周期的急拡大管路流れの遷移

(Jiro Mizushima)	二郎	水島	同志社大学理工学部
(Teppei Kanda)	徹平	神田	同志社大学理工学部
(Yukio Takemoto)	幸生	武本	Dassault Systemes Simulia Corp.

1 はじめに

古典的な流れの安定性理論では、ある方向に一様な2次元平行流を主流として、主流に含まれ る撹乱をフーリエ級数に展開し、各フーリエ成分を独立に取り扱う.このため、古典的安定性理 論は非常に単純であり、非線形物理現象である流れの不安定性の特徴を簡潔にとらえることがで きる[1,2].2次元平行流の仮定は、物理現象を単純化して捉えようとする人間の思考に適した形 で提案されたため、広く受け入れられて発展してきた.今日に至るまで、流れの安定性は古典的 安定性理論により2次元平行流の仮定の下で行われることが多く、平面ポアズイユ流やベナール 対流あるいはテイラー・クウェット流など数多くの流れに適用され、不安定性や遷移の特徴につい ては実験と良く一致する結果が導かれた.一方、円柱を過ぎる流れやジェット流・曲面に沿う境界 層など非平行性が強く、小さなレイノルズ数で不安定性が生じる流れについては、2次元平行流を 仮定する古典的安定性理論は無力であり、これらの流れの安定性解析は数値計算による他に有効 な手段はなかった.

たとえば、円柱を過ぎる流れを2次元平行流として近似した流れ (ウェイク) を基本流とし、そ の線形安定性を支配するオア・ゾンマーフェルト方程式から臨界レイノルズ数 Re_c を評価すると、 $Re_c = 3.2$ であり、実験で円柱を加振し続けたときに撹乱が成長するときの臨界レイノルズ数は $Re_c = 1.0$ である [3]. ここで、Re は円柱直径を代表長さとするレイノルズ数であり、円柱直径と ウェイクの半値幅との関係は実験結果より導いている.現在では円柱を過ぎる流れが振動流へ遷 移する臨界レイノルズ数は $Re_c \sim 47$ とされているので、古典的安定性理論に基づくオア・ゾン マーフェルト方程式から求まる臨界レイノルズ数はずいぶんと低い値となり、理論と実験との大 きな相違が存在する [4].

古典的安定性理論では、無限に長い一様な流体層を考えているので撹乱をフーリエ級数展開す ることができ、フーリエ成分(モードと呼ぶ)を独立に取り扱うことが可能である.流れ場の無限 上流でも撹乱が存在しうることを考慮すれば、初期にはどんなに小さな撹乱であっても不安定な 波数モードの撹乱は下流へ行けばいずれは観測が可能となる程度に成長する.しかし、たとえば 円柱を過ぎる流れについては、円柱から十分下流では流れは一様流に近づくので全ての撹乱は減 衰し、安定領域となっている.このように、円柱の後方の有限領域内で撹乱が成長するためには、 その領域に撹乱が加えられるか自然に撹乱が発生したとき、撹乱がその領域内に留まる必要があ る.撹乱がある領域に留まるのは、撹乱が伝播波ではなく定在波であるか、伝播波であれば有限 領域に局在する波束型撹乱であり、その群速度が0の場合である.このような考察から、対流不 安定撹乱と絶対不安定撹乱という概念が生まれた[5,6,7].ただし、この概念が初めて提起された のはプラズマ物理学の分野である.先ずは、これら2種類の撹乱に対する不安定性の定義を、円柱 を過ぎる流れを例にして行っておこう.円柱後方の各位置で、流れと垂直な断面を採り、その断面 における速度分布をもつ2次元平行流(ウェイク)を主流とする.その主流に、ある波数を中心と した有限幅の波数からなる波束型の撹乱が加えられたとき、波束型撹乱が伝播する群速度が正で あり、中心波数のモードの線形増幅率が正であればその撹乱を対流不安定撹乱と呼び、主流は対 流不安定(Convective instability, Convectively unstable)であるという.有限領域に対流不安定撹 乱が発生しても、時間が経てば撹乱はその領域から流れ去り、やがてその有限領域は元の状態に 戻ることを意味している.一方、波束型撹乱の群速度が0または負であり、中心波数のモードの 線形増幅率が正のときその撹乱を絶対不安定撹乱であるといい、その主流は絶対不安定(Absolute instability, Absolutely unstable)であるという.流れが絶対不安定であれば、不安定撹乱は有限領 域に留まり、流れ場に不安定性を引き起こし、流れの遷移を誘起する.この報告では、2次元平行 流近似の線形安定性理論から生まれたこれら2つの不安定性の概念を非平行流に拡張するので、2 次元平行流近似での対流不安定性と絶対不安定性をそれぞれ局所対流不安定性および局所絶対不 安定性と呼ぶことにする.

流れが局所対流不安定から局所絶対不安定へ遷移するときには、不安定波の分散関係に特異性が 現れる [5, 6, 7]. すなわち、線形撹乱を支配するレイリー方程式あるいはオア・ゾンマーフェルト 方程式の固有値問題を解いて、複素波数と複素位相速度の分散関係の特異点を求めると、その点が 流れの局所対流不安定から局所絶対不安定へ遷移点である.分散関係の特異性は群速度が 0 のモー ドを表している.このように、複素波数と複素位相速度の分散関係に現れる特異点に着目すること により、平行流近似の下で円柱後流 (ウェイク)の局所対流不安定性から局所絶対不安定性への遷移 が調べられてきた [8, 9, 10, 11].その結果、円柱後流のいくつかの位置における流速分布を平行流 近似してその局所安定性解析を行ない、局所対流不安定となる臨界レイノルズ数 *Re*conv と局所絶 対不安定となる臨界レイノルズ数 *Re*abs を求めると、それらの間には *Re*conv く 34 < *Re*abs < 56 の関係があることが分かった [12, 13, 14, 15].また、たとえばレイノルズ数 *Re* = 56 のときは、 円柱から 3.5d の範囲は局所絶対不安定であり、それよりも下流では局所対流不安定である.

