown that:

$L_{n}aI_{T}=L_{n}aL_{n}$ , $S_{T}P_{n}=P_{n}S_{T}P_{n}$ , $W_{n}L_{n}aW_{n}=L_{n}\tilde{a}P_{n}$ (2.9)

$(L_{n}aP_{n})^{*}=L_{n}\overline{a}P_{n}$ , $(P_{n}S_{T}P_{n})^{*}=P_{n}S_{T}P_{n}$ (2.10)

where for $a\in L^{\infty}(T)$ ,
$\tilde{a}(t)=a(\frac{1}{t})$ , $t\in$ T.

We denote by $T_{2}$ the index set {1, 2} and by $\mathcal{F}^{T_{2}}$ the $C^{*}$ -algebra of all operator sequences
$(A_{n})$ , with $A_{n}\in \mathcal{L}({\rm Im} P_{n})$ , for which there exist operators ( $*$ -homomorphisms) $W^{1}(A_{n})$ ,
$W^{2}(A_{n})\in \mathcal{L}([L^{2}(T,$ $w)]^{2})$ such that

$s- \lim_{r\iotaarrow\infty}P_{n}A_{n}P_{n}=W^{1}(A_{n})$ and $s-, \lim_{1arrow\infty}W_{n}A_{n}W_{n}=W^{2}(A_{n})$

$s- \lim_{narrow\infty}(P_{n}A_{n}P_{n})^{*}=W^{1}(A_{n})^{*}$ and $s- \lim_{narrow\infty}(W_{n}A_{n}W_{n})^{*}=W^{2}(A_{n})^{*}$ .

Furthermore, let us introduce the subsets $\mathcal{J}^{1}$ and $\mathcal{J}^{2}$ of the $C^{*}$ -algebra $\mathcal{F}^{T_{2}}$ :

$\mathcal{J}^{1}$ $=$ $\{(P_{n}KP_{n})+(G_{n}):K\in \mathcal{K}([L^{2}(\mathbb{T}, w)]^{2}), \Vert G_{n}||arrow oo\}$

$\mathcal{J}^{2}$ $=$ $\{(lV_{n}LW_{n})+(G_{n}):L\in \mathcal{K}([L^{2}(T, w)]^{2}), \Vert G_{n}\Vertarrow\infty\}$ .

Again, $\mathcal{J}^{T_{2}}$ is the smallest closed two-sided ideal of $\mathcal{F}^{T_{2}}$ which contains all sequences
$(J_{n})$ such that $J_{n}$ belongs to one of the ideals $\mathcal{J}^{t},$ $t=1,2$ .

Theorem 3 Let $a,$ $b\in[PC(\mathbb{T})]^{2\cross 2}$ and consider the opemtors

$A_{n,r}$ $:=L_{n}(aI_{T}+bS_{T})P_{n}(P_{n}-W_{n}P_{r-1}W_{n}),$ $n\in \mathbb{Z}_{+}$ .

(1) The sequence $(A_{n,r})$ belongs to the $C^{*}$ -algebm $\mathcal{F}^{T_{2}}$ . In particular

$W^{1}(A_{n,\tau}.)=aI_{T}+bS_{T}$ , and $W^{2}(A_{1,T})=(\tilde{a}I_{T}+\tilde{b}S_{T})Q_{\tau\cdot-1}$

where $Q_{r-1}=I-P_{r-1}$ .
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(2) The coset $(A_{n,r})+\mathcal{J}^{T_{2}}$ is invertible in $\mathcal{F}^{T_{2}}/\mathcal{J}^{T_{2}}$ if and only if the opemtor $W^{1}(A_{n,r})$

$=aI_{r}+bS_{r}$ is Fredholm.

