
頂点容量付き有向全域木パッキング問題に対する
ラグランジュ緩和ヒューリスティック

田中 勇真 \dagger , 今堀 慎治 \ddagger , 柳浦 睦憲 \dagger

\dagger名古屋大学大学院情報科学研究科計算機数理科学専攻
\ddagger名古屋大学大学院工学研究科計算理工学専攻

概要

本研究では，頂点容量付き有向全域木パッキング問題を扱う．この問題は入力として，有向グラフ，ルー
ト頂点，頂点容量，辺の始点側と終点側それぞれに消費量が与えられる．目的はルート頂点に流入する有向
全域木のパッキング回数を最大化することである．ただし，有向全域木の各頂点に対する消費量の合計は，
与えられた頂点容量を超えてはいけない．この問題は NP 困難であることが知られている．以前，我々は
この問題に対して 2段階のアルゴリズムを提案した．このアルゴリズムは，1段階目に有望であると考え
られる木の候補を生成し，2段階目に生成したそれぞれの木のパッキング回数を決定する．本研究では，線
形緩和の代わりにラグランジュ緩和を用いることによって 1段階目の改善を行った．ランダムに生成され
たグラフに対して計算実験を行ったところ，提案アルゴリズムは以前のアルゴリズムより速く木を生成で
き，少ない木の候補でも良い解を得ることを確認した．

1 Introduction
In this paper, we consider the node capacitated in-tree packing problem (abbreviated as NCIPP). The
input consists of a directed graph, a root node, a node capacity function and edge consumption functions
for heads and tails. The objective of the problem is to find the maximum number of rooted spanning
in-trees such that the total consumption of the in-trees at each node does not exceed the capacity of the
node.

Let $G=(V, E)$ be a directed graph, $r\in V$ be a root node and $\mathbb{R}+$ be the set of nonnegative real
numbers. In addition, let t : $Earrow \mathbb{R}+$ and h : $Earrow \mathbb{R}+$ be tail and head consumption functions on
directed edges, respectively, and $b_{i}\in \mathbb{R}+$ be the capacity of a node $i\in V$. For convenience, we define T_{a11}

as the set of all spanning in-trees rooted at the given root $r\in V$ in the graph G . Let $\delta_{j}^{+}(i)$ (resp., $\delta_{j}^{-}(i)$)
be the set of edges in an in-tree $j\in T_{a11}$ leaving (resp., entering) a node $i\in V$. The consumption a_{ij} of
an in-tree $j\in T_{a11}$ at a node $i\in V$ is defined as

$a_{ij}= \sum_{e\in\delta_{j}^{+}(i)}t(e)+\sum_{e\in\delta_{j}^{-}(i)}h(e)$
. (1)

We call the first term of this equation (1) tail consumption, and the second term head consumption. The
node capacitated in-tree packing problem is to find a subset $T\subseteq T_{a1l}$ of spanning in-trees and the packing
number x_{j} of each in-tree $j\in T$ subject to the node capacity restriction

$\sum_{j\in T}a_{ij^{X}j}\leq b_{i}$
, $\forall i\in V$, (2)

so as to maximize the total number of packed in-trees $\sum_{j\in T}x_{j}$. Throughout this paper, an in-tree means
a spanning in-tree even if we do not clearly state spanning.

This problem is known to be NP-hard [10]. Furthermore, it is still NP-hard even if instances are
restricted to complete graphs embedded in a space with tail consumptions depending only on the distance
between end nodes.