このように、局所対流不安定性と局所絶対不安定性の概念は、非平行な流れを平行流で近似す るときに用いられる概念である.しかし、Jackson[4]が考えたように、非平行な流れの安定性を 直接に調べることも可能である.このとき、不安定な撹乱が存在すれば、その撹乱は流れ場のあ る1点で観測するといつまでも成長を続けることになる.また、観測する点は流れ場中の任意の 場所であっても良い.すなわち、撹乱の成長は流れ場全体に広がっており、どの場所で観測して も振動数や成長率は同一の性質をもっている必要がある.その意味で、ここでは非平行な流れの 不安定性を全体不安定性 (Global instability) と呼ぶことにしよう.本来、絶対不安定性とは、人 為的にパルス型撹乱を加えた場合に限らず、自然に存在する波束型撹乱を実験室系の定点におい て観察したときに、その撹乱が成長することをいい、対流不安定性とは、有限領域に加えられた 波束型撹乱が成長しながらその領域から流れ去ることをいう.この報告では、忠実にこれらの定 義に従って非平行流れの対流不安定性から絶対不安定性への遷移と全体不安定性との関係を調べ る.ただし、円柱を過ぎる流れは、その対称面上に円柱という障害物が存在するため、パルス型 撹乱の成長と伝播を調べるのには適していないため、著者がこれまで研究を行ってきた急拡大部 をもつ管路流れを例に、絶対不安定性と全体不安定性の関係を調べる.

急拡大部をもつ管路流れの安定性や遷移構造については、既に数値シミュレーションや線形安 定性解析および実験によってよく調べられ、対称性を破るピッチフォーク分岐、逆ピッチフォーク 分岐および振動を生じるホップ分岐の重要な3つの分岐構造が生じることが分かっている[16, 17]. また、複数の拡大部をもつ管路を用いて著者たちが行った実験では、上流側よりも下流側の拡大 部において流れが、より小さいレイノルズ数で振動する現象が観測されている。もちろん、同様 の現象は複数物体を過ぎる流れにも生じる。流れ方向に配置された2円柱を過ぎる流れでは、円 柱間の間隔比やレイノルズ数に範囲によっては、下流側の円柱後流のみが振動流となることがある [18]. しかし、場所によって流れの安定性が異なるという結果は、安定性は1つの系に1つであるというこれまでの見方に反している.

周期的構造をもつ流れの理論的な研究では、周期構造が無限に続いていると仮定され、しばし ば管路内流れも管路の空間的周期と同じ周期をもつという仮定の下でその性質が調べられる.実際、Ghaddar et al.[19] は平行平板の片側にのみ周期的な急拡大部をもつ管路の流れについて数 値シミュレーションと線形安定性解析を行った.彼らは管路と同じ周期あるいは2倍の周期をも つ流れを仮定して解析を行い、流れは周期条件を課したときも、周期性を課さないときと同じ性 質をもつという結論を得た.また、Takaoka et al.[20] は、周期境界条件を課した周期的急拡大管 路における遷移過程を明らかにし、周期条件を課さない場合との比較を行った.周期構造をもつ 流れの安定性解析は、急拡大部をもつ管路よりも、管壁が正弦関数のように滑らかに変化してい る管路について多くの研究が行われ、それらの研究においても多くの場合は、流れの空間的な周 期性が仮定されてきた.しかし、周期境界条件を課した流れは、撹乱によって励起された波束が 流れ去ることがないため、周期構造が無限に続く場合とは異なっている場合もある.

本研究では、対流不安定性から絶対不安定性への遷移と全体不安定性との関係を求め、周期的 な構造の境界をもつ流れにおいて下流部ほど不安定に見える現象の物理的な解釈を行うことが目 的である.また、周期的な境界をもつ流れに周期条件を適用することの妥当性を検討する.ここ で念頭にあるのは、1本の円柱を過ぎる流れや流れと平行に置かれたいくつかの円柱を過ぎる流 れの遷移現象であるが、円柱を過ぎる流れは、対称面に円柱という障害物があるため、解析が困 難である.そのため、管路中心面に沿って障害物がない流れとして、いくつかの急拡大部をもつ 管路流れについてこれらの物理現象を調べる.また、流れが振動流となるときの振動の維持機構 と振動源を明らかにすることもこの報告の目的である.数値シミュレーションを用いて、流れの 定常流から振動流への遷移を調べ、流れにパルス撹乱を与えた場合の波束型撹乱の成長を観測し、 全体不安定性の発生との関係を調べる.それぞれの急拡大部における流れの振動の発生と全体不 安定性との関連を調べ、周期的な境界をもつ流れに周期条件を適用することの妥当性も評価する.

2 問題の設定と基礎方程式

2.1 管路形状

1つまたは複数の急拡大部をもつ対称な 2 次元管路を考える. この報告では,主に拡大部の数 が 1, 2, 5 の場合について計算結果を詳しく説明する. 基本的な管路形状として,急拡大部が 1 つの場合について管路形状と座標の取り方を説明する. 図 1(a)のように,急拡大部入口 LC(ある いは KD)の中点を原点として,流路の対称面に沿って x 軸 をとり,急拡大部入り口 KD に沿っ て y 軸をとる. 流れは幅 2h の流入口 AB から,幅 6h の急拡大部 KDEJ を経て,幅 2h の縮 小部へと流入したのち下流へと流れる. 管路の形状を表すパラメーターとして,流路拡大比 E= KD/LC および急拡大部のアスペクト比を A = DE/KD で定義する.