(3) If the operators $W^{1}(A_{n,r})$ and $W^{2}(A_{n,r})$ are Fredholm on $[L^{2}(T, w)]^{2}$ , then the
appmximation numbers of $A_{n,r}$ have the k-splitting pmperty with

$k(A_{n,r})=$ dim ker $(af_{T’}+b6_{T’}^{v})+$ dim ker $((\tilde{a}f_{\mathbb{I}’}+\tilde{b}_{\iota}9_{T’})Q_{-1})$ .

(4) Otherwise, $s_{l}(A_{n,r})arrow 0$ for each $l\in$ N.

Proof. We are going to compute $W^{1}(A_{n,r})$ and $W^{2}(A_{n,r})$ . Having this goal in mind,
we will use the relations (2.8) and (2.9). First note that for each $r\in N$ the sequence
$(W_{n}P_{r-1}W_{n})$ belongs to $\mathcal{J}^{2}$ . So, from (2.5) we have that $W^{1}(P_{n}-lV_{n}P_{r-1}lV_{n})=I$ and
$W^{2}(P_{n}-W_{n}P_{r-1}W_{n})=I-P_{r-1}$ . Since $W^{t},$ $t\in T_{2}$ , are $*$-homomorphisms, then it only
remains to compute

$W^{1}(L_{n}(aI_{T}+bS_{T})P_{n})$ $=$ $s- \lim_{narrow\infty}L_{n}(aI_{T}+bS_{\mathbb{I}’})P_{n}P_{n}$

$=$ $\lim_{narrow\infty}L_{n}(aJ_{r}+b_{c}9^{v}\prime r)P_{n}$

$=$ $aI_{\Gamma}+bS_{\mathbb{I}’}$

and

$W^{2}(L_{n}(aI_{\Gamma}+bS_{T})P_{n})$ $=$ $s- \lim_{narrow\infty}W_{n}(L_{n}(aI_{r}+bS_{r})P_{n})W_{n}$

$=$ $narrow\infty hmW_{n}(L_{fl}(aI_{T}+bS_{r})P_{n})$

$=$ $\lim_{narrow\infty}L_{n}(\tilde{a}I_{T}+\tilde{b}S_{\Gamma})P_{n}$

$=\tilde{a}I_{r}+\tilde{b}S_{\Gamma}$ .

Therefore, $W^{1}(A_{n,r})=aI_{\mathbb{I}’}+bS_{I’}$ and $W^{2}(A_{n,r})=(\tilde{a}I,r+\tilde{b}S_{\mathbb{I}’})Q_{r-1}$ . Similarly, using the
above mentioned properties (2.8) and (2.9), as well as (2.10), we are able to compute
$W^{1}(A_{n,r})$

’ and $W^{2}(A_{n,r})^{*}$ , which proves proposition (1) above.
On the other hand, from the previous part we have that $W^{1}(A_{n,r})=al_{T}+bS_{\Gamma}$ and

$\square W^{2}(A_{n,r})=(\tilde{a}I_{T}+\tilde{b}S,r)Q_{r-1}$ . Then, propositions (2), (3) and (4) follow from Theorem 2.

3 On the kernel dimension of the operator $\mathcal{A}$

Now, we are in condition to compute the kernel dimension of the operator $A$ given in
(1.3).
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Theorem 4 If the singular integml opemtor $A$ is Fredholm, then the singular values of
the operators $A_{n,r}$ defined in (2.7) have the k-splitting property with

$k=k(A_{n,r})=$ dim ker $(A)+$ dim ker $(\tilde{u}_{T}I_{\mathbb{I}’}+\tilde{v}_{T}S_{T})Q_{r-1}$

where $Q_{r-1}$ $:=I-P_{r-1}$ .

