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Abstract

We introduce the notion of pallets of quandles and define color-
ing invariants for spatial graphs which give a generalization of Fox
colorings studied in [4]. And we show a result for pallets of dihedral
quandles, which implies that all possible coloring conditions around
vertices for Fox colorings are classified.

1 Spatial graphs
For an embedding of a graph to the 3-dimensional Euclidean space $\mathbb{R}^{3}$ , the
image is called a spatial graph. Two spatial graphs are equivalent if we
can deform by ambient isotopy one onto the other. A diagram of a spatial
graph $G$ is an image of $G$ by a regular projection onto a plane with a crossing
information at each double point. It is known that two spatial graph diagrams
represent an equivalent spatial graph if and only if they are related by a finite
sequence of the Rl-5 moves depicted in Figure 1. Each edge of a spatial graph
is separated into some pieces in a diagram. We call each piece an arc of the
diagram.

2 Pallets of quandles and coloring invariants
A quandle [5, 6] is a set $X$ equipped with a binary operation $(a, b)\mapsto a^{b}$ on
$X$ satisfying the following conditions: (i) For any $a\in X$ , the formula $a^{a}=a$

holds, (ii) for any $a\in X$ , the map $S_{a}$ : $Xarrow X$ defined by $S_{a}(x)=x^{a}$ is
a bijection, and (iii) for any $a,$ $b,$ $c\in X$ , the formula $(a^{b})^{c}=(a^{c})^{(b^{c})}$ holds.
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Figure 1: Elementary moves

We omit round brackets throughout this paper and we call the bijection $S_{a}$

$(a\in X)$ defined in (ii) the symmetry by $a$ . A dihedml quandle of order $p$

$(p\geq 3)$ is the set $Z_{p}=\{0,1, \ldots,p-1\}$ equipped with the quandle operation
$a^{b}=2b-a$ . We denote it by $R_{p}$ . We see that all symmetries of $\mathscr{N}$ are
involutions of $R_{\tau}$ . We say a quandle such that all symmetries are involutions
an involutory quandle.

We mean by $Z_{+}$ the set of the positive integers throughout this paper.

Definition 2.1 Let $X$ be a quandle. For any element $a$ in $X$ , we denote
simply by $a^{+1}$ the pair $(a, S_{a})$ of $a$ and the symmetry $S_{a}$ by $a$ , and by $a^{-1}$

the pair $(a, S_{a}^{-1})$ of $a$ and the inverse map of $S_{a}$ . Let

$\mathcal{X}=\{a^{+1}|a\in X\}\cup\{a^{-1}|a\in X\}$ .

A pallet of $X$ is a subset $P$ of $\bigcup_{n\in Z+}\mathcal{X}^{n}$ satisfying the following conditions:

(i) for any $(a_{1^{1}}^{\epsilon}, \cdots , a_{n}^{\epsilon_{n}})\in P$ , it holds that

$(a_{2^{2}}^{\epsilon}, \cdots, a_{n}^{\epsilon_{n}}, a_{1}^{\epsilon_{1}})\in P$

(ii) for any $(a_{1}^{\epsilon_{1}}, \cdots , a_{n}^{\epsilon_{n}})\in P$ , it holds that

$S_{a_{n}^{n}}^{\epsilon}o\cdots oS_{a_{1}^{1}}^{\epsilon}=id$ ,

(iii) for any $(a_{1}^{\epsilon_{1}}, \cdots, a_{n}^{\epsilon_{n}})\in P$ and any $x\in X$ , it holds that

$(S_{x}(a_{1})^{\epsilon_{1}}, \cdots , S_{x}(a_{n})^{\epsilon_{n}})\in P$ and $(S_{x}^{-1}(a_{1})^{\epsilon_{1}}, \cdots , S_{x}^{-1}(a_{n})^{\epsilon_{n}})\in P$,
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(iv) for any $(a_{1}^{\epsilon_{1}}, \cdots, a_{n}^{\epsilon_{n}})\in P$ , it holds that

$(a_{2}^{\epsilon 2}, S_{a_{2}^{2}}^{\epsilon}(a_{1})^{\epsilon_{1}}, a_{3^{3}}^{\epsilon}, \cdots, a_{n}^{\epsilon_{n}})\in P$ and $(S_{a_{1}}^{-\epsilon_{1}}(a_{2})^{\epsilon 2}, a_{1}^{\epsilon 1}, a_{3^{3}}^{\epsilon}, \cdots, a_{n}^{\epsilon_{n}})\in P$ .