2つの拡大部をもつ管路の場合は、急拡大部を連結する縮小部の長さを 2ℓ_r とし、無次元縮小部 長さを $s = 2ℓ_r/h$ で定義する (図1(b)). 図1(b) で、 P_1 と P_2 は後に解の分岐や流れ場を議論する ときに用いる代表点である。急拡大部が5つの場合にも、図1(c) のように、 P_i ($i = 1, 2, \dots, 5$) の 点での流速を用いて流れの分岐と遷移を調べる。また、パルス撹乱を加えたときに生じる波束型撹 乱の伝播を議論するときには主に急拡大部が5つの場合を例にとり、図1(c) で R_i , ($i = 1, 2, \dots, 5$) で示される縮小部中央を代表点にとって、この点を通過する撹乱の波形を用いる。この管路を伝 播する波束型撹乱は時間的にも空間的にも複雑な変化をするので、その成長や伝播速度を定義す

るのが難しい、しかし、証明はされていないが、撹乱は管路周期と同じかあるはその整数倍の周 期をもつと期待できるので、R_iのように、周期的な点で撹乱の調べるとその規則性を見つけるこ とが可能となるのである.この報告では、 E = 3、 A = 7/3の場合のみを詳しく説明し、複数の 拡大部が連結される管路の無次元縮小部長さは s = 0.5 の場合のみを報告する.

(a) yΚ J 6h \mathbf{P}_1 Н 0 2hG \boldsymbol{x} В С F D Е ℓ_2 l ℓ_1 (b) y

2.2 基礎方程式と境界条件

Q P₁•

 R_1

 R_2

 R_3

図 1: 管路の形状と座標系. (a) 1 つの急拡大部をもつ管路の構造と座標. (b) 2 つの急拡大部をもつ管路 形状と座標および代表点 P_1 と P_2 . (c) 5つの急拡大部をもつ管路と代表点 P_i と R_i ($i = 1, 2, \cdots, 5$).

 R_4

R₅

流れは2次元非圧縮粘性流れを仮定し、固体境界では滑りなし条件を用いる.流れを支配する 基礎方程式は連続の式とナビエ・ストークス方程式である. 流入口の幅の半分 h と流入口での最 大流速 U0 を用いて空間座標と流速を無次元化をすると、それぞれの方程式は

$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \tag{1}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{Re}\Delta\boldsymbol{u}$$
⁽²⁾

と表される. ここで、 Δ は 2 次元ラプラシアンであり、 $Re = U_0 h/\nu$ 、 ν は流体の動粘性係数であ る.また、有次元の物理量と無次元の物理量について同じ記号を用いているが、その違いは明ら

(c)

かなので明示しない. たとえば、図 1(a) と 1(b) は有次元の図なので, $x \ge y$ は有次元である. 式 (1) と (2) は無次元の式なので、 $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2$ における $x \ge y$ は無次元である. 2 次元 非圧縮性流れを考えているので、速度 u = (u, v) は、流れ関数 ψ を用いて、

$$u = \frac{\partial \psi}{\partial x}, \quad v = -\frac{\partial \psi}{\partial y}$$
 (3)

と表せる. 方程式 (1) と (2) を渦度 $\omega(x, y, t)$ と流れ関数 $\psi(x, y, t)$ を用いて書き改めると,

$$\Delta \psi = -\omega \tag{4}$$

$$\frac{\partial \omega}{\partial t} = J(\psi, \omega) + \frac{1}{Re} \Delta \omega, \qquad (5)$$

となる.ここで,

$$J(f,g) = rac{\partial f}{\partial x} rac{\partial g}{\partial y} - rac{\partial f}{\partial y} rac{\partial g}{\partial x}$$

である.

流入口 AB で流れは十分に発達したポアズイユ流れであると仮定し、その境界条件を

$$\psi = \int_0^y u dy = \int_0^y (1 - y^2) dy = y \left(1 - \frac{y^2}{3} \right)$$
(6)

とおく. また, 流出口での境界条件にはゾンマーフェルト放射条件を用い,

$$\frac{\partial \psi}{\partial t} + c \frac{\partial \psi}{\partial x} = 0, \quad \frac{\partial \omega}{\partial t} + c \frac{\partial \omega}{\partial x} = 0$$
(7)

と表す. ここで, c は流出口を通過する波の位相速度であるが,数値計算においてはこの位相速度 c として,その位置での x 方向の局所流速 u を用いる. 各断面における流量は一定なので,上下 の壁における流れ関数 ψ とその偏微分 $\partial \psi / \partial x$ と $\partial \psi / \partial x$ は

$$\psi = \psi_1 = -2/3$$
 (上側壁面 ALKJIH…),
 $\psi = \psi_2 = 2/3$ (下側壁面 BCDEFG…),
 $\frac{\partial \psi}{\partial y} = 0$ $(u = 0), \quad \frac{\partial \psi}{\partial x} = 0$ $(v = 0)$ (全壁面) (8)

と表される.