Proof. From [2, Theorem 2.2] we know that the operator $\mathcal{A}$ is equivalent to a matrix
singular integral operator of the form

$\mathcal{D}_{r}=u_{T}I_{T}+v_{T}S_{T’}\in \mathcal{L}([L^{2}(T,$ $w)]^{2})$ , (3.1)

with coefficients given by

$u_{T}(t)$ $=$ $\frac{1}{2}(\begin{array}{ll}1 1t^{-1/2} -t^{-1/2}\end{array})u_{1}(t^{1/2}) (\begin{array}{ll}1 t^{1/2}l -t^{1/2}\end{array})$ (3.2)

and
$v_{T}(t)= \frac{1}{2}(\begin{array}{ll}1 1t^{-1/2} -t^{-1/2}\end{array})v_{1}(t^{1/2}) (\begin{array}{ll}1 t^{1/2}1 -t^{1/2}\end{array})$ , (3.3)

where
$u_{1}(t)=(\begin{array}{ll}r_{T+}a_{0}(t) r_{T+}a_{1}(t)r_{r_{+}}a_{0}(-t) a_{1}(-t)r_{T+}\end{array})$

and
8,1 $(t)=(\begin{array}{lll}b_{0}(t)r_{r_{+}} r_{T+} b_{1}(t)b_{0}(-t)r_{T+} 7_{\mathbb{T}+} b_{1}(-t)\end{array})$ .

The conclusion is now obtained from proposition (3) in Theorem 3, taking into ac-
count that $\dagger$V$1(A_{n,r})=\mathcal{D}_{T’}$ , and the fact that two equivalent after extension operators
have the same kernel dimension. $\square$

Lemma 3.7 in [7] implies that if $r$ is large enough then the kernel dimension of the
operator $\tilde{u}_{T}I_{T}+\tilde{v}_{\mathbb{T}}S_{T}$ is equal to the rank of the projection $P_{r-1}$ , that is $2(2r-1)$ .
Observe that if $r$ is replaced by $r+1$ and the number of singular values increases exactly
by 2, then a correct $r$ is found. I.e., $k(A_{n,r+1})=k(A_{n,r})=4$ (see [9] for a more detailed
explanation). Moreover, we would like to know the number dim ker(A) provided that we
would be able to compute $\Lambda_{n}\cap[0, c_{n}]$ where $A_{n}$ is the set of the singular values of $(A_{n,r})$ .

3.1 Order of convergence of $s_{k}(A_{n,k})$

In order to analyse dim ker(A), we have to identify the number of singular values of $A_{n,r}$

tending to zero. This suggests us to investigate the convergence speed of $s_{k}(A_{n,k})$ to
zero. To this end, by using the operator equivalence relation given in Theorem 2.2 of [2]
and Theorem 3, we can adapt the results of Section 4 in [8], as follows:
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Corollary 1 Let $a_{0},$ $a_{1},$ $b_{0},$ $b_{1}\in PC(T)$ . If the singular integml opemtor $A$ is Fredholm,
then

$s_{k}(A_{n,r}) \leq C\max(\Vert A_{n,r}\varphi_{1}\Vert, \ldots, \Vert A_{n,r}\varphi\downarrow\Vert, \Vert W_{n}A_{n,r}W_{n}\psi_{1}\Vert, \ldots, \Vert W_{n}A_{n,r}W_{n}\psi_{m}\Vert)$

with $k=$ dim ker $(A)+$ dim ker $(\tilde{u}_{T}I_{T}+\tilde{v}_{T}S\prime r)Q_{-1}$ , where the constant $C$ does not depend
on $n$ , and $\{\varphi_{i}\}_{i=1}^{l}$ and $\{\psi_{i}\}_{i=1}^{m}$ are some orthonomal bases of $ker(u_{T}I_{T’}+v_{\mathbb{T}}S_{T})$ and
$ker(\tilde{u}_{T}I_{T}+\tilde{v}_{T}S_{T})Q_{r-1}$ , respectively.