For any $n\in z_{+}$ , we call a pallet which is a non-empty subset of $\mathcal{X}^{n}$ an
n-pallet.

Example 2.2 For any $n\in z_{+}$ , let

$U_{n}=\{(a_{1}^{\epsilon_{1}}, \cdots, a_{n}^{\epsilon_{n}})\in \mathcal{X}^{n}|S_{a_{n}^{n}}^{\epsilon}o\cdots oS_{a_{1}^{1}}^{\epsilon}= id\}$ .

This set is a pallet of $X$ and we call it the universal n-pallet of $X$ . Let

$U= \bigcup_{n\in Z+}U_{n}$ .

This is also a pallet of $X$ . Since it includes any pallet as a subset, we call it
the universal pallet of $X$ .

Assume that $X$ is an involutory quandle. Since it holds that $a^{+1}=a^{-1}$

for any $a\in X$ , we may omit the superscrlpts $+1$ or-l of the elements of $\mathcal{X}$ .
For any $n\in z_{+}$ , let

$C_{n}=\{(a_{1},$
$\ldots,$

$a_{n})\in \mathcal{X}^{n}|S_{a_{n}^{n}}^{\epsilon}o\cdots oS_{a_{1}^{1}}^{\epsilon}=$ id and $a_{1}=\cdots=a_{n}\}$ .

This is a pallet of $X$ and we call it the classical n-pallet of $X$ . Let

$C= \bigcup_{n\in Z+}C_{n}$ .

This is also a pallet of $X$ and we call it the classical pallet of $X$ .

Each pallet gives a coloring invariant for spatial graphs:
Let $G$ be an oriented spatial graph embedded in $\mathbb{R}^{3}$ and $D$ be a diagram

of $G$ . Let $P$ be a pallet of a quandle $X$ .
An X-colortng of $D$ associated with $P$ is an assignment of an element of

$X$ to each arc of $D$ satisfying the following conditions:

$\bullet$ Around a crossing $c$ , let $e_{o}$ be the over arc, $e_{r}$ the under arc which is
on the right side of $e_{o}$ along the orientation of $e_{o}$ , and $e_{l}$ be the other
under arc. Suppose that the arcs $e_{o},$ $e_{r}$ and $e_{l}$ are colored by $a_{1},$ $a_{2}$ and
$a_{3}$ , respectively. Then it holds that $a_{2}^{a_{1}}=a_{3}$ (Figure 2).
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$\underline{a_{2}}\downarrow^{a_{1}}\frac{a_{3}}{c}$

$a_{t}$

$a_{2}$ $=a_{3}$

$v$

$(a_{1}^{1}, a_{2}^{+1}, \cdot \cdot a_{n}^{-1})\in P$

Figure 2: Coloring conditions

$\bullet$ For an n-valent vertex $v$ , let $e_{1},$
$\ldots,$

$e_{n}$ be the arcs which are situated
clockwise around $v$ . Let $a_{1},$

$\ldots,$ $a_{n}$ be the elements of $X$ assigned to
the arcs $e_{1},$

$\ldots,$ $e_{n}$ , respectively. Then it holds that $(a_{1}^{\epsilon_{1}}, \ldots, a_{n}^{\epsilon_{n}})\in P$ ,
where for each $i\in\{1, \ldots, n\},$ $\epsilon_{i}$ is $+1$ if the arc $e_{i}$ is directed in toward
$v$ , and it is-l if the arc is dlrected out (Figure 2).

Let $Co1_{X,P}(D)$ be the set of X-colorings of $D$ associated with $P$ . We have
the following proposition:

Proposition 2.3 Let $D$ and $D’$ be diagrams which represent the same spatial
graph. Then there is a bijection between $Co1_{X,P}(D)$ and $Co1_{X,P}(D’)$ .

