A quandle cocycle invariant with non－commutative flows for a handlebody－knot

Atsushi Ishii（University of Tsukuba）

Abstract

This is a summary of the construction of the quandle cocycle in－ variant obtained in the joint work with Iwakiri，Jang and Oshiro［7］． Iwakiri and the author［6］introduced a notion of a flow，and defined a quandle cocycle invariant for handlebody－knots．The quandle cocycle invariant given in this article is defined by using＂non－commutative＂ flows．

1 A G－family of quandles

A quandle $[8,9]$ is a non－empty set X with a binary operation $*: X \times X \rightarrow X$ satisfying
－$x * x=x(x \in X)$ ，
－$* x: X \rightarrow X$ is bijective $(x \in X)$ ，
－$(x * y) * z=(x * z) *(y * z) \quad(x, y, z \in X)$.
An Alexander quandle $(M, *)$ is a Λ－module M with the binary operation defined by $x * y=t x+(1-t) y$ ，where $\Lambda:=\mathbb{Z}\left[t, t^{-1}\right]$ ．A conjugation quandle $(G, *)$ is a group G with the binary operation defined by $x * y=y^{-1} x y$ ．

A G－family of quandles is a non－empty set X with a family of binary operations $*^{g}: X \times X \rightarrow X(g \in G)$ satisfying
－$x *^{g} x=x \quad(x \in X, g \in G)$ ，
－$x *^{g h} y=\left(x *^{g} y\right) *^{h} y, x *^{e} y=x \quad(x, y \in X, g, h \in G)$ ，

- $\left(x *^{g} y\right) *^{h} z=\left(x *^{h} z\right) *^{h^{-1} g h}\left(y *^{h} z\right) \quad(x, y, z \in X, g, h \in G)$.

Proposition 1. Let G be a group, and $\left(X,\left\{*^{g}\right\}_{g \in G}\right)$ a G-family of quandles.
(1) For any $g \in G,\left(X, *^{g}\right)$ is a quandle.
(2) We define $*:(X \times G) \times(X \times G) \rightarrow X \times G$ by

$$
(x, g) *(y, h)=\left(x *^{h} y, h^{-1} g h\right) .
$$

Then $(X \times G, *)$ is a quandle
We call the quandle ($X \times G, *$) given in Proposition 1 the associated quandle of X.

Proposition 2. Let R be a ring, G a group, and X a right $R[G]$-module. We define a binary operation $*^{g}: X \times X \rightarrow X$ by $x *^{g} y=x g+y(e-g)$. Then X is a G-family of quandles.

Let X be a G-family of quandles, and Q the associated quandle of X. The associated group of X, denoted by $\operatorname{As}(X)$, is defined by

$$
\operatorname{As}(X)=\left\langle q \in Q \left\lvert\, \begin{array}{l}
q_{1} * q_{2}=q_{2}^{-1} q_{1} q_{2}\left(q_{1}, q_{2} \in Q\right), \\
(x, g h)=(x, g)(x, h)(x \in X, g, h \in G)
\end{array}\right.\right\rangle .
$$

An X-set Y is a set equipped with a right action of the associated group $\mathrm{As}(X)$. We denote by $y * q$ the image of an element $y \in Y$ by the action $q \in \operatorname{As}(X)$. We also denote $y *(x, g)$ by $y *^{g} x$. Any singleton set $\{y\}$ is an X-set with the trivial action, which is a trivial X-set. The set X is also an X-set with the action defined by $y *(x, g)=y *^{g} x$ for $y \in X,(x, g) \in Q$.