Thus, we have to estimate the norms $\Vert A_{n,r}\varphi\Vert$ and $\Vert l\eta_{n}\nearrow A_{n,r}W_{n}\varphi\Vert$ , where is taken
$\varphi\in ker(u_{T}I_{T}+v_{T}S_{T}),$ $\psi\in ker(\tilde{u}_{T}I_{T}+\tilde{v}_{\mathbb{T}}S\prime r)Q_{r-1}$ , and $\Vert\varphi\Vert=\Vert\psi\Vert=1$ . Such estimates
are provided in [8]. Here, for the sake of the presentation completeness, we are going to
include them. First. we will deal with smooth coefficients $u_{T}$ and $t_{T’}$ . By $C(T)\subset PC(T)$

we denote the algebra of all continuous functions on $T$ , by $\mathcal{H}^{S}(T)\subset C(T)$ the H\"older-
Zygmund space and by $\mathcal{R}(T)\subset C(T)$ the algebra of all rational functions on T. For each
continuous function $f\in[C(\mathbb{T})]^{2\cross 2}$ , we put

$E_{\iota}(f):= \inf_{p\in[\mathcal{R}^{n}(T)]^{2x2}}\Vert f-p\Vert_{\infty}$, $n\in \mathbb{Z}_{+}$ ,

where $[\mathcal{R}^{n}(T)]^{2\cross 2}$ is the set of all matrix trigonometric polynomials $p$ on $T$ of the form
$p(t)= \sum_{k=-n}^{n}p_{k}t^{k}$ , with $p$. $\in \mathbb{C}^{2\cross 2}$ . Recall that for any $f\in[C(T)]^{2\cross 2}$ and $n\in \mathbb{Z}_{+}$ , there
is a polynomial $p_{n}(f)\in[\mathcal{R}^{n}(T)]^{2\cross 2}$ such that $E_{n}( \int)=\Vert f-p_{n}(f)\Vert_{\infty}$ .

In what follows, by $[\alpha n]$ we denote the integer part of $\alpha n$ (with $n\in \mathbb{Z}_{+}$ ).

Lemma 1 Let $a_{0},$ $a_{1},$ $b_{0},$ $b_{1}\in PC(T)$ and let $\alpha\in(0,1)$ . If the singular integml opemtor
$\mathcal{A}$ is Fredholm, then

$s_{k}(A_{n,r})$ $\leq$ $C \max(E_{[\alpha n]}(u_{\mathbb{I}’}r), E_{[\alpha n]}(v_{T}), \Vert Q_{n-[\alpha n]}\varphi_{1}\Vert)\ldots,$ $\Vert Q_{n-[\alpha n]}\varphi_{l}\Vert$ ,
$\Vert Q_{n-[\alpha n]}\psi_{1}\Vert\ldots.,$ $\Vert Q_{n-[\alpha n]}\psi_{m}\Vert)$

for $\alpha\in(0.1)$ with $k=$ dim ker $(A)+$dim ker $(\tilde{u}_{T}f_{\mathbb{I}’}’+\tilde{v}_{\mathbb{T}}S\prime r)Q_{r-1}$ , where the constant $C$ does
not depend on $n$ , and $\{\varphi_{i}\}_{l=1}^{l}$ and $\{\psi_{i}\}_{i=1}^{m}$ are some orthonomal bases $ofker(i\tau+e)s,)$
and $ker(\tilde{u}_{T}f,r+\tilde{?}\pi 6_{T}^{\gamma})Q_{r-1}$ , respectively.

The last inequality can be used in order to estimate the convergence speed for $a_{0},$ $a_{1},$ $b_{0}$

and $b_{1}$ smooth functions.
Proposition 1 Let $a_{0},$ $a_{1},$ $b_{0},$ $b_{1}\in C(T)$ and let the singular integml opemtor

$\mathcal{A}=a_{0}I_{T}+b_{0}S_{T}+a_{1}J+b_{1}S_{T}J$,

be Fredholm. If the functions $u_{T},$ $v_{T}$ given by (3.2) and (3.3) belong to $[\mathcal{H}^{s}(T)]^{2\cross 2}$ for
some $s>0$ , then