Pmof. Suppose that $D$ and $D’$ are diagrams related by a single move among
Rl-5 moves shown in Figure 1. Let $E$ be a 2-disk in $\mathbb{R}^{2}$ in which the single
move is applied. For each X-coloring of $D$ associated with $P$ , its restriction
to $D\backslash E(=D’\backslash E)$ can be uniquely extended to an X-coloring of $D’$ associated
with $P$ . Thus there is a bijection between the sets $Co1_{X,P}(D)$ and Col$X,P(D’)$ .

1

By Proposition 2.3, we see that the number of the elements of $Co1_{X,P}(D)$

is an invariant for spatial graphs. Therefore we also denote the invariant by
$\#Co1_{X,P}(G)$ .

Remark 2.4 When $X$ is an involutory quandle, for any pallet $P$ of $X$ , the
coloring invariant by $X$ and $P$ does not depend on orientations of spatial
graphs. Therefore we can define a coloring invariant for un-oriented spatial
graphs.
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$a$

$a$

$G$ $G$ ’

Figure 3: Coloring invariants

Example 2.5 Let $G$ and $G’$ be the spatial graphs shown in Figure 3. Let $D$

and $D’$ be diagrams of $G$ and $G’$ , respectively. We consider $R_{3}$-colorings of
$D$ and $D’$ with some pallets. Since the dihedral quandle $R_{3}$ is the involutory
quandle, it holds that $a^{+1}=a^{-1}$ for any $a\in R_{3}$ . Hence we omit the su-
perscripts $+1$ or-l of the elements of $\mathcal{X}=\{0^{+1}(=0^{-1}),$ $1^{+1}(=1^{-1}),$ $2^{+1}(=$

$2^{-1})\}$ .
Let $P$ be the classical pallet of $R_{3}$ . Then we can not distinguish the

spatial graphs $G$ and $G’$ with the above coloring invariant because it holds
that $\#Co1_{R_{3},P}(G)=\#Co1_{R_{3},P}(G’)$ .

Replace the pallet $P$ as follows: Let

$P_{4}=$ $\{(0,0,1,1),$ $(0,0,2,2),$ $(0,1,0,2),$ $(0,1,1,0),$ $(0,1,2,1),$ $(0,2,0,1)$ ,
$(0,2,1,2),$ $(0,2,2,0),$ $(1,0,0,1),$ $(1,0,1,2),$ $(1,0,2,0),$ $(1,1,0,0)$ ,
(1, 1, 2, 2), $($ 1, 2, $0,2),$ $(1,2,1,0),$ $(1,2,2,1),$ $(2,0,0,2),$ $(2,0,1,0)$ ,
$(2, 0,2,1),$ $(2,1,0,1),$ $(2,1,1,2),$ $(2,1,2,0),$ $(2,2,0,0),$ $(2,2,1,1)\}$

and
$P_{6}=\{(a_{1}, \ldots, a_{6})\in R_{3}^{6}|a_{1}=\cdots=a_{6}\}$ ,

and let $P=P_{4}\cup P_{6}$ . Then $\#Co1_{R_{3},P}(G)=6$ and $\#Co1_{R_{3},P}(G’)=0$ , see
Figure 3. Hence the spatial graphs $G$ and $G’$ are not equivalent.

We can also distinguish the spatial graphs $G$ and $G’$ with the universal
pallet of $R_{3}$ . But the calculation is complicated compared with that using
the above pallet. Thus, choosing a pallet makes the calculation simple.
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Figure 4: Coloring conditions

3 Fox colorings
Fox colorings [1, 2, 3] are defined for diagrams of classical links. For an
integer $p\geq 3$ , we consider an assignment of an element of $Z_{p}$ to each arc of a
classical link diagram. It is called a Fox p-coloring if a coloring condition for
crossings is satisfied. Then the coloring condition is given as follows: It holds
that $a+c=2b$ in $Z_{p}$ near each crossing, where the lower arcs are colored by
$a$ and $c$ and the upper arc is colored by $b$ .

