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Abstract

This report is a survey of [14]. A torus-covering link is an oriented
surface link in the form of a covering over the standard torus. Triple
linking number is an invariant defined for an oriented surface link with
at least three components, analogous to the linking number of classical
links. A torus-covering $T^{2}$-link is determined from two commutative
classical braids, which we call basis braids. We present the triple link-
ing numbers of a torus-covering $T^{2}$-link by using the linking numbers
of the closures of its basis braids, in the case when the basis braids
are pure braids.

1 Introduction
A surface link is a smooth embedding of a closed surface into the Euclidean
4-space $\mathbb{R}^{4}$ . A $T^{2}$ -link is a surface link whose each component is of genus
one. In this paper we consider a certain “torus-covering $T^{2}$-link”, which is
an m-component $T^{2}$-link determined from two commutative pure m-braids $a$

and $b$ . The triple linking number of an oriented surface link is defined in [1]
as an analogical notion of the linking number of a classical link. The aim of
this paper is to present the triple linking number of such a $T^{2}$-link, by using
the linking numbers of the closures of $a$ and $b$ . Further, we study the triple
point number. The triple linking numbers give a lower bound of the triple
point number. In some cases, we can determine the triple point number,
which is a multiple of four.

This paper is organized as follows. In Section 2, we give the definition
of a torus-covering link. In Section 3, we review the linking numbers of a
classical link and the triple linking numbers of an oriented surface link. In
Section 4, we give the main theorem (Theorem 3). In Section 5, we give
applications to the triple point numbers (Theorems 4 and 5).
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2 Torus-covering links
We consider torus-covering $T^{2}$-links, i.e. torus-covering links whose each
component is of genus one. In this section we review the definition of a
torus-covering $T^{2}$-link. See [13] for the original definition and properties of
torus-covering links.

Let $T$ be the standard torus in $\mathbb{R}^{4}$ , i.e. the boundary of the standard
solid torus in $\mathbb{R}^{3}\cross\{0\}$ . Let $N(T)$ be a tubular neighborhood of $T$ in $\mathbb{R}^{4}$ .
Definition 1. A torus-covering $T^{2}$ -link is a surface link $F$ in $N(T)\subset \mathbb{R}^{4}$

such that $p|_{F}$ : $Farrow T$ is an unbranched covering map of degree $m$ , where
$p:N(T)arrow T$ is the projection.
Remark. It is known [10, 11] that any oriented surface link can be presented
in the form of a simple branched covering over the standard 2-sphere $S^{2}$ i.e.
in the form of a surface link embedded in a tubular neighborhood of $S^{2}$ in
such a way that the projection of it to $S^{2}$ is a simple branched covering
over $S^{2}$ . A torus-covering link is an oriented surface link in the form of a
simple branched covering over the standard torus $T$ (see [13]), introduced by
considering the standard torus instead of the standard 2-sphere in this fact.

Let us fix a point $x_{0}$ of $T$ , and take a meridian $\mu$ and a longitude $\lambda$ of
$T$ with the base point $x_{0}$ . A meridian is an oriented simple closed curve
on $T$ which bounds the 2-disk of the solid torus whose boundary is $T$ . A
longitude is an oriented simple closed curve on $T$ which is null-homologous
in the complement of the solid torus in the three space $\mathbb{R}^{3}\cross\{0\}$ . For a
torus-covering $T^{2}$-link $F$ , we obtain classical m-braids by cutting $F\cap p^{-1}(\mu)$

and $F\cap p^{-1}(\lambda)$ at the 2-disk $p^{-1}(x_{0})$ . We call them basis braids.
Lemma 2 ([13]). (1) The basis bmids are commutative.

(2) For any commutative m-braids $a$ and $b$ , there is a unique torus-
covering $T^{2}$ -link with basis braids $a$ and $b$ .

Thus a torus-covering $T^{2}$-link is determined from basis braids. We denote
by $S_{m}(a, b)$ the torus-covering $T^{2}$-link with basis m-braids $a$ and $b$ .

3 Linking numbers and triple linking num-
bers

The triple linking number of an oriented surface link is defined in [1] as an
analogical notion of the linking number of a classical link. In this section, we
review the linking numbers of a classical link and the triple linking numbers
of a surface link.
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a positive crossing a negative crossing

Figure 1: A positive crossing and a negative crossing.

3.1 Linking numbers of a classical link
We review the linking number of an oriented classical link $L$ as follows. For
$i$ and $j$ with $i\neq j$ , the linking number of the ith and jth components of $L$

is the total number of positive crossings minus the total number of negative
crossings of a diagram of $L$ such that the under-arc (resp. over-arc) is from
the ith (resp. jth) component; see Fig. 1. We denote it by $Lk_{i,j}(L)$ . It is
known [16] that $Lk_{j,i}(L)=$ Lk$i,j(L)$ .

3.2 Triple linking number of a surface link
The triple linking number of an oriented surface link $F$ is defined as follows
(see [1, Definition 9.1], see also [3]). For $i,$ $j$ , and $k$ with $i\neq j$ and $j\neq k$ , the
trtple linking number of the ith, jth, and kth components of $F$ is the total
number of positive triple points minus the total number of negative triple
points of a surface diagram of $F$ such that the top, middle, and bottom sheet
is from the ith, jth, and kth component of $F$ respectively [1]; see Fig. 2. We
denote it by $Tlk_{i,j,k}(F)$ .

We enumerate several properties of triple linking numbers.

Property 1 ([1]). $Tlk_{k,j,i}(F)=-Tlk_{i,j,k}(F)$ if $i,$ $j,$ $k$ are mutually distinct,
and otherwise $Tlk_{i,j,k}(F)=0$ .