2 A handlebody-link

A handlebody-link is a disjoint union of handlebodies embedded in the 3sphere S^{3}. Two handlebody-links are equivalent if there is an orientationpreserving self-homeomorphism of S^{3} which sends one to the other. A spatial graph is a finite graph embedded in S^{3}. Two spatial graphs are equivalent if there is an orientation-preserving self-homeomorphism of S^{3} which sends one to the other. When a handlebody-link H is a regular neighborhood of a spatial graph K, we say that H is represented by K. In this article,

Figure 1:

Figure 2:
a trivalent graph may contain circle components. Then any handlebodylink can be represented by some spatial trivalent graph. A diagram of a handlebody-link is a diagram of a spatial trivalent graph which represents the handlebody-link. An IH-move is a local spatial move on spatial trivalent graphs as described in Figure 1.

Theorem 3 ([5]). For spatial trivalent graphs K_{1} and K_{2}, the following are equivalent.

- K_{1} and K_{2} represent an equivalent handlebody-link.
- K_{1} and K_{2} are related by a finite sequence of IH-moves.
- Diagrams of K_{1} and K_{2} are related by a finite sequence of the moves depicted in Figure 2.

3 A coloring with G-family of quandles

Let D be a diagram of a handlebody-link H. Putting an orientation to each edge in D, we obtain a diagram D of an oriented spatial trivalent graph. We may represent an orientation of an edge by a normal orientation, which is obtained by rotating a usual orientation $\pi / 2$ counterclockwise on the diagram.

For an arc incident to a vertex ω, we define $\epsilon(\alpha ; \omega) \in\{1,-1\}$ by

$$
\epsilon(\alpha ; \omega)= \begin{cases}1 & \text { the orientation of the arc } \alpha \text { points to the vertex } \omega, \\ -1 & \text { otherwise }\end{cases}
$$

We denote by $\mathcal{A}(D)$ (resp. $\mathcal{R}(D))$ the set of arcs (resp. complementary regions) of D. Let D be a diagram of an oriented spatial trivalent graph. Let X be a G-family of quandles, Y an X-set, and Q be the associated quandle of X. Let p_{X} and p_{G} be the projections from Q to X and G, respectively. An X_{Y}-coloring of D is a map $C: \mathcal{A}(D) \cup \mathcal{R}(D) \rightarrow Q \cup Y$ satisfying the following conditions (see Figures 3, 4).

- $C(\mathcal{A}(D)) \subset Q, C(\mathcal{R}(D)) \subset Y$.
- Let χ_{3} be the over-arc at a crossing χ. Let χ_{1}, χ_{2} be the under-arc at the crossing χ such that the normal orientation of χ_{3} points from χ_{1} to χ_{2}. Then

$$
C\left(\chi_{2}\right)=C\left(\chi_{1}\right) * C\left(\chi_{3}\right) .
$$

- Let $\omega_{1}, \omega_{2}, \omega_{3}$ be the arcs incident to a vertex ω. Then

$$
\begin{aligned}
& \left(p_{X} \circ C\right)\left(\omega_{1}\right)=\left(p_{X} \circ C\right)\left(\omega_{2}\right)=\left(p_{X} \circ C\right)\left(\omega_{3}\right), \\
& \left(p_{G} \circ C\right)\left(\omega_{1}\right)^{\epsilon\left(\omega_{1} ; \omega\right)}\left(p_{G} \circ C\right)\left(\omega_{2}\right)^{\epsilon\left(\omega_{2} ; \omega\right)}\left(p_{G} \circ C\right)\left(\omega_{3}\right)^{\left.\epsilon \epsilon \omega_{3} ; \omega\right)}=e .
\end{aligned}
$$

- For any arc $\alpha \in \mathcal{A}(D)$, we have

$$
C\left(\alpha_{1}\right) * C(\alpha)=C\left(\alpha_{2}\right),
$$

where α_{1}, α_{2} are the regions facing the arc α so that the normal orientation of α points from α_{1} to α_{2}.

We denote by $\operatorname{Col}_{X}(D)_{Y}$ the set of X_{Y}-colorings of D.
For two diagrams D and E which locally differ, we denote by $\mathcal{A}(D, E)$ (resp. $\mathcal{R}(D, E)$) the set of arcs (resp. regions) that D and E share.