As a generalization, Ishii and Yasuhara [4] introduced Fox colorings for
spatial graphs such that the valency of each vertex is even. The additional
coloring condition is to satisfy $a_{1}=\cdots=a_{n}$ for an n-valent vertex whose
arcs are colored as shown in Figure 4. The Fox colorings are the same as the
dihedral quandle colorings with the classical pallets. And they also studied
Fox colorings for spatial graphs such that the coloring condition for vertices
is given as $\sum_{i=1}^{n}(-1)^{i}a_{i}=0$ for an n-valent vertex whose arcs are colored as
shown in Figure 4. The Fox colorings are also given by using pallets, that is,
we use the following pallet of $\mathscr{W}$ for $R_{p}$-colorings:

$P= \{(a_{1}, \ldots, a_{n})\in U_{p}|n\in 2Z_{+}, \sum_{i=1}^{n}(-1)^{i}a_{i}=0\}$ .

Thus, Fox colorings for spatial graphs are translated as dihedral quandle
colorings with pallets, and each pallet gives a coloring condition for vertices.
Now, we have the following question: For Fox colo$nngs$ of spatial graphs, $is$

it possible to give any other coloring conditions for vertice$s^{p}$ The question is
translated as the following question: For dihedral quandles, is there any other
pallets except for the above two pallets? Our main theorem in the section 4
says “Yes”
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4 Main theorem
In this section, we classify all n-pallets of dihedral quandles.

For any integers $n>0$ and $p\geq 3$ , define $\varphi_{n,p}:R_{p}^{n}arrow\{1, \ldots,p\}$ by

$\varphi_{n,p}(a_{1}, \cdots, a_{n})=\max\{k\in\{1, \ldots,p\}|k|p, a_{1}\equiv\cdots\equiv a_{n} (mod k)\}$ .

When $p$ is an even number, define $\kappa_{n,p}:R_{p}^{n}arrow Z_{p}$ by

$\kappa_{n,p}(a_{1}, \ldots, a_{n})=\sum_{i=1}^{n}(-1)^{i}a_{i}$,

and define $\mu_{n,p}:R_{p}^{n}arrow Z$ by

$\mu_{n,p}(a_{1}, \ldots, a_{n})=E[(a_{1}, \ldots, a_{n})]-O[(a_{1}, \ldots, a_{n})]$ ,

where
$E[(a_{1}, \ldots, a_{n})]=\#\{i\in\{1, \cdots, n\}|a_{i}\equiv 0 (mod 2)\}$

and
$O[(a_{1}, \ldots, a_{n})]=\#\{i\in\{1, \cdots, n\}|a_{i}\equiv 1 (mod 2)\}$ .

Let $k\in\{1, \ldots,p\}$ be an even divisor of $p$ and let

$S_{k}=\{a\in R_{p}^{n}|\varphi_{n,p}(a)=k\}$ .

We define $\epsilon_{n,p,k}:S_{k}arrow\{0,1\}$ by

$\epsilon_{n,p,k}(a_{1}, \ldots, a_{n})=\{\begin{array}{ll}0 if a_{1}\equiv\cdots\equiv a_{n}\equiv 0 (mod 2),1 if a_{1}\equiv\cdots\equiv a_{n}\equiv 1 (mod 2).\end{array}$

Let $k\in\{1, \ldots,p\}$ be an even divisor of $p$ such that $p/k$ is an even number.
We define $\mu_{n,p,k}$ : $S_{k}arrow Z$ by

$\mu_{n,p,k}((a_{1}, \ldots, a_{n}))=|\mu_{n,\not\in}(0,$ $\frac{a_{2}-a_{1}}{k},$ $\cdots,$ $\frac{a_{n}-a_{1}}{k})|$

We have the following theorem:

Theorem 4.1 Let $n$ and $p$ be integers such that $n>0$ and $p\geq 3$ .

