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ABSTRACT. Mcycr scts have playcd important rolcs in $t\}_{1}c$ study of apcriodic systems. Wc

present various properties on the Meyer sets. We consider self-affine tilings and determine

when the corresponding point sets representing the tilings are the Mcycr sets.

1. PRELIMINARY

A discrete set $Y$ is called Delone set if it is uniformly discrete and relatively dense. A Delone

set $Y\subset \mathbb{R}^{d}$ is Meyer if it is relatively dense and $Y-Y$ is uniformly discrete. A cluster $P$ of
$\Lambda$ is a finite subset of $\Lambda$ .

Example 1.1. The examples of Meyer sets are

(i) $\Lambda=(1+2\mathbb{Z})\cup S$ for any subset $S\subset 2\mathbb{Z}$ .

(ii) $\Lambda=\{a+b\tau\in \mathbb{Z}[\tau]|a-b\frac{1}{\tau}\in[0,1)\}$ , where $\tau^{2}-\tau-1=0$ .

An example of non-Meyer set is $\Lambda=\{n+\frac{1}{n}|n\in \mathbb{Z}\backslash \{0\}\}$ .

The following are various equivalent properties of the Meyer sets.

Theorem 1.2. [10, 6, 11] Let $\Lambda$ be a Delone set. The following are equivalent;

(i) $\Lambda$ is a Meyer set.
(ii) $\Lambda-\Lambda\subset\Lambda+Ffo7^{\cdot}$ so$7ne$ finite set $F\subset \mathbb{R}^{d}$ (almost lattice).

(iii) For each $\epsilon>0$ , there is a dual set $\Lambda^{\epsilon}$ in $\hat{\mathbb{R}^{d}}$ ,

$\Lambda^{\epsilon}=\{\chi\in\hat{\mathbb{R}^{d}}:|\chi(x)-1|<\epsilon$ for all $x\in\Lambda\}$

is relatively dense.

Let $\Lambda$ be a Delone set in $\mathbb{R}^{d}$ . We consider a measure of the form $\nu=a\cdot\delta_{\Lambda}=\sum_{x\in\Lambda}a\cdot\delta_{x}$

and $a\in \mathbb{C}$ . The autocorrelation of $\nu$ is

$\gamma(\nu)=\lim_{narrow\infty}\frac{1}{Vol(B_{n})}(\nu IB_{r\iota}*\tilde{\nu}|_{B_{\iota}},)$ ,

where $\nu|_{B_{n}}$ is a measure of $\nu$ restricted on the ball $B_{n}$ of radius $n$. and V is the measure,

defined by $\tilde{\nu}(f)=\overline{\nu(\tilde{f})}$ , where $f$ is a continuous function with compact support and $\tilde{f}(x)=$

$\overline{f(-x)}$ . The diffraction measure of $\nu$ is the Fourier transform $\hat{\gamma(\nu}$) of the autocorrelation
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(see [4]). When the diffraction measure $\hat{\gamma(\nu}$) is a pure point measure, we say that $\Lambda$ has

pure point diffraction spectrum.

The following theorem characterizes the pure point diffiactive sets.

Theorem 1.3. [2] If $\Lambda$ is a Meyer set admitting autocorrelation, then $\Lambda$ is pure point

diffmctive if and only if for any $\epsilon>0,$ $\{t\in \mathbb{R}^{d}:density(\Lambda\backslash (\Lambda-t))<\epsilon\}$ is relatively dense.

We say that a Delone set $\Lambda$ has finite local complexity $(FLC)$ if for each radius $R>0$

tlierc arc ollly finitely lllally $translati_{o1}ia1c1\alpha sc^{J}s$ of clusters whose support lies ill some ball

of radius $R$ . A Delone set $\Lambda$ is said to be repetitive if the translations of any given patch

occur uniformly dense in $\mathbb{R}^{d}$ ; more precisely, for any $\Lambda$-cluster $P$ , there exists $R>0$ such
that every ball of radius $R$ contains a translated copy of $P$ .

Given a Delone set $\Lambda$ , we define thc space of Delone sets as the orbit $clos\rceil lre$ of $\Lambda$ under the

translation action: $X_{\Lambda}=\overline{\{-g+\Lambda|g\in \mathbb{R}^{d}\}}$ , in the well-known “local topology” : for a small
$\epsilon>0$ two tilings $\Gamma_{1},$ $\Gamma_{2}$ are $\epsilon$-close if $\Gamma_{1}$ and $\Gamma_{2}$ agree on the ball of radius $\epsilon^{-1}$ around the
origin, after a translation of size less than $\epsilon$ . It is known that $X_{\Lambda}$ is compact whenever $\Lambda$ has

FLC. Thus we get a topological dynamical system $(X_{\Lambda}, \mathbb{R}^{d})$ where $\mathbb{R}^{d}$ acts by translations.
This system is minimal (i.e. every orbit is dense) whenever $\Lambda$ is repetitive. Let $\mu$ be an
invariant Borel probability measure for the action; then we get a measure-preserving system
$(X_{\Lambda}, \mathbb{R}^{d}, \mu)$ . Such a measure always exists; under the natural assumption of uniform patch
frequencies, it is unique, see [7]. Tiling dynamical systems have been investigated in a large
number of papers (e.g. [12, 3]).

