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Abstract

Evolutionary Algorithms (EAs) provide a very powerful tool for solving optimization problems. In the
last decades, numerous studies have been focusing on improving the $pe$1$\dagger 0$–ance of EAs. However, there is
a lack of studies that tackle the question of the termination criteria. Indeed, EAs still need termination criteria
prespecified by the user. In this paper, we propose to combine the Differential Evolution (DE) method with the
“Gene Matnx‘’ (GM) in order to equip DE with an automatic termination criterion without resort to predefined
conditions. A local search method is also used to refine the best solution obtained upon termination and to
determine, via the GM, the depth of the search accordingly to the problem at hand. We name this algorithm
“Automatically Terminated Differential Evolution” (ATDE). Numerical experiments show that the solutions
obtained with the automatic termination are competitive and reliable, under a reduced number of objective
function evaluations.

$Keywords-Globa1$ optimization, Differential Evolution, Termination Criteria, Gene Matrix.

1 Introduction
Differential Evolution (DE) is a very competitive evolutionary algorithm for solving real-parameter optimization
problems that first appeared in 1995 in a technical report written by R. Stom and K. Price (Stom and Price,
1995). Since then, DE has attracted particular attention and yielded a significant number of research articles.

Practitioners particularly appreciate the relative simpliciry to implement and efficiency for many optimiza-
tion problems in real-world applications (Price et al., 2005; Joshi and Sanderson, 1999; Zhang et al., 2008).
Another advantage of DE compared with other EAs is the reduced number of control parameters (three for the
classical DE, namely, the population size $NP$ , the crossover rate $CR$ and the scaling factor $F$). A number of
papers in the literature extensively study the influence of these parameters on the performance of the algorithm
(Gamperle et al., 2002).

As other EAs, DE is population-based and uses common features of EAs such as recombination and selec-
tion operators. However, one of the distinctive features of DE lies in the fact that it exploits the information
about differences between trial solutions, the latter being identified as parameter vectors, to explore the search
space. Basically, in DE, the mutation operator considers two parameter vectors and adds a weighted difference
vector to create a third parameter vector. Different flavors of the mutation operator have been investigated. Cou-
pled with different kinds of crossover operators, numerous DE schemes can be designed (Das and Suganthan,
2011).

In this work, we emphasize how to let the search determine a proper termination instant. There is not
much work yet in the research of EAs dealing with the question of the termination criteria. Nevertheless, it is
recognized that in many real world applications, saving computational resources is extremely important. There
are many applications that can benefit from an automatic termination criterion. For instance, in evolutionary
testing (O’Sullivan et al., 1998; McMinn, 2004), temporal errors are detected whenever outputs are produced
too early or if the computational time is too lengthy. This shows the importance of keeping a good balance
between exploration and exploitation before deciding a proper termination instant. Multi-start methods may
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also benefit from automatic termination criteria. Indeed, by using adequate termination conditions, it is possible
to reduce the cost of generating candidate solutions and allow more trials with a fixed budget. There are only
a few recent works on termination criteria for EAs (Giggs et al., 2006; Kwok et al., 2007; Jain et al., 2001). In
(Giggs et al., 2006), the problem characteristics are empirically studied in an attempt to determine the maximum
number of generations. In (Kwok et al., 2007), statistics are used to terminate the search when it is estimated
that no further improvement in terms of solution quality can be expected. In (Jain et al., 2001), eight termination
criteria are studied with clustering techniques that examine the distribution of individuals in the search space at
a given generation.

In this paper, we combine DE with a mechanism that allow the search to accelerate its convergence and
to determine automatically an adequate termination instant without prior knowledge about the problem. The
mechanism is called the Gene Matrix (GM) (Hedar et al., 2007; Ong and Fukushima, 2011). The GM is a matrix
that represents subranges of the possible values of each variable. It gives an indication on the distributions of the
variables over the search range. This information is used to provide the search with new diverse solutions and
let the search know how far the exploration process has been performed. The number of subranges determines
the depth of the search and the cost of the algorithm. This parameter is automatically determined by performing
a preliminary “estimation‘’ of the landscape of the problem to be solved. This is done at the beginning of the
search by a local search method. To further accelerate the search process, the local search method is also used
to improve the best candidate solution obtained upon GM termination.

The performance of ATDE is evaluated through numerical experiments on a set of 15 test problems, taken
from the CEC 2005 real-parameter optimization contest (Suganthan et al., 2005), and compared against the
classical version of DE as well as the‘DE algorithm with ensemble of parameters and mutation strategies”
(EPSDE) (Mallipeddi et al., 2011).