(i) When $n$ is an odd number, there is no n-pallet of $R_{\tau}$ .
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(ii) When $n$ is an even number, the set of the n-pallets of $R_{p}$ is equal to
the set which consists of the non-empty subsets of a set $V$ :

{n-pallets of $\mathscr{N}$ } $= \{\bigcup_{w\in W}w|W\subset V, W\neq\emptyset\}$
,

where $V$ is the following set.

(1) When $n=2$ and $p$ is an odd number,

$V=\{\{(a, a)|a\in R_{\tau}\}\}$ .

When $n=2$ and $p$ is an even number such that $p/2$ is an odd number,

$V=\{$ $\{(a, a)|a\in R_{v}, a\equiv 0 (mod 2)\}$ ,
$\{(a, a)|a\in R_{p}, a\equiv 1 (mod 2)\}$ ,
$\{(a, a+_{2}^{e})|a\in R_{p}\}\}$ .

When $n=2$ and $p$ is an even number such that $p/2$ is an even number,
we have

$V=\{$ $\{(a, a)|a\in R_{p}, a\equiv 0 (mod 2)\})$

$\{(a, a)|a\in R_{p}, a\equiv 1 (mod 2)\}$ ,
$\{(a, a+e2)|a\in R_{7}, a\equiv 0 (mod 2)\}$ ,
$\{(a, a+22)|a\in\%, a\equiv 1 (mod 2)\}\}$ .

(2) When $n$ is an even number other than 2 and $p$ is an odd number, $we$

have
$V=\{\eta_{k}|k\in\{1, \cdots,p\}, k|p\}$ ,

where $\eta_{k}=\{a\in R_{p}^{n}|\varphi_{n,p}(a)=k, \kappa_{n,p}(a)=0\}$ .

(3) When $n$ is an even number other than 2 and $p$ is an even number, $we$

have

$V=\{\alpha_{k,\kappa,\mu}$

$k\in\{1,\cdot\cdot,p\},$
$k|p,kis, \cdot\kappa\in\{0_{2}^{R}\};-n<\mu.<n,\mu iseven\frac{oddn-|\mu|}{2}\equiv\kappa(mod 2)$ $\}$

$\cup$ { $\beta_{k,\epsilon}|k\in\{1,$ $\cdots,p\},$ $k|p,$ $k$ is even, $2k$ is odd; $\epsilon\in\{0,1\}$ }

$\cup\{\begin{array}{lllllllll}\gamma_{k,\kappa,\mu,\epsilon} k \in\{1 \cdots p\} k|p_{f}k 2_{and}k are \in\{0_{2}^{2}\}even,\cdot\kappa,,\cdot 0\leq \mu is even_{f} \frac{n-\mu}{2}\equiv\frac{\kappa}{k} (mod \in\{0,1\}2)\cdot\epsilon\end{array}\}$ ,
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where

$\alpha_{k,\kappa,\mu}=$ $\{a \in R_{p}^{n}|\varphi_{n,p}(a)=k, \kappa_{n,p}(a)=\kappa, \mu_{n,p}(a)=\mu\}$,

$\beta_{k,\epsilon}=\{a\in R_{p}^{n}|\varphi_{n,p}(a)=k, \kappa_{n,p}(a)=0, \epsilon_{n,p,k}(a)=\epsilon\}$ , and

$\gamma_{k,\kappa,\mu,\epsilon}=\{a\in R_{p}^{n}|\varphi_{n,p}(a)=k,$ $\kappa_{n,p}(a)=\kappa,$ $\mu_{n,p,k}(a)=\mu,$ $\epsilon_{n,p,k}(a)=\epsilon\}$ .

By the above theorem, we have the following properties:

Corollary 4.2 When $n$ is an even number such that $n\geq 4$ and $p$ is an odd
number, the number of the n-pallets of $R$ is equal to $2^{t}-1$ , where $t$ is the
number of the divisors of $p$ . Especially, when $p$ is a $p$rime, we have exactly
three n-pallets of $\mathscr{N}$ : One is the universal n-pallet $U_{n}$ , another pallet is the
classical n-pallet $C_{n}$ , and the other is the difference set $U_{n}\backslash C_{n}$ .
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