This problem is studied in the context of sensor networks. Recently, several kinds of graph packing
problems are studied in the context of ad hoc wireless networks and sensor networks. These problems
are called network lifetime problems. The important problems included among this category are the node

数理解析研究所講究録
第 1773巻 2012年 231-238 231

capacitated spanning subgraph packing problems [3, 8, 11]. For sensor networks, for example, a spanning
subgraph corresponds to a communication network topology for collecting information from all nodes
(sensors) to the root (base station) or for sending information from the root to all other nodes. Sending a
message along an edge consumes energy at end nodes, usually depending on the distance between them.
The use of energy for each sensor is severely limited because the sensors use batteries. It is therefore
important to design the topologies for communication in order to save energy consumption and make
sensors operate as long as possible. For this problem, Heinzelman et al. [8] proposed an algorithm, called
LEACH-C (low energy adaptive clustering hierarchy centralized), that uses arborescences with limited
height for communication topologies. For more energy effcient communication networks, a multiround
topology construction problem was formulated as an integer programming problem, and a heuristic
solution method was proposed in [11]. In the formulation of [3], head consumptions are not considered,
and the consumption at each node is the maximum tail consumption among the edges leaving the node.
There are variations of the problem with respect to additional conditions on the spanning subgraph such
as strong connectivity, symmetric connectivity, and directed out-tree rooted at a given node. Calinescu
et al. [3] discussed the hardness of the problem and proposed several approximation algorithms.

For problem NCIPP, we proposed a two-phase algorithm [12]. In the first phase, it generates candidatc
in-trees to be packed. The node capacitated in-tree packing problem can be formulated as an IP (integer
programming) problem, and the proposed algorithm employs the column generation method for the
LP(linear programing)-relaxation of the problem to generate promising candidate in-trees. In the second
phase, the algorithm computes the packing number of each in-tree. Our algorithm solves this second-
phase problem by first modifying feasible solutions of the LP-relaxation problem and then improving
them with a greedy algorithm.

In this paper, we propose a new first-phase algorithm. The new algorithm employs the Lagrangian
relaxation instead of the LP-relaxation, and it uses the subgradient method to obtain a good Lagrangian
multiplier vector. One of the merits of the classical subgradient method is that it is simple and easy to
implement; however, it was rather slow and took long time to generate sufficient number of in-trees. To
alleviate this, we incorporate various ideas to speed up the algorithm, e.g., rules to decrease the number
of in-trees used for the subgradient method, and upper and lower bounding techniques to reduce the
number of times some Lagrangian multipliers are updated.

We conducted computational experiments on randomly generated instances with up to 200 nodes.
The results show that the new algorithm obtains solutions that deviate at most 1% from upper bounds,
and comparisons with the previous algorithm show that our new method works more efficiently for large
instances of this problem.

2 Formulation
The node capacitated in-tree packing problem can be formulated as the following IP problem:

maximize
$\sum_{j\in T_{a11}}x_{j}$

,

subject to
$\sum_{j\in T_{alI}}$ aijxj $\leq b_{i}$, $\forall i\in V$, (3)

$x_{j}\geq 0$, $x_{j}\in Z,$ $\forall j\in T_{a11}$.

The notations are summarized as follows:
V : the set of nodes,
T_{a11} : the set of all spanning in-trees rooted at the given root $r\in V$,
a_{ij} : the consumption (defined by equation (1)) of an in-tree $j\in T_{a11}$ at a node $i\in V$,
b_{i} : the capacity of a node $i\in V$,
x_{j} : the packing number of an in-tree $j\in T_{a11}$,
Z : the set of all integers.

We defined T_{a11} as the set of all in-trees rooted at the given root $r\in V$. However, the number of
in-trees in T_{a11} can be exponentially large, and it is difficult in practice to handle all of them. We therefore

232

consider a subset $T\subseteq T_{a11}$ of in-trees and deal with the following problem:

$P(T)$ maximize
$\sum_{j\in T}x_{j}$

,

subject to
$\sum_{j\in T}a_{ij}x_{j}\leq b_{i}$

, $\forall i\in V$,

$x_{j}\geq 0$, $x_{j}\in Z,$ $\forall j\in T$.

If $T=T_{a11}$, the problem $P(T_{a11})$ is equivalent to the original problem (3). We denote the optimal value
of $P(T)$ by $OPT_{P(T)}$.