The rest of this paper is organized as follows. In Section 2, the basic concepts of DE are reviewed. In
Section 3, the new mechanisms of ATDE are described before stating its formal algorithm. Section 4 provides
the experiments and comparative study conducted and discusses the results. A summary with conclusions and
future work is provided in Section 5.

2 Basic Concepts of Differential Evolution
ATDE seeks an optimal or near-optimal solution of the nonconvex optimization problem

$\min_{x\in X}f(x)$ , (1)

where $f$ is a real-valued function defined on the search space $X\subseteq R^{D}$ with variables $x\in X$ . A lot of EAs
and other heuristics have been proposed to deal with this problem, see for instance (Hansen, 2006; Hedar and
Fukushima, 2006; Ong and Fukushima, 2011) and references therein. As an EA, ATDE is meant to deal with any
type of problems because we do not make any assumption about the landscape of the problem being optimized.
Hence, we do not assume the differentiability, or even the continuity of the objective function.

In DE, a population is represented by D-dimensional vectors $x^{i},$ $i\in\{1, \ldots, NP\}$ , where $D$ is the dimen-
sion of the problem and $NP$ is the population size. Like other EAs, DE starts with an initial population that
is generated randomly. It is followed by the mutation, crossover and selection operators. We emphasize that,
in DE, the mutation, crossover and selection operations are mutually dependent and are performed for every
individual $x^{i}$ in the population sequentially.

2.1 Mutation
At each generation, the parameter vectors undergo mutation to create new vectors $v^{i}$ according to the formula

$v^{i}=x^{r0}+F\cdot(x^{r1}-x^{r2})$ , (2)

where $rO,$ $r1,$ $r2$ are distinct integers taken from the set $\{$ 1, 2, $\ldots$ , $NP\}\backslash \{i\}$ and $F$ is a positive real constant
that represents the mutation factor used to control the effect of the difference vector $(x^{r1}-x^{r2})$ . The parameter
$F$ is commonly referred to as the amplification factor or scale factor. Depending on the number of difference
vectors being considered, different strategies can be implemented.
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Figure 1: An example of the Gene Matrix in $R^{2}$ .

2.2 Crossover
The crossover operator is called right after the mutation operation. During this process, the vector $u^{i}=$

$(u_{1}^{i}, u_{2}^{i}, \ldots, u_{D}^{i})\in R^{D}$ is generated by

$u_{j}^{i}=\{\begin{array}{l}v_{j}^{i}, if U_{j}\leq CR or j=j_{rand},x_{j}^{i}, otherwise,\end{array}$ (3)

where $U_{j}$ is a uniform random number from the interval $(0,1)$ , and $CR\in[0,1]$ is a parameter that represents
the crossover rate. For each $j$ and each $i$ , the number $U_{j}$ is independently generated, and for each $i,$ $j_{rand}$ is a
random integer from $[$ 1, $D]$ .

Equation (3) is in fact the scheme used for what is called the binomial crossover. In DE, there are mainly
two types of crossovers that can be used; the binomial and the exponential crossovers (Price et al., 2005). ATDE
uses the binomial crossover.

2.3 Selection
During the selection process, the parameter vector $u^{i}$ generated by the crossover operator competes with the
vector $x^{i}$ according to its value of the function $f(\cdot)$ . Specifically, the offspring of $x^{i}$ is determined by

$\tilde{x}^{i}=\{\begin{array}{l}u^{i}, if f(u^{i})\leq f(x^{i}),x^{i}, otherwise.\end{array}$ (4)

The population size thus remains constant and its fimess is assured to never decline.
Those three operators, mutation, crossover and selection, can have many different variants, and when assem-

bled together, they form different kinds of DE that can be classified by the following commonly used notation:
$DE/xlylz$, where “DE” stands for “Differential Evolution”, $x$ denotes the base parameter vector to be perturbed,
$y$ represents the number of difference vectors to consider, and $z$ is the type of crossover employed. In this work,
we consider the $DE/randl$ llbin, which is the variant ofDE most commonly used in practice (Qin and Suganthan,
2005). In this case, the mutation operator deals with a randomly selected parameter vector and one weighted
difference vector, coupled with the binomial crossover operator.