Lemma 4. Let X be a G-family of quandles, and Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \operatorname{Col}_{X}(D)_{Y}$, there is a unique X_{Y}-coloring $C_{D, E} \in \operatorname{Col}_{X}(E)_{Y}$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$ and $\left.C\right|_{\mathcal{R}(D, E)}=\left.C_{D, E}\right|_{\mathcal{R}(D, E)}$.

Figure 3:

Figure 4:

4 A homology

Let X be a G-family of quandles, Y an X-set, and Q the associated quandle of X. Let $B_{n}(X)_{Y}$ be the free abelian group generated by the elements of $Y \times Q^{n}$ if $n \geq 0$, and let $B_{n}(X)_{Y}=0$ otherwise. We put

$$
\left(\left(y, q_{1}, \ldots, q_{i}\right) * q, q_{i+1}, \ldots, q_{n}\right):=\left(y * q, q_{1} * q, \ldots, q_{i} * q, q_{i+1}, \ldots, q_{n}\right)
$$

for $y \in Y$ and $q, q_{1} \ldots, q_{n} \in Q$. We define a boundary homomorphism $\partial_{n}: B_{n}(X)_{Y} \rightarrow B_{n-1}(X)_{Y}$ by

$$
\begin{aligned}
\partial_{n}\left(y, q_{1}, \ldots, q_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left(y, q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{n}\right) \\
& -\sum_{i=1}^{n}(-1)^{i}\left(\left(y, q_{1}, \ldots, q_{i-1}\right) * q_{i}, q_{i+1}, \ldots, q_{n}\right)
\end{aligned}
$$

for $n>0$, and $\partial_{n}=0$ otherwise. Then $B_{*}(X)_{Y}=\left(B_{n}(X)_{Y}, \partial_{n}\right)$ is a chain complex (see [1, 2, 3, 4]).

Let $D_{n}(X)_{Y}$ be the subgroup of $B_{n}(X)_{Y}$ generated by the elements of

$$
\bigcup_{i=1}^{n-1}\left\{\left(y, q_{1}, \ldots, q_{i-1},(x, g),(x, h), q_{i+2}, \ldots, q_{n}\right) \left\lvert\, \begin{array}{l}
y \in Y, x \in X, g, h \in G \\
q_{1}, \ldots, q_{n} \in Q
\end{array}\right.\right\}
$$

and

$$
\bigcup_{i=1}^{n}\left\{\begin{array}{l|l}
\left(y, q_{1}, \ldots, q_{i-1},(x, g h), q_{i+1}, \ldots, q_{n}\right) & y \in Y, x \in X, \\
-\left(y, q_{1}, \ldots, q_{i-1},(x, g), q_{i+1}, \ldots, q_{n}\right) & g, h \in G, \\
-\left(\left(y, q_{1}, \ldots, q_{i-1}\right) *(x, g),(x, h), q_{i+1}, \ldots, q_{n}\right) & q_{1}, \ldots, q_{n} \in Q
\end{array}\right\}
$$

Lemma 5. For $n \in \mathbb{Z}$, we have $\partial_{n}\left(D_{n}(X)_{Y}\right) \subset D_{n-1}(X)_{Y}$. Thus $D_{*}(X)_{Y}=$ $\left(D_{n}(X)_{Y}, \partial_{n}\right)$ is a subcomplex of $B_{*}(X)_{Y}$.

We put $C_{n}(X)_{Y}=B_{n}(X)_{Y} / D_{n}(X)_{Y}$. Then $C_{*}(X)_{Y}=\left(C_{n}(X)_{Y}, \partial_{n}\right)$ is a chain complex. For an abelian group A, we define the cochain complex $C^{*}(X ; A)_{Y}=\operatorname{Hom}\left(C_{*}(X)_{Y}, A\right)$. We denote by $H_{n}(X)_{Y}$ the nth homology group of $C_{*}(X)_{Y}$.