2.3 対称定常解の対流不安定性と絶対不安定性

対称性をもつ管路内の流れでは境界条件が対称であり、レイノルズ数によらず対称定常流が方 程式 (4) と (5) の解となっていることが多い.ここでは、対称定常流を数値的に求め、その線形安 定性を調べる.管路における対称定常流 (主流と呼ぶ) ($\bar{\psi}, \bar{\omega}$) は定常方程式

$$\Delta \overline{\psi} = -\overline{\omega},\tag{9}$$

$$J(\overline{\psi},\overline{\omega}) + \frac{1}{Re}\Delta\overline{\omega} = 0 \tag{10}$$

を満たす.このとき,流れ関数 ₩ と渦度 ₩ の計算には対称条件

$$\psi(x,y) = -\psi(x,-y), \quad \overline{\omega}(x,y) = -\overline{\omega}(x,-y)$$
 (11)

を課す.

流れの線形安定性理論では、主流 ($\overline{\psi}, \overline{\omega}$) は常に自然に存在する撹乱 (ψ', ω') の影響を受けており、その撹乱が成長するとき、主流は不安定となり、振動流あるいは他の定常流へ遷移すると考える、ここではそのような不安定性を全体不安定性と呼ぶ.

流れの対流不安定性と絶対不安定性を調べるため、対称定常流 ($\overline{\psi}, \overline{\omega}$) にパルス型撹乱 ($\overline{\psi}, \widehat{\omega}$) を 与え、波束として伝播する撹乱振幅の時間発展を観測する. 与えるパルス型撹乱は空間的にも孤 立波となるように、図 1(c) の点 Q(-h, 0) で表される 1 点にのみ、矩形パルスとして与える. 撹 乱は時間が経過すると共に波束を形成し、下流方向へ伝播する. 下流に伝播する波束を図 1(c) で R₁ ~ R₅ で示される管路縮小部中央において観測し、その振幅および群速度を評価する. 波束型 撹乱が下流に伝播するとき、その振幅が大きくなれば対称定常流は対流不安定であるといい、実 験室系に固定した観測点で波束の振幅が時間的に大きくなれば対称定常流は絶対不安定であるという.

3 数値計算法

3.1 数値シミュレーション

数値シミュレーションでは差分法を用い、初期値・境界値問題として基礎方程式を数値的に解く. 計算領域を *x* 座標と *y* 座標について、等間隔 Δx および Δy ($\Delta x = \Delta y$) の正方格子に分割し、渦 度輸送方程式 (5) の時間微分を 1 次精度の前進オイラー法で近似し、粘性項および非線形項の空間 微分を 2 次精度の差分で近似する.また、ポアッソン方程式 (4) は空間微分を 2 次精度の差分を用 いて近似し、SOR法 (Successive Over Relaxation Method) を用いて逐次代入法により解を求め る. このとき、収束判定は各格子点 ($i\Delta x, j\Delta y$) における時刻 $n\Delta t$ での流れ関数 $\psi(i\Delta x, j\Delta y, n\Delta t)$ の *k* 回目の近似値 $\psi_{i,j}^{k}$ c k - 1 回目の値 $\psi_{i,j}^{k-1}$ の絶対誤差の最大値が $\epsilon_1 = 10^{-7}$ より小さくなっ たときに解は収束したと見なす.定常状態への到達の判定には、時刻 $n\Delta t$ と (n-1) Δt における すべての計算点での *y* 方向速度 *v* の相対誤差が 10^{-14} 以下となったときに流れは定常状態に到達 したと判断する.振動解の平衡状態への到達の判定では、点 P_i (i = 1, 2, ..., 5, 図 1(a) – 1(c)) で連続する 2 回の振動の振幅の相対誤差が 10^{-4} 以下となったとき平衡状態に達したと判断する. 時間刻みは主に $\Delta t = 0.001$ を用い、空間刻みを $\Delta x = \Delta y = 0.1$ とした.ただし、これらの値を 小さくして、計算結果の精度を確認した.また、空間微分に 4 次精度の差分近似を用いることに よる計算精度の比較も行った.

3.2 主流の数値計算

主流の数値計算においても数値シミュレーションと同様に差分法を用いる. 主流方程式 (9) と (10) における空間微分をすべて 2 次精度の差分法で近似し, これらを SOR 法による反復法で解き 定常対称解を求める. SOR 法における解の収束判定は数値シミュレーションの場合と同様に $\psi_{i,j}^{k-1}$ と $\psi_{i,j}^{k}$ の絶対誤差の最大値が $\epsilon_1 = 10^{-7}$ より小さくなったときに解は収束したと見なした.

4 計算結果と考察

4.1 1つの拡大部をもつ管路流れの遷移

急拡大管および1つの急拡大部をもつ対称な流路流れはこれまでにも多くの研究が行われ、その性質と遷移については良く調べられている [16, 17]. その結果を簡単に整理すると、1つの急拡 大部をもつ流れはレイノルズ数が小さいとき、流路中心軸に対して対称な定常流である.レイノ ルズ数が大きくなると、流れはあるレイノルズ数 (臨界レイノルズ数) において非対称な定常流へ と遷移 (ピッチフォーク分岐) し、もう少しレイノルズ数が大きくなると流れは再び対称な定常流 (第2対称定常流と呼ぶ) に遷移 (逆ピッチフォーク分岐) する.さらに大きなレイノルズ数で流れ は不安定となって振動流へと遷移 (ホップ分岐) する.

図 2: 分岐図. 1つの急拡大部をもつ管路流れ. 実線: 安定解,破線: 不安定解. (a) ピッチフォー ク分岐, v₁: 点 P₁ での y 方向流速, (b) ホップ分岐, a₁: v₁ の振動振幅.