3 Automatically Terminated Differential Evolution

3.1 Gene Matrix and Termination
The range of each component of the parameter vector is divided into several subranges in order to check the
diversity of the variable. The GM (Hedar et al., 2007; Ong and Fukushima, 2011) is a matrix initialized as
the $D\cross m$ zero matrix, where $D$ is the dimension of the problem and $m$ is the number of subranges for each
variable. Namely, each $entl\gamma$ of the i-th row refers to a subrange of the i-th variable. While the parameter vectors
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Figure 2: Landscape estimation on an unimodal function (a) and a multimodal function (b).

are exploring the search space, their variables are checked and the corresponding subranges are detected. The
visited subranges are then granted with a non-null value in the GM.

Figure 1 shows an example of GM in two dimensions. In the figure, the range of each variable is divided into
ten subranges, thus partitioning the search space into a hundred sectors. For the first variable $x_{1}$ , no parameter
vector has been generated inside the subranges 1, 7 and 10. Consequently, GM’s values in the (1, 1), (1, 7) and
(1, 10) entries are still equal to zero. For the second variable $x_{2}$ , only the first and the last subranges are still
unexplored, hence GM’s values in entries (2, 1) and (2, 10) are null. With a full GM, i.e., with no zero entry, the
search is considered to have achieved an advanced exploration process and can be stopped. We define the GM
completion ratio, referred to as $CP$, as the number of non-null entries divided by the total number of entries of
GM.

“Mutagenesis” is a mechanism that allows some characteristic parameter vectors to jump” in the search
space by modifying the values of some of their variables. Information contained within the GM is used to direct
and accelerate the search by specifically generating parameter vectors so that their variables take values within
an unvisited area of the search space. ATDE sorts the members of the population of size $NP$, and then selects
the worst $N_{w}(<NP)$ vectors that will participate in the operation. The formal procedure for Mutagenesis is
given in Procedure 3.1.

Procedure 3.1 Mutagenesis

1. If there is no zero-position in $GM$, then return; otherwise, go to Step 2.
2. Choose a zero-position $(j, k)$ in $GM$ mndomly.
3. Update the parameter vector $x$ by setting $x_{j}=l_{j}+(k-r) \frac{u-l}{m}$ , with all $x_{t}’ s(t\neq j)$ being

unchanged, where $r$ is a random numberfrom $(0,1)$ , and $l_{j},$ $u_{j}$ are the lower and upper bounds
of the variable $x_{j}$ , respectively.

4. Update $GM$ and retum.

3.2 Landscape Estimation
“Landscape estimation” is a mechanism that allows the search to get an approximative idea about the complexity
of the landscape of the problem at hand. To do so, before the search starts, $L$ parameter vectors are generated
randomly within the search space. Then, local search steps with limited effort are performed starting from
each of the $L$ vectors. The local search steps will “move” the $L$ vectors to new locations in the search space
with equal or better objective function values. Afterwards, the distances between each of the new points are
computed and the mean distance is calculated. Finally, the obtained value is used to determine the number of
subranges $m$ of GM. Figure 2 depicts the processus on an unimodal function and a multimodal function in one
dimension. In this figure, three points $A,$ $B$ and $C$ were randomly generated. A local search starting from each
of these points led to positions indicated by points $A’,$ $B’$ and $C’$ , respectively. In the case of Figure 2(a), the
example represents an easy function with a local optimum which is also the global optimum in the search space.
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Table 1: Pxameter setting in ATDE

$\frac{ParameterDefinitionV.a1ue}{FSca1efactor03}$

$CR$ Crossover rate 0.5
$NP$ Population size 30
$N_{w}$ No. of vectors used by Mutagenesis 4
$L$ Landscape estimation points 4
$CP$ GM Completion ratio 90%

The mean distance between points $A’,$ $B’$ and C’ is relatively small, thus the algorithm deduces that GM will
not require a high number of subranges. On the other hand, in the case of Figure 2(b), many optima exist and
the local search gets stuck in some local optima. The mean distance between $A’,$ $B’$ and $C’$ is larger than in
Figure 2(a) and the resulting $m$ will be bigger.

3.3 Intensification
To further enhance the convergence speed, a final intensification process calls a local search method based on
the Kelley’s modification (Kelley, 1999) of the Nelder-Mead (NM) method (Nelder and Mead, 1965). The local
search is initiated from the best parameter vector obtained at the end of the search. ATDE thus behaves like a
“Memetic Algorithm” (Moscato, 1999; Le et al., 2009) in order to achieve faster convergence (Ong et al., 2006;
Kramer, 2010).

3.4 Formal ATDE Algorithm
The algorithmic parameters with their assigned values are summarized in Table 1. The formal description of
ATDE is given in Algorithm 3.2.