5 A cocycle invariant

Let D be a diagram of an oriented spatial trivalent graph. For an X_{Y}-coloring $C \in \operatorname{Col}_{X}(D)_{Y}$, we define the weight $w(\chi ; C) \in C_{2}(X)_{Y}$ at a crossing χ of D as follows. Let χ_{1}, χ_{2} and χ_{3} be respectively the under-arcs and the over-arc at a crossing χ such that the normal orientation of χ_{3} points from χ_{1} to χ_{2}. Let R_{χ} be the region facing χ_{1} and χ_{3} such that the normal orientations χ_{1} and χ_{3} point from R_{χ} to the opposite regions with respect to χ_{1} and χ_{3}, respectively. Then we define

$$
w(\chi ; C)=\epsilon(\chi)\left(C\left(R_{\chi}\right), C\left(\chi_{1}\right), C\left(\chi_{3}\right)\right),
$$

where $\epsilon(\chi) \in\{1,-1\}$ is the sign of a crossing χ. We define a chain $W(D ; C) \in$ $C_{2}(X)_{Y}$ by

$$
W(D ; C)=\sum_{\chi} w(\chi ; C),
$$

where χ runs over all crossings of D.
Lemma 6. The chain $W(D ; C)$ is a 2-cycle of $C_{*}(X)_{Y}$. Further, for cohomologous 2-cocycles θ, θ^{\prime} of $C^{*}(X ; A)_{Y}$, we have $\theta(W(D ; C))=\theta^{\prime}(W(D ; C))$.

Lemma 7. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \operatorname{Col}_{X}(D)_{Y}$ and $C_{D, E} \in \operatorname{Col}_{X}(E)_{Y}$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$ and $\left.C\right|_{\mathcal{R}(D, E)}=\left.C_{D, E}\right|_{\mathcal{R}(D, E)}$, we have $[W(D ; C)]=$ $\left[W\left(E ; C_{D, E}\right)\right] \in H_{2}(X)_{Y}$.

We denote by G_{H} (resp. G_{K}) the fundamental group of the exterior of a handlebody-link H (resp. a spatial graph K). When H is represented by K, G_{H} and G_{K} are identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition of an X_{Y}-coloring C of D, the map $\left.p_{G} \circ C\right|_{\mathcal{A}(D)}$ represents a homomorphism from G_{K} to G, which we denote by $\rho_{C} \in \operatorname{Hom}\left(G_{K}, G\right)$. For $\rho \in \operatorname{Hom}\left(G_{K}, G\right)$, we define

$$
\operatorname{Col}_{X}(D ; \rho)_{Y}=\left\{C \in \operatorname{Col}_{X}(D)_{Y} \mid \rho_{C}=\rho\right\} .
$$

For a 2-cocycle θ of $C^{*}(X ; A)_{Y}$, we define

$$
\begin{aligned}
\mathcal{H}(D) & :=\left\{[W(D ; C)] \in H_{2}(X)_{Y} \mid C \in \operatorname{Col}_{X}(D)_{Y}\right\}, \\
\Phi_{\theta}(D) & :=\left\{\theta(W(D ; C)) \in A \mid C \in \operatorname{Col}_{X}(D)_{Y}\right\}, \\
\mathcal{H}(D ; \rho) & :=\left\{[W(D ; C)] \in H_{2}(X)_{Y} \mid C \in \operatorname{Col}_{X}(D ; \rho)_{Y}\right\}, \\
\Phi_{\theta}(D ; \rho) & :=\left\{\theta(W(D ; C)) \in A \mid C \in \operatorname{Col}_{X}(D ; \rho)_{Y}\right\}
\end{aligned}
$$

as multisets.
Lemma 8. Let D be a diagram of an oriented spatial trivalent graph K. For $\rho, \rho^{\prime} \in \operatorname{Hom}\left(G_{K}, G\right)$ such that ρ and ρ^{\prime} are conjugate, we have

$$
\mathcal{H}(D ; \rho)=\mathcal{H}\left(D ; \rho^{\prime}\right) \quad \Phi_{\theta}(D ; \rho)=\Phi_{\theta}\left(D ; \rho^{\prime}\right)
$$