今回用いた数値シミュレーションコードの精度確認を兼ねて、1つの急拡大部をもつ管路流れの 遷移を簡単に復習しておく.まず、対称定常流から非対称定常流への遷移を調べるため、図1の点 P₁における y 方向速度成分 v₁ を代表物理量にとり、v₁のレイノルズ数依存性を調べる(図2(a)). 図2(a) では、点 P₁ での y 方向速度 v₁ が、 $Re < Re_{P1}$ で v₁ = 0 であり、対称定常流を表して いる. このときの対称定常流の例として、Re = 40における流れ場を図3(a)に示す. $Re > Re_{P1}$ では v₁ は有限の値となり、流れは非対称である(図3(b), Re = 58). 対称定常流 (v₁ = 0) はレ イノルズ数によらず、常に基礎方程式の解であることが分かっているので、解の個数は Re_{P1} で 2つ増えて3つになっている. 解の分岐点である臨界レイノルズ数 $Re_{P1} = 49.3$ 近傍において v²₁ \propto ($Re - Re_{P1}$) であることから、この解の分岐はピッチフォーク分岐であると結論できる[2]. 代表流速 v₁ は レイノルズ数が Re_{P2} に近づくにつれて減少し $Re > Re_{P2}$ においては再び v₁ = 0 となる.非対称定常流から対称定常流へ遷移する臨界レイノルズ数 $Re_{P2} = 65.7$ 近傍における解 の分岐は同様の議論で逆ピッチフォーク分岐であることが分かる.ただし、そのときの対称定常 流は小さなレイノルズ数における流れとは異なり、中心を貫くジェット状の流れの両側に循環領域 をもつ流れとなる (図3(c), Re = 100).

定常流から振動流への遷移を調べるために、図 1(a) の点 P₁ における y 方向速度成分 v_1 の振幅 a_1 を代表物理量にとり、レイノルズ数との関係を調べる (図 2(b)). この図で Re_H よりレイノル ズ数が小さいときは $a_1 = 0$ であり、流れ場は対称定常流である. レイノルズ数が $Re = Re_H$ よ り大きくなると、 a_1 は有限の値をもち、流れが周期振動流へと遷移する. 振幅 a_1 は、分岐点で ある臨界レイノルズ数 $Re_{\rm H}$ 近傍で $a_1^2 \propto (Re - Re_{\rm H})$ の関係を満たす. これは流れが定常対称流 からホップ分岐により周期振動流へ遷移することを示している [2]. 流れが振動流となったときの 流れ場は図 3(d) (Re = 900)のように,拡大部に 2 つの渦領域が存在し,上下合わせて 4 つの大 きな渦領域をもつ.また急縮小部付近において主流の振動が見られ,下流に波として伝わってい く様子が分かる.

図 3: 流れ場.1つの急拡大部をもつ管路流れ.(a) 対称定常流 (*Re* = 40), (b) 非対称定常流 (*Re* = 60), (c) 対称定常流 (*Re* = 100), (d) 振動流 (*Re* = 900).

4.2 複数の拡大部をもつ拡大管路流れの遷移

4.2.1 2つの拡大部をもつ拡大管路流れ

拡大部を2つもつ管路流れも1つの場合と同様に、レイノルズ数が小さいときは定常で管路中 心軸に対して対称な流れであるが(図4(a))、レイノルズ数が大きくなると、2つ目の拡大部での み流れが振動するように観測される(図4(b))、今後、この振動流を振動第1モードと呼ぶことに する.さらにレイノルズ数を大きくすると、1つ目の拡大部内の流れ場も対称性を失い、振動する (図4(c))、このように2つの拡大部で共に流れが振動しているときの流れを第2モードと呼ぶ、こ のように2つのモードを区別することと呼び方の妥当性については後に議論する.

このときの流れの遷移を詳しく調べるため,流れ場中の振動の大きさを表す物理量として図 1(b) の 点 P₁ と P₂ での振動振幅 a_1 と a_2 を採り,分岐図を描くとそれぞれ図 5(a) と 5(b) の ようになる. 図 5(a) と 5(b) を見比べて,振幅 a_1 と a_2 の大きさは 1000 倍程度異なってはいる が,その分岐構造はまったく同じであることが分かる. これらの分岐図で,流れは臨界レイノル ズ数 $Re_{H1} = 695.0$ で亜臨界ホップ分岐を生じる. 亜臨界ホップ分岐により生じた振動解は転回点 $Re_s = 665.5$ でサドル・ノード分岐をして,より大きなレイノルズ数の側に解はつながっていく. 振動振幅 a_1 と a_2 は $Re_{H2} = 850$ 付近で急に大きくなり, Re_{H2} を境に異なる 2 つのモードが存 在することを窺わせる.

前に第1モードと呼んだ Re = 700 での流れ場は、図 4(b) を見る限りでは、2つ目の急拡大部 でのみ流れが振動しているように見えるが、分岐図 5(a) によると、Re = 700 において a_1 も微小 ではあるが有限の値をもち、1つ目の拡大部にも微小な振動が発生していることが分かる. この ことから、第1モードにおいては、2つ目の拡大部にだけ自励振動が発生しているように見えてい るが、実際には流れ場全体が振動流となっていることが明らかであり、このような不安定性を全 体不安定性 (Global instability) と呼ぶことができる. 急拡大部が1つだけの管路での不安定性の 発生 ($Re_{\rm H} = 845.4$) に比べて、なぜこのように小さなレイノルズ数でも1つ目の急拡大部も振動 流となるのか、その理由についても後に議論する. 流れ場の振動が第1モードから第2モードへ遷 移する臨界レイノルズ数 Re_{H2} ~ 850 は1 つの拡大部をもつ管路流れのホップ分岐がおこる臨界 レイノルズ数 Re_H = 845.4 とよく一致している.これより,振動の第2モードの発生は1つの急 拡大部をもつ管路流れと同様な機構で1つ目の急拡大部で自励振動が発生していると考えられる.