Definition 1.4. A vector $\alpha=(\alpha_{1}, \ldots, \alpha_{d})\in \mathbb{R}^{d}$ is said to be an eigenvalue for the $\mathbb{R}^{d_{-}}$

action if there exists an eigenfunction $f\in L^{2}(X_{\Lambda}, \mu)$ , that is, $f\not\equiv O$ and for all $g\in \mathbb{R}^{d}$ and
$\mu$-almost all $\Gamma\in X_{\Lambda}$ ,

(1.1) $f(\Gamma-g)=e^{2\pi i\langle g,\alpha)}f(\Gamma)$ .

Here $\langle\cdot,$ $\cdot\rangle$ denotes the standard scalar product in $\mathbb{R}^{d}$ .

The following gives an important criterion on Meyer sets.

Theorem 1.5. [15] If $\Lambda$ is a Meyer set with unifom cluster frequencies, then the Bragg
peaks in the $difft^{-}oction$ pattern of $\Lambda$ are relatively dense. It implies that the set of eigenvalues

for the dynamical system $(X_{\Lambda}, \mathbb{R}^{d}, \mu)$ is relatively dense.

2. SUBSTITUTION TILINGS

From now on, we consider substitution tilings. Note that whenever substitution tilings are
given, we can get the corresponding substitution Delone sets taking representative points of
tiles at the relatively same positions for the same type of tiles. So most of the properties on
substitution tilings can be stated on substitution point sets.
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We say that a linear map $Q$ : $\mathbb{R}^{d}arrow \mathbb{R}^{d}$ is expansive if all its eigenvalues lie outside the

closed unit disk in $\mathbb{C}$ .

Definition 2.1. Let $\mathcal{A}=\{T_{1}, \ldots, T_{m}\}$ be a finite set of tiles in $\mathbb{R}^{d}$ such that $T_{i}=(A_{i}, i)$ ;

we will call them prototiles. Denote by $\mathcal{P}_{A}$ the set of non empty patches. We say that
$\Omega$ : $Aarrow \mathcal{P}_{A}$ is a tile-substitution (or simply substitution) with an expansive map $Q$ if there

exist finite sets $\mathcal{D}_{ij}\subset \mathbb{R}^{d}$ for $i,j\leq m$ such that

(2.1) $\Omega(T_{j})=\{u+T_{i} : u\in \mathcal{D}_{ij}, i=1, \ldots, m\}$

with

(2.2) $QA_{j}= \bigcup_{i=1}^{m}(\mathcal{D}_{ij}+A_{i})$ for $j\leq m$ .

Here all sets in the right-hand side must have disjoint interiors; it is possible for some of the
$\mathcal{D}_{ij}$ to be empty.

We say that $\mathcal{T}$ is a substitution tiling if $\mathcal{T}$ is a tiling and $\Omega(\mathcal{T})=T$ with some substitution
$\zeta\}$ . Wc say that substitution tililig is primitive if the corresponding substitution matrix $S$ ,

with $S_{ij}=\#(\mathcal{D}_{ij})$ , is primitive, i.e. $S^{p}$ is a matrix whose each entry is positive for some
$\ell\in z_{+}$ . A repetitive primitive substitution tiling with FLC is called a self-affine tiling. lf $\phi$

is a similarity map, we can that the tiling is a self-similar tiling. Let $\Lambda_{\mathcal{T}}=(\Lambda_{i})_{i\leq m}$ be the

substitution point set representing $\mathcal{T}$ .

Example 2.2. The Fibonacci substitution tiling is defined by the following substitution

rule

$\frac{0\tau}{A_{1}}arrow\frac{0\tau\tau}{A_{1}A_{2}}+1(=\tau^{2})$

$\frac{0}{A_{2}}1$ $arrow\frac{0\tau}{A_{1}}$

where $\tau^{2}-\tau-1=0$ . The tiles $A_{1}$ and $A_{2}$ satisfy the following tile-equations

$\tau A_{1}$ $=$ $A_{1}\cup(A_{2}+\tau)$

$\tau A_{2}$ $=$ $A_{1}$

Continuously iterating the tiles and subdividing them, we can construct a tiling.