$s_{k}(A_{\iota,r})=O(n^{-s})$ , as $narrow\infty$ . (3.4)
On the other hand, if the functions $a_{0},$ $a_{1},$ $b_{0}$ and $b_{1}$ belong to $\mathcal{R}(T)$ , then there is a $\rho>0$

such that
$s_{k}(A_{n,r})=O(e^{-\rho n})$ , as $narrow\infty$ . (3.5)
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For more general cases where non-smooth conditions are imposed over the coefficients
$a_{0},$ $a_{1},$

$b_{0}$ and $b_{1}$ , similar estimates to (3.4) and (3.5) can be also obtained. For this
situation, the equivalence relation between the operator $A$ and the Toeplitz operator $\mathcal{T}_{\psi}$ ,
with $\psi=(u_{T}-v_{T})^{-1}(u_{T}+t^{1T})$ (see [2, Corollay 2.1]), allows us to use the results of
Section 2 in [8], and in particular Theorem 2.2, which gives the estimates (3.4) and (3.5)
for corresponding truncated Toeplitz matrices $A_{n,r}:=\mathcal{T}_{n,r}(\psi)$ .

Example 3.1 In view of illustrating the applicability of Theorem 4, we will present here
an example within the smooth coefficients case. Let us consider the operator $A$ as in
(1.3) with reflection operator $J$ defined in (1.4) and coefficients given by

$a_{0}(t)$ $=$ $\frac{1}{2}[t^{2(s-1)}+t^{-2}+t^{-2s}]$ ,

$a_{1}(t)$ $=$ $\frac{1}{2}[-t^{2(s-1)}-t^{-2}+t^{-2s}]$ ,

$b_{0}(t)$ $=$ $\frac{t^{-2s}}{2t^{2\kappa}1+1}(\frac{1}{2}(2t^{2\kappa}1-1)+\frac{2t^{2\kappa}1+3t^{2(-\kappa 2^{-}\alpha-1/2)}}{3t^{-2\kappa}2+1})$

$+ \frac{1}{2}\frac{3t^{-2\kappa}2-1}{3t^{-2\kappa 2}+1}(t^{2(s-1)}+t^{-2})$ ,

$b_{1}(t)$ $=$ $\frac{t^{-2s}}{2t^{2\kappa 1}+1}(\frac{1}{2}(2t^{2\kappa}1-1)-\frac{2t^{2\kappa 1}+3t^{2(-\kappa 2^{-}\alpha-1/2)}}{3t^{-2\kappa}2+1})$

$- \frac{1}{2}\frac{3t^{-2\kappa}2-1}{3t^{-2\kappa 2}+1}(t^{2(s-1)}+t^{-2})$ ,

with $\kappa_{1},$ $\kappa_{2},$
$s\in 2\mathbb{Z}$ and $\alpha=(4k-1)/2,$ $k\in \mathbb{Z}$ . From the theory exposed above, $A$ is

equivalent to the operator $\mathcal{D}_{T}$ with coefficients $u_{T}$ and $v_{T}$ given by

$u_{T}(t)=(\begin{array}{lll}t^{-s} 00 t^{s-1} +t^{-1}\end{array})$ and $v_{\mathbb{T}}(t)=(\begin{array}{ll}t^{-s}\frac{2t^{\kappa_{1}}-1}{2t^{\kappa}1+1} \frac{t^{-S}(t^{\kappa+1}2+6t^{-\kappa-\alpha})}{(2t^{\kappa}1+1)(3t^{-\kappa}2+1)}0 \frac{3t^{-\kappa}2-1}{3t^{-\kappa}2+1}(t^{s-1}+t^{-1})\end{array})$ .