To consider the Lagrangian relaxation problem of $P(T)$, the maximum packing number u_{j} of each
in-tree $j\in T$ is defined as $u_{j}= \min_{i\in V:a_{ij}>0}\lfloor b_{i}/a_{ij}\rfloor$ (where $\lfloor y\rfloor$ stands for the floor function of y). The
Lagrangian relaxation problem is formally described as follows:

$LR(T, \lambda)$ maximize $\sum_{j\in T}x_{j}+\sum_{i\in V}\lambda_{i}(b_{i}-\sum_{j\in T}a_{ij}x_{j})$

$= \sum_{j\in T}c_{j}(\lambda)x_{j}+\sum_{i\in V}\lambda_{i}b_{i}$
,

subject to $0\leq x_{j}\leq u_{j}$, $\forall j\in T$

where $\lambda_{i}\geq 0$ is the Lagrangian multiplier for a node $i\in V,$ $\lambda=(\lambda_{1}, \ldots, \lambda_{|V|})$ is the vector of Lagrangian
multipliers, and $c_{j}(\lambda)=1-\sum_{i\in V}a_{ij}\lambda_{i}$ is the relative cost of an in-tree $j\in T$. We denote the optimal
value of $LR(T, \lambda)$ by $OPT_{LR(T,\lambda)}$ and an optimal solution of $LR(T, \lambda)$ by $x(\lambda)$. For any $\lambda\geq 0$, an
optimal solution $x(\lambda)$ can be calculated easily as follows: For all $j\in T,$ $x_{j}(\lambda)=u_{j}$ if $c_{j}(\lambda)>0$, otherwise
$x_{j}(\lambda)=0$. In general, $OPT_{LR(T,\lambda)}$ gives an upper bound of $OPT_{P(T)}$ for any $\lambda\geq 0$.

3 New $In-Rees$ Generating Algorithm
In this section, we explain the new algorithm to generate in-trees. Our algorithm prepares an initial set
of in-trees by a simple algorithm in Section 3.1. It then generates in-trees by using the information from
Lagrangian relaxation, whose details are explained in Sections 3.2-3.4. To obtain a good upper bound
and a Lagrangian multiplier vector, it applies the subgradient method to a current in-tree set, and then
it tries to add a new in-tree to the current in-tree set by solving a pricing problem. After adding a new
in-tree, it applies the subgradient method to the new in-tree set, and the above steps are repeated until
a stopping criterion is satisfied. We also explain a method tbat obtains good feasible solutions of $P(T_{a11})$

(i.e., this method corresponds to the second-phase algorithm in our previous paper [12]).

3.1 Initial set of in-trees
For the node capacitated in-tree packing problem, Imahori at el. [10] proved that it is NP-hard to flnd
one packed in-tree that satisfies the node capacity restriction (2). Consequently, it is not always easy to
create an initial set of in-trees. In this paper, we deal with problems for which this part is easy, e.g., those
with $t(e)\ll b_{i},$ $\forall e\in\delta^{+}(i)$ and $h(e)\ll b_{i},$ $\forall e\in\delta^{-}(i)$ for all $i\in V$, where $\delta^{+}(i)$ (resp., $\delta^{-}(i)$) denotes the
set of edges in the graph G leaving (resp., entering) a node $i\in V$. This assumption holds naturally in
many applications.

The column generation method can be executed even with only one initial in-tree. However, we
observed through preliminary experiments that the computation time was usually reduced if an initial
set with more in-trees was given. We also observed that, for randomly generated in-trees, the computation
time did not decrease much when we increased the number of in-trees in the initial set beyond $|V|$. We
therefore employ $|V|$ randomly generated in-trees as the initial set of in-trees.