Algorithm 3.2 ATDE Algorithm

1. Initializatio$n$. Set values of $N_{w}$ and $(l_{j}, u_{j})$ for $j=1,$ $\ldots$ , D. Set the scale factor $F$, crossover
rate $CR$ population size $NP$ and completion ratio $CP$.

2. Generate $L$ points randomly and apply Landscape estimation to infer $m$.
3. Generate an initial population $P_{0}$ of size $NP$. Initialize Gene Matrix $GM$ as the $Dxm$ zero

matrix.
4. For every individual, repeat sequentially Steps 4.1 to 4.4.

4.1. Set the considered parameter vector $x^{i}$ as the target vector.
4.2. Mutation. Generate a vector $v^{i}$ using Equation (2).
4.3. Crossover. Generate a vector $u^{i}$ using Equation (3). Update $GM$.
4.4. Selection. Compare vector $u^{i}$ with vector $x^{i}$ to generate the offspring $\tilde{x}^{i}$ using Equation
(4). Update $x^{i}$ $:=\tilde{x}^{i}$ .

5. Muugenesis. Alter the $N_{w}$ worst individuals using Procedure 3.1 and update $GM$. If $GM$ have
reached the completion ratio $CP$, then go to Step 6. Otherwise, go to Step 4.

6. Intensification. Apply a local search method starting from the best parameter vector.

4 Numerical Results

4.1 Methodology
A set of 15 benchmark functions, listed in Table 2, provided by the special session on real-parameter opti-
mization in the IEEE Congress on Evolutionary Computations CEC 2005 (Suganthan et al., 2005) was used to
compare the performance of the proposed method ATDE against the classical DE (Stom and Price, 1997) and
the EPSDE (Mallipeddi et al., 2011) methods in 10 dimensions. They are based on widely used benchmark
functions and aim at covering a diverse set of problem properties and difficulties. They are all scalable and most
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$\overline{\frac{fFunctionname}{f1ShiftedSphere}}$
Table2:Benchmark $fu_{Bounds}nctions$

$Globa1\min-A50$ $ErrorTo110^{-0}$

$[-100,100]$
$f_{2}$ Shifted Schwefel‘ $s1.2$ $[-100,100]$ $-450$ $10^{-6}$

$f_{3}$ Shifted rotated high conditioned elliptic $[-100,100]$ $-450$ $10^{-6}$

$f_{4}$ Shifted Schwefel‘s 12 with noise in fitness $[-100,100]$ $-450$ $10^{-6}$

$f_{5}$ Schwefel’s 2.6 with global optimum on bounds $\lceil-100,100]$ $-310$ $10^{-6}$

$f_{6}$ Shifted Rosenbrock’s $[-100,100]$ 390 $10^{-2}$

$f_{7}$ Shifted rotated Gnewank’s without bounds [0,600] $-180$ $10^{-2}$

$f_{8}$ Shifted rotated Ackley’s with global optimum $[-32,32]$ $-140$ $10^{-2}$

on bounds
$f_{9}$ Shifted Rastngin’s $[-5,5]$ $-330$ $10^{-2}$

$f_{10}$ Shifted rotated $Rast\Pi gin$ ’s $[-5,5]$ $-330$ $10^{-2}$

$f\ovalbox{\tt\small REJECT}$ Sh fted $r\ovalbox{\tt\small REJECT} a\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT} e\ovalbox{\tt\small REJECT} t\ovalbox{\tt\small REJECT}$ ss $[\ovalbox{\tt\small REJECT} 50.5]$ $\ovalbox{\tt\small REJECT}$ $10^{-2}$

$f_{12}$ Schwefel‘s 2. 13 $[-100,100]$ $-460$ $10^{-2}$

$fi_{3}$ Expanded extended Gnewank’s $+$ Rosenbrock‘ $s$ [-3, 1] $-130$ $10^{-2}$

$fi_{4}$ Expanded rotated extended Scaffe’s $\lceil-100,100\rceil$ $-300$ $10^{-2}$

$f_{15}$ Hybrid composition$\underline{1[-5,5\rceil 12010^{-2}}$

Table 3: Error mean obtained by each methods after the same Feval as ATDE

of them are non-separable. The error tolerance levels defined in Table 2 (Error Tol) are used to evaluate if a run
is successful or not. A run is considered successful when the fixed error tolerance level is achieved at the end
of the search. The success rate, abbreviated as SRate, is defined as the number of successful mns divided by
the total number of independent runs, here equal to 25 for all methods. The error is equal to $f(x^{best})-f(x^{*})$ ,
where $f(x^{best})$ represents the best function value obtained by the algorithm and $f(x^{*})$ is the known exact global
minimum value.