図 4: 流れ場. 2つの拡大部をもつ管路流れ. (a) 対称定常流, *Re* = 600, (b) 振動流 (第1モード), *Re* = 700, (c) 振動流 (第2モード), *Re* = 875.

図 5: 分岐図. 2 つの急拡大部をもつ管路流れ. *a*₁: 点 P₁ での *y* 方向流速 *v*₁ の振動振幅. *a*₂: 点 P₂ での *y* 方向流速 *v*₂ の振動振幅.

4.2.2 5 つの拡大部をもつ拡大管路流れ

急拡大部を5つもつ管路流れの遷移とその流れパターンの変化も、急拡大部が2つの場合とほ ぼ同様であるが、後で対流不安定性から絶対不安定性への遷移と全体不安定性の関係を調べるた めには管路長さが長い5つの場合の方が調べやすいので、その遷移について説明を行っておく、レ イノルズ数が小さいとき,流れは図 6(a) のように対称定常流であるが,レイノルズ数が大きくな ると,最初に現れる振動流は 5 つ目の急拡大部でのみ振動しているように観測される (図 6(b)).2 個の急拡大部をもつ管路流れと同様に,このときの振動流を振動第1モードと呼ぶ.さらにレイ ノルズ数を大きくすると,4 つ目の急拡大部内においても振動が見られるようになる (図 6(c)).こ のように4 つ目および5 つ目の急拡大部両方で流れが振動しているとき振動第2モードと呼ぶ.同 様に,この管路流れには,第3モードから第5モードまでの振動モードが発生すると考える.

この管路流れの遷移を見るために,振動の大きさを表す代表物理量として,流路中心軸上の代 表点 P₅ と P₄ における y 方向の速度成分 v_5 と v_4 の最大振幅 a_5 と a_4 を採りレイノルズ数 Re との関係を調べる (図 7(a) と 7(b)). 分岐図 7(a) と 7(b) では 200 \leq Re \leq 250 の範囲のみが描か れているが,これらの分岐図は 2 つの急拡大部をもつ管路流れの分岐図 5(a) および 5(b) とほぼ同 じ形をしている.ただし、2 つの急拡大部をもつ場合は a_1 の値は a_2 に比べて 1/1000 の大きさ であるが、5 つの場合, a_4 の振動 (図 7(a)) は a_5 の振動 (図 7(b)) とほぼ同じオーダーの大きさを もっている.もう 1 つの相違は、明らかに異なるモードと思われる振動モードが 1 つ増えている ことである.これらの図では描かれていないが、さらに大きなレイノルズ数まで計算を行うと、5 つの異なる振動モードが生じると推測される.このように、急拡大部の数が増えれば固有の振動 モードが増え、拡大部の数だけ振動のモードが存在すると考えることができる.

急拡大部が5つあるときも、流れの最初の分岐は亜臨界ホップ分岐であり、臨界点 $Re_{H1} = 217.5$ からでる解の分枝は、サドル・ノード点 $Re_S = 213.0$ を経て、 $Re_{H2} = 220.0$ で第2振動モードに 遷移し、 $Re_{H3} = 240.0$ で再び第3振動モードに遷移する. 図7(a)および7(b)から明らかなよう に、流れの全体不安定性は流れ場の全領域で協同的に生じ、流れ場を観察すると、Re = 218にお ける流れは5つ目の急拡大部だけが振動しており4つ目より上流の流れは振動していないように 見えたが、実際に分岐図を描いて調べてみると5つ目の急拡大部で振動が始まるのと同時に4つ 目の拡大部においても微小であるが振動が始まっていることが分かる. このように、これまでの 実験においては、下流ほど不安定で振動しやすいと観測されたが、実際には下流の方がより不安 定に見えるだけであり、全体不安定は系のどの場所においても同時に発生することが分かった.

図 6: 流れ場.5つの拡大部をもつ管路.(a)対称定常流.*Re* = 200.(b) 振動流.第1モード, *Re* = 218.(c) 振動流.第2モード, *Re* = 235.

図 7: 分岐図. 5 つの急拡大部をもつ管路流れ. a_5 : 点 P_5 での y 方向流速 v_5 の振動振幅. a_4 : 点 P_4 での y 方向流速 v_4 の振動振幅.

4.3 対流不安定から絶対不安定への遷移と全体不安定性

前節では、振動源となる急拡大部を複数個もつ管路流れでは、その個数が多いほど不安定となり、しかも下流側の急拡大部の方が上流よりも不安定のように見えることを説明した。この節では、急拡大部の数が増えると流れがより不安定となる理由および下流側の急拡大部でより小さなレイノルズ数で振動が観測される理由について考える。そのために、5つの急拡大部をもつ管路を流れる対称定常流($\overline{\psi},\overline{\omega}$)中に、管路流入口においてパルス型の撹乱を加え、その撹乱の伝播と発展を調べる。管路入り口で加えたパルス型撹乱は波束型撹乱となって下流へ伝播する。平行流近似を用いた古典的線形安定性理論においては、下流へ伝播する波束の振幅が時間と共に成長すれば対流不安定性と呼ばれ、その群速度が0となるとき絶対不安定性と呼ばれてきた。しかし、ここで取り扱っているように平行流近似を用いずに、直接に非平行な流れの安定性を議論するときには、この概念を修正する必要があることを説明する。

流れの対流不安定性および絶対不安定性を調べるため、図1(c) においてQ (= (-h,0)) で表されている管路流入口の中の1点で、空間的にも時間的にもパルス状の波形をもつ撹乱 $\hat{\psi}(x, y, t)$ を与える. 撹乱を加えた時刻を t = 0 としてその後の撹乱の空間的および時間的変化について調べる. 急拡大部を5つもつ管路は当然流れ方向に一様ではないので、流れも一様性をもたず、与えた撹乱も空間的にも時間的にも複雑な変化をしながら下流へと伝播する. しかし、ここで取り扱っている管路は空間的な周期性をもっており、たとえば図1(c) の縮小部中央 R_i ($i = 1, 2, \dots, 5$) において伝播してくる撹乱を観察すれば撹乱は何らかの周期的な振る舞いをすると期待できる.