3.2 Subgradient method
We employ the subgradient method to obtain Lagrangian multiplier vectors λ that give good upper bounds
of $P(T)$ $(i.e., OPT_{LR(T,\lambda)})$ for the current set of in-trees T . The subgradient method is a well-known

233

heuristic approach to find a near optimal Lagrangian multiplier vector [1, 6, 9]. It uses the subgradient
$s(\lambda)=(s_{1}(\lambda), \ldots , S_{|V|}(\lambda))$, associated with a given λ , defined by $s_{i}(\lambda)=b_{i}-\sum_{j\in T}a_{ij}x_{j}(\lambda)$ for all $i\in V$.
This method repeatedly updates a Lagrangian multiplier vector, starting from a given initial vector, by
the following formula:

$\lambda_{i}:=\max(0,$ $\lambda_{i}-\pi\frac{UB(\lambda)-LB}{\sum_{i\in V}\{s_{i}(\lambda)\}^{2}}s_{i}(\lambda))$, $\forall i\in V$, (4)

where UB $(\lambda)=OPT_{LR(T,\lambda)}$ is an upper bound of $P(T)$, LB is a lower bound of $P(T)$, and $\pi\geq 0$ is a
parameter to adjust the step size. We denote $\theta(\lambda);=\pi$(UB $(\lambda)-$ LB) $/(\sum_{i\in V}\{s_{i}(\lambda)\}^{2})$, which is called
the step size in general. The parameter π is initially set to the value given to the subgradient method
and is halved whenever the best upper bound is not updated in N consecutive iterations, where N is a
parameter that we set $N=30$ in our experiments. The iteration of the subgradient method is stopped
when π becomes less than 0.005. In our algorithm, the above rule to update λ is slightly modified as
follows: In the execution of (4), we use s\’i (A) instead of $s_{i}(\lambda)$, where s\’i $(\lambda)=0$ if $\lambda_{i}=0$ and $s_{i}(\lambda)<0$

hold immediately before the execution of (4), and s\’i $(\lambda)=s_{i}(\lambda)$ otherwise.
Let $SuBOPT($LB, $\lambda,$ $\pi)$ be the subgradient method using a lower bound LB, starting from an initial

vector λ and a parameter π . The procedure $SuBOPT$ returns p pairs $(\lambda^{(1)}, \pi^{(1)}),$
$\ldots,$

$(\lambda^{(\rho)}, \pi^{(\rho)})$ of
Lagrangian multiplier vectors λ and parameters π such that for $k=1,$ $\ldots,$

ρ , the multiplier vector $\lambda^{(k)}$

attains the kth best upper bound UB (λ) among those generated during the search, and the parameter
$\pi^{(k)}$ is the value of π when $\lambda^{(k)}$ is found, where the parameter ρ specifies the number of pairs output by
$SuBOPT$. These pairs are used in the column generation method whose details are explained in the next
section.

We set $\lambda_{i}=2$ for all $i\in V$ as the initial Lagrangian multiplier vector and $\pi=2$ as the initial
parameter to adjust the step size if $SuBOPT$ is applied to the initial set of in-trees; otherwise (i.e.,
$SuBOPT$ is applied to an in-tree set after adding a new in-tree by the column generation method), the
algorithm uses the information of the last execution of $SuBOPT$ as follows: The initial values of λ and
π are set to $\lambda=\lambda^{(k)}$ and $\pi=\pi^{(k)}$ for the k such that the pair $(\lambda^{(k)}, \pi^{(k)})$ was used to generate the
latest new in-tree by the column generation method. With this approach, $SuBOPT$ is able to decrease
the number of iterations until a good Lagrangian multiplier vector is obtained.

We employ the greedy algorithm PACKINTREES proposed in our previous work [12] as a method for
producing a lower bound LB (feasible solution) of $P(T)$. This algorithm uses the maximum packing
number, calculated based on the available capacity in each node, as the evaluation criterion of each
in-tree. The proposed algorithm does not frequently update LB; PACKINTREES is applied to an initial
in-tree set, and then it is applied whenever a hundred new in-trees are added, because we confirmed
through preliminary experiments that the performance of our algorithm was not affected much by the
quality of lower bounds.

The above explanation of the algorithm describes only basic parts, but we also incorporated various
ideas to speed up the algorithm, e.g., rules to decrease the number of in-trees used for the subgradient
method, and upper and lower bounding techniques to reduce the number of times some Lagrangian
multipliers are updated.