3. MEYER PROPERTY ON SELF-AFFINE TILINGS

Let $\mathcal{T}$ be a self-affine tiling in $\mathbb{R}^{d}$ with an expansion map $\phi$ and $\Lambda_{T}=(\Lambda_{i})_{i\leq m}$ be a
substitution point set representing $\mathcal{T}$ . Suppose that all the eigenvalues of $\phi$ are algebraic

conjugates with the same multiplicity. Let

$\Xi=\{x\in \mathbb{R}|$ ョ $T, T-x\in \mathcal{T}\}$ and $\mathcal{K}=\{x\in \mathbb{R}^{d}|\mathcal{T}=\mathcal{T}-x\}$ .

Before we talk about how to determine the Meyer property on substitution tilings, we
present some $preli_{1}ninary$ results.
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Theorem 3.1. [1] If a substitution point set is a Meyer set, then one can determine pure

point spectrum using a computational algorithm.

Theorem 3.2. [8] The set of eigenvalues for the dynamical system $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ is relatively

dense if and only if the $co$rresponding substitution point set $A_{\mathcal{T}}$ is a Meyer set.

Theorem 3.3. [14] $\gamma$ is an eigenvalue for the dynamical system $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ if and only if
$\lim_{narrow\infty}e^{2\pi i\langle\phi^{n}x,\gamma\rangle}=1$ for $allx\in\Xi$ ,

$e^{2\pi i\langle x,\gamma\rangle}=1$ for $allx\in \mathcal{K}=\{x\in \mathbb{R}^{d}|\mathcal{T}-x=\mathcal{T}\}$.

Theorem 3.4. [5, 14] Let $\mathcal{T}$ be a self-similar tiling in $\mathbb{R}^{d}$ with a similarity $\lambda$ , where $|\lambda$ I $>1$ .

Then
$\Xi\subset \mathbb{Z}[\lambda]\alpha_{1}+\cdots \mathbb{Z}[\lambda]\alpha_{d}$

for some basis $\{\alpha_{1}, \ldots , \alpha_{d}\}$ of $\mathbb{R}^{d}$ .

Question What can we say in the case of $self-affin\epsilon^{1}$ tilings?

Theorem 3.5. [9] Suppose that $\phi$ is diagonalizable and all the eigenvalues of $\phi$ are alge-

braically conjugate with the same multiplicity $m$ . Then ョ an isomorphism $\rho:\mathbb{R}^{d}arrow \mathbb{R}^{d}$ such

that
$\rho\phi=\phi\rho$ and $\Xi\subset\rho(\mathbb{Z}[\phi]\alpha_{1}+\cdots+\mathbb{Z}[\phi]\alpha_{J})$ ,

where $Jm=d$ and

$(\alpha_{j})_{n}=\{\begin{array}{ll}1 if (j-1)m+1\leq n\leq jm0 else\end{array}$

We show now how this theorem is used to get the Meyer property of $\Xi$ . To be simple, we
consider the case that all the eigenvalues of $\phi$ are real. However the main result of Theorem

3.11 is not restricted on this case.

An algebraic integer $\lambda$ is a Pisot number if $|\lambda|>1$ and all other algebraic conjugates are
less tliau 1 in luod$\iota\iota$lus. A set $\Lambda=\{\lambda_{1}, \ldots , \lambda_{m}\}$ of algebraic integers is a Pisot family if for

every $\lambda_{i}\in\Lambda$ , if $\gamma$ is an algebraic conjugate of $\lambda_{i}$ and $\gamma\not\in\Lambda$ , then $|\gamma|<1$ . Let dist $(x, \mathbb{Z})$ be

the minimal distance from $x$ to $\mathbb{Z}$ .

Lemma 3.6. Let $\lambda$ be a Pisot number. Then dist$(\lambda^{n}, \mathbb{Z})arrow 0$ as $narrow\infty$ .

Proof. Let $\lambda_{2},$ $\ldots.\lambda_{s}$ be all the algebraic conjugates of $\lambda$ . For any $n\in z_{+}$ ,

$\lambda^{n}+\sum_{j=2}^{s}(\lambda_{j})^{n}\in \mathbb{Z}$ .

Note that

$\sum_{j=2}^{s}(\lambda_{j})^{n}\leq(s-1)\sup_{2\leq j\leq m}|\lambda_{j}|^{n}arrow 0$ as $narrow$ oo.

Thus the claim follows. $\square$
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Lemma 3.7. Let $\Lambda=\{\lambda_{1}, \ldots, \lambda_{m}\}$ be a Pisot family. Then

dist $( \sum_{k=1}^{m}(\lambda_{k})^{n}, \mathbb{Z})arrow 0$ as $narrow\infty$ .