4.2 Comparison with DE
To evaluate the performance of ATDE against the canonical DE, we first let ATDE run until it terminates
automatically and then compute its success rates for each function. Afterward, the same amount of objective
function evaluations are used as the termination condition. Results are shown in Table 3 in 10 dimensions where
the numbers of function evaluations that was required by ATDE and DE are reported as well as the mean of the
error and the success rate for each function.

By comparing the results, reported in Table 3, obtained by ATDE and DE after the same amount of Feval,
which was here determined by the automatic termination of ATDE, we can see that the performance of ATDE
in terms of both accuracy and reliability is much better than the perfonnance of DE. For all problems, ATDE
could obtain a solution closer to a global optimum. Actually, DE could not detect a global optimum in most
cases, except for problems $f_{4},$ $f_{9}$ and $f_{15}$ . And yet, the SRate is relatively low. ATDE, on the other hand, could
reach the global optima in 8 functions out of 15 with decent SRate.

To further assess whether the new mechanisms of ATDE (GM, Mutagenesis, intensification) improve the
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Table 4: Comparison between the error obtained by ATDE after automatic termination and the elTor obtained
by DE after double the Feval required by ATDE

canonical DE, we allowed DE to mn with double the Feval that was required by ATDE. Results are shown in
Table 4. Comparing the results of DE in Tables 3 and4 reveal that the convergence rate of DE is relatively slow.
Although it could obtain more accurate results in some functions (functions $f_{1},$ $f_{2}$ and $f_{6}$ ), it is not enough to
outperform ATDE.

Those results demonstrate that the GM, Mutagenesis and intensification mechanisms successfully improve
the DE paradigm by considerably increasing the convergence rate, accuracy and reliability of the algorithm.

4.3 Comparison with EPSDE
In this section, ATDE is compared against a recent state-of-the-art algorithm called EPSDE that uses an en-
semble of mutation strategies and parameter values with DE (Mallipeddi et al., 2011). This method makes use
of a set of mutation strategies with different parameter settings and thus avoids unique parameter settings as
in the classical DE. Since different strategies may become more effective during the evolution process than
others depending on the problem, EPSDE keeps a pool of mutation strategies and parameters that have diverse
characteristics in an attempt to adapt to different stage of the evolution process and to the nature of a particular
problem. In (Mallipeddi et al., 2011), EPSDE is favorably compared to several well-known state-of-the-art DE
methods.

Comparison with a state-of-the-art method will allow us to ascertain the benefits that result from the new
mechanisms of ATDE. It can be observed in Table 3 that under such considerably restricted number of Feval
(around 1,700 Feval for function $f_{1}$ and 1,900 Feval for function $f_{2}$ , for example), even EPSDE cannot reach a
global optimum in most cases. However, it is interesting to see that for functions $f_{4}$ and $f_{9}$ , more Feval were
available and EPSDE could obtain good results. This demonstrates that the Landscape estimation mechanism,
coupled with the GM, can determine a termination instant that avoid unnecessary objective function evaluations
for easy functions and confer more effort to harder problems. The accuracy and reliability as well are effectively
improved by the use of Mutagenesis and Intensification.

5 Conclusion
In this paper, we have proposed to combine DE with new mechanisms and acceleration elements in order to
equip DE with an automatic termination strategy that does not require any prescribed criterion such as the
maximum number of generations or function evaluations. The added mechanisms are the GM, Mutagenesis,
Intensification and Landscape estimation.

Numerical experiments reveal that the results obtained by ATDE are equal or superior to those of the classi-
cal DE and the recent EPSDE, without undue objective function evaluations and without negative impact on the
quality of the solution obtained. The use of GM effectively assists ATDE to achieve wide exploration and deep
exploitation before stopping the search. Furthermore, we could show that GM, Mutagenesis, Intensification and
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Landscape estimation closely work in combination to successfully improve the performance of DE in terms of
accuracy, reliability and convergence rate.

Future work includes the comparison of ATDE against different types of state-of-the-art algorithms.

References
Das, S. and Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions

on Evolutionary Computation, 15(1):4-31.

Gamperle, R., Muller, S. D., and Koumoutsakos, P. (2002). A parameter study for differential evolution. In
Grmela, A. and Mastorakis, N., editors, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Com-
putation, pages 293-298. WSEAS Press, Interlaken, Switzerland.