Property 2 ([1]). $Tlk_{1,2,3}(F)+Tlk_{2,3,1}(F)+$ Tlk3 $1,2(F)=0$ .

Property 3 ([1]). From the above two properties, it is seen that for any
three-component surface link $F$ , there exists a pair of integers $\alpha$ and $\beta$ such
that

$\{\begin{array}{l}Tlk_{3,1,2}(F)=-Tlk_{2,1},3 (F)=\alpha,Tlk_{1,2,3}(F)=-Tlk 32,1 (F)=-(\alpha+\beta),Tlk_{2,3,1}(F)=-Tlk_{1,3,2}(F)=\beta.\end{array}$

Let us denote the ith component of $F$ by $K_{i}$ .
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a positive triple point a negative triple point

Figure 2: A positive triple point and a negative triple point, where we denote
the orientations of sheets by normals.

Property 4 ([3]). If $K_{2}$ is homeomorphic to a 2-sphere, then $Tlk_{1,2,3}(F)=0$ ,
and if both of $K_{1}$ and $K_{3}$ are homeomorphic to a 2-sphere, then $Tlk_{1,2,3}(F)=$
$0$ .

In other words; if $\alpha\neq 0$ and $\beta=0$ , then $g(K_{i})\geq 1(i=1,2)$ , and if
$\alpha\neq 0,$ $\beta\neq 0$ and $\alpha+\beta\neq 0$ , then $g(K_{i})\geq 1(i=1,2,3)$ , where $g(K_{i})$

denotes the genus of $K_{i}$ . There is a surface link which realizes this (see [3],
see also [4]$)$ .

Property 5 ([4]). Triple linking number is a link bordism invariant.

4 Main Result
Here we consider a torus-covering $T^{2}$-link for the case when the basis braids
are pure m-braids for $m\geq 3$ . Then the triple linking numbers of the $T^{2}$-link
is presented by the linking numbers of the closures of the basis braids. For
an m-braid $c$ , let us denote by $\hat{c}$ the closure of $c$ .

Theorem 3 ([14]). Let $a$ and $b$ be commutative pure m-bmids for $m\geq 3$ .
Then the triple linking number $Tlk_{i,j,k}(S_{m}(a, b))(i\neq j$ and $j\neq k)$ is given
$by$

$Tlk_{i,j,k}(S_{m}(a, b))=-Lk_{i,j}(\hat{a})Lk_{j,k}(\hat{b})+Lk_{i,j}(\hat{b})Lk_{j,k}(\hat{a})$ ,

where $Lk_{i,j}(\hat{a})$ (resp. $Lk_{i,j}(\hat{b})$) is the linking number of the $ith$ and $jth$ com-
ponents of $\hat{a}$ (resp. $\hat{b}$). Here we define the $lth$ component of $S_{m}(a, b)$ (resp. $\hat{c}$
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for $c=a$ or b$)$ by the component containing the $lth$ string of the basis braids
(resp. c) for $l=1,2,$ $\ldots,$

$m$ .

5 Application
The triple point number of a surface link $F$ , denoted by $t(F)$ , is the mini-
mal number of triple points among all possible generic projections of $F$ . By
definition, we can see that $t(F) \geq\sum_{i\neq j,j\neq k}|Tlk_{i,j,k}(F)|$ ; thus the triple link-
ing numbers of $F$ give a lower bound of the triple point number of $F$ . In
particular, we have the following theorem.

Theorem 4 ([14]). Let $m\geq 3$ . Let $b$ be a pure m-bmid, and let $\triangle$ be a
full twist of a bundle of $m$ pamllel strings. Put $\mu=\sum_{i<j}|Lk_{i,j}(\hat{b})|$ , and let
$\nu=\sum_{i<j<k}(\nu_{i,j,k}+\nu_{j,k,i}+\nu_{k,i,j})$ , where $l \text{ノ_{}i,j,k}=\min_{i,j,k}\{|Lk_{i,j}(\hat{b})|, |Lk_{j,k}(\hat{b})|\}$

if $Lk_{i,j}(\hat{b})Lk_{j,k}(\hat{b})>0$ and otherwise zero. Then

$t(S_{m}(b, \Delta^{n}))\geq 4n(\mu(m-2)-v)$ .

In some cases, we can determine the triple point number. Let $\sigma_{1},$ $\sigma_{2},$
$\ldots,$

$\sigma_{m-1}$

be the standard generators of the m-braid group.

Theorem 5 ([14]). Let $m\geq 3$ . Let $b$ be an m-bmid presented by a bmid
word which consists of $\sigma_{i}^{2(-1)^{i}}(i=1,2, \ldots, m-1)$ ; note that $b$ is a pure
bmid. Then

$t(S_{m}(b, \triangle^{n}))=4n(m-2)(\sum_{i<j}|Lk_{i,j}(\hat{b})|)$
.

Further the triple point number is realized by a surface diagmm in the form
of a covering over the torus.

It is known [4] (see also [5]) that any oriented surface link is bordant to
the split union of oriented ”necklaces”, and [5] any surface link is unorient-
edly bordant to the split union of necklaces and connected sums of standard
projective planes; see also [17]. A necklace has the triple point number $4n$

(see [4]). For other examples of surface links (not necessarily orientable)
which realize large triple point numbers, see [6, 12, 15, 18]. In the papers
[6, 12, 15] (resp. [18]), they use quandle cocycle invariants (resp. normal Eu-
ler numbers) to give lower bounds of triple point numbers. Quandle cocycle
invariants [1, 2, 3] can be regarded as an extended notion of triple linking
numbers ([1, 4]), useful to give lower bounds of triple point numbers; see
[6, 8, 9, 12, 15, 20, 21].
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