3.3 Column generation method
We employ the column generation method to generate candidate in-trees. It starts from an initial in-tree
set $T\subseteq T_{a11}$ and repeatedly augments T until a stopping criterion is satisfied.

Let $T^{+}(\lambda)$ be the set of all in-trees having positive relative costs $c_{j}(\lambda)>0$ for a Lagrangian multiplier
vector λ $(i.e., T^{+}(\lambda)=\{j\in T_{a11}|c_{j}(\lambda)>0\})$. It is clear from the method of solving $LR(T, \lambda)$ (see
Section 2) that if a set of in-trees $T\subseteq T_{al1}$ satisfies $T^{+}(\lambda)\subseteq T$, then an optimal solution to $LR(T, \lambda)$ is
also optimal to $LR(T_{a11}, \lambda)$. On the other hand, if there is an in-tree $\tau\in T_{a11}$ which is not included in T

and has a positive relative cost $c_{\tau}(\lambda)>0$, then an optimal solution $x(\lambda)$ to $LR(T, \lambda)$ cannot be optimal
for $LR(T_{a11}, \lambda)$. It is therefore necessary to find a new in-tree $\tau\in T_{al1}\backslash T$ that satisfies

$\sum_{i\in V}a_{i\tau}\lambda_{i}<1$
. (5)

The problem of finding such an in-tree (column) is generally called the pricing problem.

234

We showed in [12] that this pricing problem can be efficiently solved if λ is a feasible solution to the
dual of the LP-relaxation problem of $P(T)$. To solve the pricing problem, the algorithm in our previous
paper solves the problem of finding a new in-tree $\tau\in T_{a11}\backslash T$ that satisfies

$\sum_{i\in V}a_{i\tau}\lambda_{i}=\min_{j\in\tau_{a11\backslash T}}(\sum_{i\in V}a_{ij}\lambda_{i})$. (6)

A nice feature of a dual feasible solution λ is that $c_{j}(\lambda)=1-\sum_{i\in V}a_{ij}\lambda_{i}\leq 0$ holds for all $j\in T$, and
hence if an in-tree $\tau\in T_{a11}$ satisfying (5) is found, then we can conclude that τ is new, i.e., $\tau\not\in T$. Then
the problem of flnding a new in-tree τ that satisfies (6) is equivalent to tlie problem of finding an in-tree
τ that minimizes the left-hand side of (5) among all in-trees in T_{a11} . This problem is equivalent to the
minimum weight rooted arborescence problem.

This problem takes as inputs a directed graph $G=(V, E)$, a root node $r\in V$ and an edge cost
function ϕ : $Earrow \mathbb{R}$. The problem consists of finding a rooted arborescence with the minimum total edge
cost. The problem can be solved in $O(|E||V|)$ time by Edmonds’ algorithm [5]. Bock [2] and Chu and
Liu [4] obtained similar results. Gabow et al. [7] presented the best results so far with an algorithm of
time complexity $O(|E|+|V|\log|V|)$, which uses Fibonacci heap. We employed Edmonds’ algorithm to
solve this problem from the easiness of implementation.

When the pricing problem is solved for a Lagrangian multiplier vector, the nice feature of dual feasible
solutions is not always satisfied, and the column generation method may not work; it may generate in-
trees that are already in T . However, we observed through preliminary experiments that such duplicate
generation is not frequent if good Lagrangian multiplier vectors are used. Based on this observation, we
use Lagrangian multiplier vectors obtained by $SuBOPT$.

To have higher probability of generating an in-tree not in T , our algorithm solves the pricing problem
for more than one Lagrangian multiplier vector, and for this reason, we let the procedure SUBOPT output
ρ Lagrangian multiplier vectors that attain the best ρ upper bounds. Our column generation method
solves the pricing problem for a Lagrangian multiplier vector $\lambda^{(k)}$ in the ascending order of k starting
from $k=1$ until a new in-tree $\tau\not\in T$ is found or all $\lambda^{(1)},$

$\ldots,$

$\lambda^{(\rho)}$ are checked. If a new in-tree is found,
then it is added into the current set of in-trees T . On the other hand, if no new in-trees are found even
after applying the column generation method to the ρ Lagrangian multiplier vectors, the entire procedure
of generating in-trees stops.