Proposition 3.8. If the set of eigenvalues of $\phi$ is a Pisot family, then the set of eigenvalues

for $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ is relatively dense.

Proof. For any $n\in \mathbb{Z}_{\geq 0}$ and $0\leq P<m$ ,

$\langle\phi^{n}\alpha_{j},$ $(\phi^{T})^{\ell}\alpha_{j}\rangle=\langle\phi^{n+l}\alpha_{j},$
$\alpha_{j}\rangle=\sum_{k=1}^{m}\lambda_{k}^{n+\ell}$

Since $\{\lambda_{1}, \ldots , \lambda_{m}\}$ is a Pisot family,

dist $( \sum_{k=1}^{m}\lambda_{k}^{n+\ell}, \mathbb{Z})arrow 0$ as $narrow\infty$ .

Note
$\langle\phi^{1t}\alpha_{i},$ $(\phi^{T})^{\ell}a_{j}\rangle=0$ if $i\neq j$ .

Hence
$\lim_{narrow\infty}e^{2\pi i\langle\phi^{n}y,(\phi^{T})^{\ell}\alpha_{j}\rangle}=1$ for all $y\in \mathbb{Z}[\phi]\alpha_{1}+\cdots+\mathbb{Z}[\phi]\alpha_{J}$ .

Thus
$\lim_{narrow\infty}e^{2\pi i\langle\phi^{n}x,(\rho^{T})^{-1}(\phi^{T})^{\ell}\alpha_{j}\rangle}=1$ for all $x\in\Xi$ .

From the uniform convergence of the limit in $x\in\Xi$ ,

$e^{2\pi i\langle x,(\rho^{T})^{-1}(\phi^{T})^{k+\ell}\alpha_{j}\rangle}=1$ for all $x\in \mathcal{K}$ and some big $k\in z_{+}$ .

So $(\rho^{T})^{-1}(\phi^{T})^{k+\ell}\alpha_{j}$ is an eigenvalue for $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ for $\ell=0,$
$\ldots,$ $m-1$ . Since

$\{\alpha_{1}, \ldots, (\phi^{T})^{m-1}\alpha_{1,}\alpha_{J}, \ldots, (\phi^{T})^{m-1}\alpha_{J}\}$

is a basis of $\mathbb{R}^{d}$ , the claim follows.

Theorem 3.9. [16] Let $U_{1},$ $U_{2},$
$\ldots$ be a sequence of real numbers, where

$U_{n}=c_{1}\lambda_{1}^{n}+c_{2}\lambda_{2}^{n}+\cdots+c_{m}\lambda_{m}^{n}$ , $c_{1}c_{2}\cdots c_{m}\neq 0$ ,

$\lambda_{1},$

$\ldots,$
$\lambda_{m}$ are distinct algebmic numbers, and $|\lambda_{k}|>1(k=1, \ldots, m)$ . If dist $(U_{n}, \mathbb{Z})arrow 0$

as $narrow\infty$ , then $\{\lambda_{1}, \ldots, \lambda_{m}\}$ is a Pisot family.

Proposition 3.10. If $\gamma$ is a non-zero eigenvalue for $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ , then the set of eigenvalues

of $\phi$ is a Pisot family.

Proof. For any $x\in\Xi,$ $x \in\rho(\sum_{j=1}^{J}g_{j}(\phi)\alpha_{j})$ for some polynomials $g_{j}(x)\in \mathbb{Z}[x]$ . Then

$\langle\phi^{n}x,$ $\gamma\rangle$ $=$ $\sum_{j=1}^{J}\langle\phi^{n}g_{j}(\phi)\alpha_{j}.\rho^{T}\gamma\rangle$

$=$ $\sum_{k=1}^{m}c_{k}\lambda_{k}^{n}$ for some $c_{k}\in \mathbb{C}$ .
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Since $\gamma$ is an eigenvalue, dist $(\langle\phi^{n}x, \gamma\rangle, \mathbb{Z})arrow 0$ as $narrow\infty$ . By Vijayaraghavan‘s theorem,

the set of eigenvalues of $\phi$ is a Pisot family.

Theorem 3.11. Let $\mathcal{T}$ be a self-affine tiling of $\mathbb{R}^{d}$ with a diagonalizable expansion map $\phi$ .
Suppose that all the eigenvalues of $\phi$ are algebraic conjugates with the same multiplicity.
Then the following are equivalent;

(i) Spec$(\phi)$ is a Pisot family.
(ii) The set of eigenvalues of $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ is relatively dense in $\mathbb{R}^{d}$ .
(iii) The system $(X_{\mathcal{T}}, \mathbb{R}^{d}, \mu)$ is not weakly mixing ($i.e.$ , it has eigenvalues other than $0$).
(iv) $\Xi(\mathcal{T})$ is a Meyer set.
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