We denote by $\operatorname{Conj}\left(G_{K}, G\right)$ the set of conjugacy classes of homomorphisms from G_{K} to G. By Lemma $8, \mathcal{H}(D ; \rho)$ and $\Phi_{\theta}(D ; \rho)$ are well-defined for $\rho \in \operatorname{Conj}\left(G_{K}, G\right)$.
Lemma 9. Let D be a diagram of an oriented spatial trivalent graph K. Let E be a diagram obtained from D by reversing the orientation of an edge e. For $\rho \in \operatorname{Hom}\left(G_{K}, G\right)$, we have

$$
\begin{array}{rlr}
\mathcal{H}(D)=\mathcal{H}(E), & \mathcal{H}(D ; \rho)=\mathcal{H}(E ; \rho), \\
\Phi_{\theta}(D)=\Phi_{\theta}(E), & \Phi_{\theta}(D ; \rho)=\Phi_{\theta}(E ; \rho) .
\end{array}
$$

By Lemma $9, \mathcal{H}(D), \Phi_{\theta}(D), \mathcal{H}(D ; \rho)$ and $\Phi_{\theta}(D ; \rho)$ are well-defined for a diagram D of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a diagram D of a handlebody-link H, we define

$$
\begin{aligned}
\mathcal{H}^{\mathrm{hom}}(D) & :=\left\{\mathcal{H}(D ; \rho) \mid \rho \in \operatorname{Hom}\left(G_{H}, G\right)\right\}, \\
\Phi_{\theta}^{\mathrm{hom}}(D) & :=\left\{\Phi_{\theta}(D ; \rho) \mid \rho \in \operatorname{Hom}\left(G_{H}, G\right)\right\}, \\
\mathcal{H}^{\text {conj }}(D) & :=\left\{\mathcal{H}(D ; \rho) \mid \rho \in \operatorname{Conj}\left(G_{H}, G\right)\right\}, \\
\Phi_{\theta}^{\mathrm{conj}}(D) & :=\left\{\Phi_{\theta}(D ; \rho) \mid \rho \in \operatorname{Conj}\left(G_{H}, G\right)\right\}
\end{aligned}
$$

as "multisets of multisets." We remark that, for X_{Y}-colorings C and $C_{D, E}$ in Lemma 7, we have $\rho_{C}=\rho_{C_{D, E}}$. Then, by Lemmas 6-9, we have the following theorem.
Theorem 10. Let X be a G-family of quandles, Y an X-set. Let θ be a 2cocycle of $C^{*}(X ; A)_{Y}$. Let H be a handlebody-link represented by a diagram D. Then the followings are invariants of a handlebody-link H. $\mathcal{D}(H), \quad \Phi_{\theta}(D), \quad \mathcal{H}^{\text {hom }}(D), \quad \Phi_{\theta}^{\text {hom }}(D), \quad \mathcal{H}^{\text {conj }}(D), \quad \Phi_{\theta}^{\text {conj }}(D)$.

References

[1] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003) 3947-3989.
[2] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001) 135-155.
[3] R. Fenn, C. Rourke and B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995), 321-356.
[4] R. Fenn, C. Rourke and B. Sanderson, The rack space, Trans. Amer. Math. Soc. 359 (2007), 701-740.
[5] A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403-1418.
[6] A. Ishii and M. Iwakiri, Quandle cocycle invariants for spatial graphs and knotted handlebodies, to appear in Canad. J. Math.
[7] A. Ishii, M. Iwakiri, Y. Jang and K. Oshiro, A G-family of quandles and handlebody-knots, preprint.
[8] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982) 37-65.
[9] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982) 78-88.