Giggs, M. S., Maier, H. R., Dandy, G. C., and Nixon, J. B. (2006). Minimum number of generations required for
convergence of genetic algorithms. In Proceedings ofthe 2006 IEEE Congress on Evolutionary Computation,
pages 2580-2587, Vancouver, BC, Canada.

Hansen, N. (2006). The CMA evolution strategy: A comparing review. In Lozano, J., Larranaga, P., Inza, I.,
and Bengoetxea, E., editors, Towards a new evolutionary computation. Advances on estimation ofdistribution
algorithms, pages 75-102. Springer.

Hedar, A.-R. and Fukushima, M. (2006). Tabu search directed by direct search methods for nonlinear global
optimization. European Journal ofOpemtional Research, 170:329-349.

Hedar, A.-R., Ong, B. T., and Fukushima, M. (2007). Genetic algorithms with automatic accelerated termina-
tion. Technical report, Dept. of Applied Mathematics and Physics, Kyoto University.

Jain, B. J., Pohlheim, H., and Wegener, J. (2001). On termination criteria of evolutionary algorithms. In Pro-
ceedings ofthe Genetic and Evolutionary Computation Conference, page 768. Morgan Kaufmann Publishers.

Joshi, R. and Sanderson, A. (1999). Minimal representation multisensor fusion using differential evolution.
IEEE Transactions on Systems, Man and Cybemetics, Part $A$ : Systems and Humans, $29(1):63-76$ .

Kelley, C. T. (1999). Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient
decrease condition. SIAM Journal on optimization, $10(1):43-55$ .

Kramer, O. (2010). Iterated local search with Powell’s method: A memetic algorithm for continuous global
optimization. Memetic Computing, 2:69-83.

Kwok, N. M., Ha, Q. P., Liu, D. K., Fang, G., and Tan, K. C. (2007). Efficient particle swarm optimization:
A termination condition based on the decision-making approach. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 25-28, Singapore.

Le, M., Ong, Y.-S., Jin, Y., and Sendhoff, B. (2009). Lamarckian memetic algorithms: Local optimum and
connectivity stmcture analysis. Memetic Computing, 1: 175-190.

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., and Tasgetiren, M. F. (2011). Differential evolution algorithm
with ensemble of parameters and mutation strategies. Applied Sofi Computing, 11: 1679-1696.

McMinn, P. (2004). Search-based software test data generation: A survey. Software Testing Venfication and
Reliability, 14(2): 105-156.

Moscato, P. (1999). Memetic algorithms: An introduction. In Come, D., Dorigo, M., Glover, F., Dasgupta, D.,
Moscato, P., Poli, R., and Price, K. V., editors, New ideas in optimization. McGraw-Hill Ltd., UK, Maiden-
head, UK, England.

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7:308-313.

Ong, B. T. and Fukushima, M. (2011). Genetic algorithm with automatic termination and search space rotation.
Memetic Computing, 3: 111-127.

205



Ong, Y.-S., Lim, M.-H., Zhu, N., and Wong, K. (2006). Classification of adaptive memetic algorithms: A
comparative study. IEEE Transactions on Systems, Man, and Cybemetics-Part $B$ , 36(1): 141-152.

O’Sullivan, M., Vossner, S., and Wegener, J. (1998). Testing temporal correctness of real-time systems. In
Proceedings of the Sixth lntemational Conference on Software Testing Analysis and Review $(EuroSTAR’ 98)$,
Munich, Germany.

Price, K. V., Stom, R. M., and Lampinen, J. A., editors (2005). Differential Evolution A Practical Approach to
Global optimization. Natural Computing Series, Springer-Verlag, Berlin, Germany.

Qin, A. and Suganthan, P. (2005). Self-adaptive differential evolution algorithm for numerical optimization. In
Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 2, pages 1785-1791.

Stom, R. and Price, K. (1995). Differential evolution –a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical report.

Stom, R. and Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization
over continuous spaces. Journal ofGlobal optimization, 11 (4)$:341-359$.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., and Tiwari, S. (2005). Problem def-
initions and evaluation criteria for the CEC-2005 special session on real-parameter optimization. Technical
report, Singapore: Nanyang Technol. Univ.

Zhang, J., Avasarala, V., Sanderson, A., and Mullen, T. (2008). Differential evolution for discrete optimization:
An experimental study on combinatorial auction problems. In Proceedings of the IEEE World Congress on
Computational Intelligence, pages 2794-2800.

206