3.4 Stopping criteria of the column generation method
In this subsection, we consider the stopping criteria of the column generation method. We introduce two
stopping criteria and stop the algorithm when one of these criteria is satisfied.

The first one uses upper bounds of $OPT_{P(T_{a11})}$. In our previous paper [12], we proposed a method
that calculates an upper bound of $OPT_{P(T_{a11})}$ from a given set of in-trees T and a nonnegative vector
$\lambda\geq 0$. More precisely, this method creates a dual feasible solution of the LP-relaxation problem of
$P(T_{a11})$. We observed through computational experiments that the method gives a tight upper bound if a
good in-tree set T and an appropriate vector λ are given. We use this property as a stopping criterion of
the algorithm. For the candidates of λ , we employed Lagrangian multiplier vectors obtained by $SuBOPT$,
and upper bounds of $P(T_{a11})$ are calculated in each iteration of the column generation method. Let UB $*$

be the best upper bound found by then during the iteration of our column generation algorithm. If T is
not yet a good set of in-trees, UB $*$ is often updated in the following iterations. On the other hand, when
T becomes a good set of in-trees (i.e, it includes most of valuable in-trees), UB $*$ is updated infrequently.
Hence we stop the algorithm if UB $*$ is not updated in $|V|$ consecutive iterations.

The second stopping criterion is based on the overlapping of generated in-trees. When no new in-
trees are found even after applying the column generation method to all ρ Lagrangian multiplier vectors
obtained by $SuBOPT$, we stop the algorithm (as stated in Section 3.3).

In the computational experiments in Section 4, we set the value of parameter ρ to 10. The value of
parameter ρ has little influence on the performance of the algorithm as long as it is sufficiently large.
Indeed, this value $\rho=10$ was large enough in our experiments because with this value of ρ , the proposed
algorithm never stopped with the second criterion.

235

3.5 Proposed algorithm to generate in-trees
The new algorithm to generate in-trees based on the column generation approach with the Lagrangian
relaxation is formally described as Algorithm LRGENINTREES.

$\frac{A1gorithm1LRGENINTREES}{Require:agraphG=(V,E),arootnoder\in V,tailandheadconsumptionfunctionsonedgest:Earrow \mathbb{R}_{+}}$

$h:Earrow \mathbb{R}+$, node capacities $b_{i}\in \mathbb{R}+$ for all $i\in V$, and a parameter ρ .
Ensure: a set of in-trees T .

1: Create the initial set T_{0} of $|V|$ in-trees randomly. Set $T:=T_{0}$, UB’ $:=+\infty,$ $\ell:=0,$ λ_{i} $:=2$ for all $i\in V$ and
$\pi:=2$.

2: Invoke PACKINTREES and let LB be the obtained lower bound of $P(T)$.
3: Invoke $SuBOPT($LB, $\lambda,$ $\pi)$ to obtain $\lambda^{(1)},$

$\ldots,$

$\lambda^{(\rho)}$ and $\pi^{(1)},$
$\ldots,$

$\pi^{(\rho)}$, and set $l:=\ell+1$.
4. for $k=1$ to ρ do
5: Calculate an upper bound UB of $OPT_{P(T_{a11})}$ using the current in-tree set T and a vector $\lambda^{(k)}$ (by the

method described in Section 3.4), and let UB’ $:=$ UB and $\ell:=0$ if UB $<$ UB’.
6: Solve the pricing problem for a vector $\lambda^{(k)}$ and let τ be the generated in-tree.
7: If $\tau\not\in T$ holds, then set $T:=T\cap\{\tau\},$ λ $:=\lambda^{(k)}$ and π

$:=4\pi^{(k)}$, and go to 10.
8: end for
9: Output the set of in-trees T and stop.