このようにして観測した撹乱の時間変化の例として, Re = 200の場合の各観測点 R_i ($i = 1, 2, \dots, 5$)での撹乱の時間発展を描くと図8のようになる. 初期 (t = 0) に矩形の波形をもっていた撹乱は R_1 点に達すると既に波束型となっている. この図では明らかではないが, 波束撹乱は下流へ伝わるに従って空間的に広がり, 波束と共に移動する座標系から見ればその振幅も大きくなっている. 振幅の時間増幅率 σ_C はおよそ 0.0226 であり, 対流不安定撹乱となっていることが確認できる. 同様の計算を行って, 各レイノルズ数における σ_C を評価しグラフに描くと図9のようになり, この流れが対流安定から対流不安定へ遷移する臨界レイノルズ数 Re_C は 64.8 と求められる. しかし, 図8を見れば分かるように, Re = 200 では空間のある固定点 R_i で見れば, 撹乱はどの場所においても一定時間経過するとその振幅がほぼ 0 となって減衰する. すなわち, 絶

図 8: 観測点 R_i , $(i = 1, 2, \dots, 5)$ での波束型撹乱 $\hat{v}_i(t)$ の時間変化. Re = 200.

対安定である.

図 9: 対流不安定性増幅率 $\sigma_{\rm C}$.

図8で示された波束撹乱のピークが伝播する群速度 v_g を評価すると、およそ 8.1×10⁻⁴ となった.ここで、波束のピークを求めるにあたっては、各測定点における波束撹乱の包絡線を考え、包絡線の最大値近傍を二次曲線で近似して、その最大値をもつ時刻を波束のピークとした。同様に、 Re = 175 と Re = 212 の場合についてもパルス撹乱を加えてその群速度 v_g を評価すると図 10(a) のようになる.この図でデータを近似する直線の勾配がピークの群速度 v_g を表しており、波束の ピークが伝播する群速度はレイノルズ数には依存せずにほぼ一定である。ただし、ここで群速度 も代表流速で無次元化していることに注意をする必要がある。また、ここで得られた結果が円柱 や円柱群を過ぎる流れなど他の流れにも当てはまるかどうかは不明である。5 つの急拡大部をもつ 管路流れが $Re_{\rm H1}$ = 217.5 で全体不安定となるにも関わらず、波束のピークが伝播する群速度は レイノルズ数に依存しないので、波束のピークの群速度で対流不安定性から絶対不安定性不安定 性への遷移を定義することは不可能であることが分かった。したがって、他の定義を考える必要 がある。

絶対不安定性をより厳密に定義すれば,管路(実験室)座標系に固定された1点で波束型撹乱を 観測したときに撹乱の振動振幅が増幅するとき絶対不安定であると定義できる.図8を見れば分

図 10: 各観測点 (R_3 : x = 45, R_4 : x = 60, R_5 : x = 70) への波束撹乱のピークとテイルの到達 時刻. 近似直線の傾きがピークまたはテイルの群速度を表す. (a) 波束のピークの到達時刻. 直線 の傾きがピークの群速度 v_g . (b) 波束のテイルの到達時刻. 直線の傾きがテイルの群速度 v_T .

かるように、この定義は波束撹乱の後端 (テイル) が伝播する群速度 vr を観測することと同等で ある. 波束撹乱のテイルの到達時刻と到達位置の関係をグラフに描くと図 10(b) のようになる. 期 待通り、この図ではレイノルズ数が大きくなるに従って、直線の勾配は小さくなり、波束テイル の伝播速度 vr が小さくなっている. すなわち, 波束のピークの群速度はレイノルズ数が大きく なってもほとんど変わらないが、波束の時間的または空間的な幅が大きくなり、その後端の群速 度が小さくなっていくのである. このようにして いくつかのレイノルズ数について波束のテイル の群速度 vr を求めグラフに描くと図 11 のようになる. この図では横軸にレイノルズ数 Re をと り、縦軸にテイルの群速度の2乗 v2 をとっている、得られたデータはほぼ直線で近似することが でき、 $v_{\rm T}=0$ となるレイノルズ数を求めると、レイノルズ数 $Re_{\rm T}=217.8$ となる.このレイノル ズ数が、パルス型撹乱が対流不安定から絶対不安定となる臨界レイノルズ数であり、この値は先 に求めた全体不安定性が生じる最初のホップ分岐の臨界点 ReH1 = 217.5 と非常に良く一致してい る. すなわち, パルス型撹乱が対流不安定から絶対不安定となる条件は流れが全体不安定となる 条件と一致するという整合性のある結論が得られた、一方、円柱を過ぎる流れについてこれまで 行われてきた古典的線形安定性理論に基づく研究では,これらの条件が一致せず,円柱後方 3.5d (d は円柱直径)まで絶対不安定領域が大きく成長した後に全体不安定性が発生するという我々の 常識では理解し難い結論が導かれているのである。しかし、この報告で用いた方法を円柱を過ぎ る流れに適用すれば、対流不安定性から絶対不安定性への遷移条件と全体不安定性の発生条件は 一致すると期待される.

(b)

図 11: 波束のテイルの群速度 vT.