To perform our computations, in a similar manner as in [8, 10], instead of the operators
$A_{n,r}$ defined in (2.7) we are going to consider the following operators which have the
same singular values as $A_{n,r}$ :

$B_{n,r}:=F_{2n+1}A_{?\iota,r}F_{2n+1}^{-1}=(u_{T}(t_{j})\delta_{j,k})_{j,k=0}^{2n}+(v_{T}(t_{j})\delta_{j,k})_{j,k=0}^{2n}F_{2\iota+1}Q_{t,r}F_{2n+1}^{-1}$

where $\delta_{j,k}$ is the Kronecker symbol and $F_{2n+1}$ (with inverses $F_{2n+1}^{-1}$ ) are the $2(2n+1)\cross$

$2(2n+1)$ matrices

$F_{2n+1}:=( \frac{1}{\sqrt{2n+1}}e^{\frac{2\pi i}{2n+1}}I_{2})_{i,j=0}^{2r\iota}$ $F_{2n+1}^{-1}:=( \frac{1}{\sqrt{2n+1}}e^{-\frac{2\pi i}{2n+}L}1I_{2})_{i,j=0}^{2_{71}}$
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(with $I_{2}$ being the identity $2\cross 2$ matrix). Considering these matrices we rewrite $A_{n,r}$

with respect to the standard basis ${\rm Im} P_{n}$ as

$A_{n,r}=F_{2n+1}^{-1}(u_{T}(t_{j})\delta_{j,k})_{j,k=0}^{2n}F_{2n+1}+F_{2n+1}^{-1}(v_{\mathbb{T}}(t_{j})\delta_{j,k})_{j,k=0}^{2n}F_{2n+1}Q_{n,r}$;

here

On the other hand, from Corollary 2.1 in [2] we know that $A$ is equivalent to the
Toeplitz operator $\mathcal{T}_{\psi}$ with

$\psi(t)=(u_{T}(t)-v_{T}(t))^{-1}(u_{T}(t)+v_{T}(t))=(\begin{array}{ll}2t^{\kappa 1} 2t^{\kappa}2+3t^{-\kappa-\alpha}0 3\oint^{-\kappa}2\end{array})$ ,

where in the case $\alpha>0$ , we have that $\psi$ admits a (right) Wiener-Hopf factorization

$\psi(t)=(\begin{array}{ll}2 t^{-\alpha}0 1\end{array})(\begin{array}{ll}t^{\kappa 1} 00 t^{-\kappa}2\end{array})(\begin{array}{ll}1 t^{1/2}0 3\end{array})$ .

This implies, from the well-known Simonenko‘s Theorem, that

$\dim ker\mathcal{T}_{\psi}=\sum_{2j\in\{\kappa 1,-\kappa\}}\max(0, -j)$
.

Figure 1: The behavior of the first 6 singular values of $A_{n,0}$ $(n=5$ and $n=100)$ .

Notice that for $\kappa_{1},$
$\kappa_{2}\geq 0,\tilde{\psi}(t)=\psi(\frac{1}{t})$ also admits a right Wiener-Hopf factorization

$\tilde{\psi}(t)=(\begin{array}{ll}2t^{-\kappa_{1}} 2t^{-\kappa_{1}-1/2}+3t^{\kappa+\alpha}20 3t^{\kappa}2\end{array})=(\begin{array}{ll}2 \frac{2}{3}t^{h}0 1\end{array})(\begin{array}{ll}t^{-\kappa_{1}} 00 t^{\kappa}2\end{array})(\begin{array}{ll}1 \frac{3}{2}t^{g}0 3\end{array})$
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with $g=\kappa_{1}+\kappa_{2}+\alpha$ and $h=-\kappa_{1}-\kappa_{2}-1/2$ . Therefore, dim ker $(\tilde{u}_{T}I_{T}+\tilde{v}_{T}S_{T})=$

dim ker $\mathcal{T}_{\tilde{\psi}}=\kappa_{1}$ . Thus, these facts give us the value of $k(A_{n,r})$ in Theorem 4, which is
$k=\kappa_{1}+\kappa_{2}$ . For the case $\kappa_{1}=2,$ $\kappa_{2}=0$ and $\alpha=7/2$ , Figure 1 illustrates that in fact
$A_{n,r}$ has the 2-splitting property.
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