4.4 数多くの急拡大部をもつ管路流れと周期境界条件

ここで取り扱っているような周期的な構造をもつ管路流れの研究では、問題を簡単化するため に、しばしば流れ場に周期条件が課される.管路の長さが十分に長い管路では、そのような周期 条件が妥当であると期待できる.それでは、どの程度長い管路であれば周期性の仮定が妥当とな るのだろうか.この節では、数多くの急拡大部をもつ管路流れが最初に振動流へと遷移する条件 を、周期性を仮定しないで有限の周期的急拡大管路として取り扱って求め、周期境界条件を課し た場合と比較する.周期境界条件の下での急拡大部をもつ管路流れの安定性は既に Takaoka *et al.* により調べられており、周期的急拡大管と同じ周期をもつモード (モード 1) と管路周期の 2 倍の 周期をもつモード (モード 2) の 2 つのモードの線形撹乱についてその臨界レイノルズ数が求めら れている.その結果、ここで調べているパラメータ (s = 0.5, E = 3, A = 7/3) については、モー ド 1 の撹乱に対する臨界レイノルズ数は $Re_1 = 48.7$ 、モード 2 の撹乱に対しては $Re_2 = 58.2$ で ある.

ここでは、いくつかの急拡大部をもつ管路流れが振動流へ遷移する臨界レイノルズ数を、有限長 さの管路流れとして周期境界条件を課さずに求めた。急拡大部の数 N の関数として臨界レイノル ズ数 Re_{H1} を描くと図 12 のようになる。急拡大部の数 N が大きくなるにつれて、臨界レイノルズ 数 Re_{H1} は小さくなる。しかし、N = 8または 10 においてもその臨界レイノルズ数 $Re_{H1} \sim 200$ は周期条件の臨界値 $Re_1 = 48.7$ あるいは $Re_2 = 58.2$ とは大きく異なり、予想以上に多くの急拡 大部をもつ管路流れでないと周期条件を課すことは妥当ではないとの結論が得られた。

参考文献

- [1] P. G. Drazin and W. H. Reid, "Hydrodynamic stability (2nd Edition)" (Cambridge Univ. Press, Cambridge, 2004), Chaps. 1 and 2.
- [2] 水島二郎, 流れの安定性, (朝倉書店, 東京, 2003)
- [3] Taneda, S., "The stability of two-dimensional laminar wakes at low Reynolds numbers", J. Phys. Soc. Japan., Vol. 18, (1963), pp. 288-296.

図 12: N 個の急拡大部をもつ管路流れの遷移臨界レイノルズ数 ReH1.

- [4] C. P. Jackson, "A finite-element study of the onset of vortex shedding in flow past variously shaped bodies", J. Fluid Mech., Vol. 182(1987), pp. 23-45.
- [5] J. R. Briggs, "Electron-stream interaction with plasmas" (MIT Press, Cambridge, 1964), Chap.2.
- [6] Betchov, R. and Criminale, W. O., "Spatial instability of the inviscid jet and wake", Phys. Fluids, Vol. 9 (1966), pp. 359-362.
- [7] Gaster, M., "Growth of disturbances in both space and time", Phys. Fluids, Vol. 11 (1968), pp. 723-727.
- [8] Nakaya, C., "Instability of the near wake behind a circular cylinder", J. Phys. Soc. Japan., Vol. 41 (1976), pp. 1087-1088.
- [9] Triantafyllou, G. S., Kupfer, K. and Bers, A., "Absolute instabilities and self-sustained oscillations in the wakes of circular cylinders", Phys. Rev. Lett., Vol. 59 (1987), pp. 1914-1917.
- [10] Kupfer, K., Bers, A., Ram. A. K., "The cusp map in the complex-frequency plane for absolute instabilities", Phys. Fluids, Vol. 30, (1987), pp. 3075-3082.
- [11] Huerre, P., Monkewitz, P. A., "Absolute and convective instabilities in free shear layers", J. Fluid Mech., Vol. 159, (1985), pp. 151-168.
- [12] Monkewitz, P. A., "The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers", Phys. Fluids, Vol. 31 (1988), pp. 999-1006.
- [13] Koch, W., "Local instability characteristics and frequency determination of self-excited wake flows", J. Sound. Vib., Vol. 99 (1985), pp. 53-58.
- [14] Belan, M. and Tordella, D., "Convective instability in wake intermediate asymptotics", J. Fluid Mech., Vol. 552 (2006), pp. 127-136.
- [15] S. G. Triantafyllou, M. S. Triantafyllou, and C. Chryssostomidis, "On the formation of vortex streets behind stationary cylinder", J. Fluid Mech., Vol. 170 (1986), pp. 461-477.

- [16] R. M. Fearn, T. Mullin and K. A. Cliffe, "Nonlinear flow phenomena in a symmetric sudden expansion", J. Fluid Mech., Vol. 211 (1990), pp. 595-608.
- [17] J. Mizushima, H. Okamoto and H. Yamaguchi, "Stability of flow in a channel with a suddenly expanded part", Phys. Fluids, Vol. 8 (1996), pp. 2933-2942.
- [18] J. Mizushima and N. Suehiro, "Instability and transition of flow past two tandem circular cylinders", Phys. Fluids, Vol. 17 (2005), pp. 104107-1-11.
- [19] N. K. Ghaddar, K. Z. Korczak, B. B. Mikic and A. T. Patera, "Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillation", J. Fluid Mech., Vol. 163 (1986), pp. 99-127.
- [20] M. Takaoka, T. Sano, H, Yamamoto and J. Mizushima, "Transition and convective instability of flow in a symmetric channel with spatially periodic structures", Phys. Fluids, Vol. 21 (2009), pp. 024105-1-10.