10: If $\ell=|V|$ holds, then go to 9.
11: If a hundred new in-trees are added into T after the last call to PackInTrees, then invoke PACKINTREES and

update LB.
12: Return to 3.

3.6 Method to obtain feasible solutions
We proposed an algorithm to generate a set of in-trees in the previous sections. To evaluate the perfor-
mance of the proposed algorithm on the node capacitated in-tree packing problem, a method to obtain a
feasible solution of $P(T_{a11})$ is necessary. Based on the second-phase algorithm proposed in [18], we devise
a heuristic method called PACKINTREES* .

Let T_{0} be the initial set of in-trees and T_{k} be the set of in-trees T after the kth iteration of
LRGENINTREES for $k=1,$ \ldots , f , where f is the number of in-trees generated by LRGENINTREES.
The procedure $PACKINTREES^{*}$ solves the LP-relaxation problems of $P(T_{f-\alpha}),$

$\ldots,$
$P(T_{f})$ and obtains an

optimal solution for each problem, where α is a parameter that we set $\alpha=10$ in our computational
experiments. For each optimal solution x^{*} of the LP-relaxation problems, a feasible solution of $P(T_{a11})$

is generated by rounding down every variable x_{j}^{*} of the solution, and then it is improved by applying
PACKINTREES, which is the greedy algorithm proposed in [12]. Among the α feasible solutions obtained
by this procedure, $PACKINTREES^{*}$ outputs the best one.

4 Computational Experiments

4.1 Experimental environment
We use instances consisting of randomly generated graphs in our experiment. We named them $rndn-\delta-$

b-(h, t or none),” where n is the number of nodes, δ is the edge density, b is the capacity of all $i\in V^{-}$

$($where $V^{-}=V\backslash \{r\})$ and h, t or none shows which of head and tail consumptions is bigger (i.e., h“

implies that head consumptions are bigger than tail consumptions, t
” implies that tail consumptions

are bigger than head consumptions, and no sign implies head and tail consumptions are chosen from the
same range). We generated instances with $n=100,200,$ $\delta=5\%,$ 50% and $b=100000(+\infty$ for the root
node r). Instances of $\delta=5\%$ (50%) are generated so that the out-degree of each node ranges hom 4%
(40%) to 6% (60%) of the number of nodes. Tail and head consumptions for h” instances were randomly
chosen from the integers in the intervals [3, 5] and [30, 50], respectively, for all edges not connected to
the root. Similarly, those for t) instances were randomly chosen from [30, 50] and [3, 5], and those for
instances without h” or t

” sign were randomly chosen from [30, 50] and [30, 50]. The tail consumption
of edges entering the root node r for all instances were randomly chosen from the integers in the interval
[300, 500] so that these edges cannot be used frequently.

236

Table 1: Computational results of the two algorithms

$\frac{Instancename|V^{-}||E|UB_{bk}.\frac{ProposedA1gorithm}{|T|UB^{*}Obj.Gap(\%)Time(s)}\frac{Pre.viousA1.gorithm[12]}{ObjGap(\%)Time(s)}}{rnd100-5-1000001004731283437128512770.472.0109514653.0}$

rnd100-5-100000-h 100 473 2251 552 2254 2244 0.31 3.3 1836 18.44 4.4
rnd100-5-100000-t 100 473 2173 619 2281 2173 0.00 4.6 1903 12.43 5.0
rnd100-50-100000 100 4938 1498 510 1500 1491 0.47 3.9 1394 6.94 3.4
rnd100-50-100000-h 100 4938 2726 640 2730 2716 0.37 6.5 2640 3.15 5.0
rnd100-50-100000-t 100 4938 2701 439 2705 2687 0.52 3.9 1797 33.47 3.2
rnd200-5-100000 200 1970 1411 822 1413 1397 0.99 13.3 1147 18.71 45.8
rnd200-5-100000-h 200 1970 2602 930 2609 2584 0.69 17.3 1966 24.44 54.6
rnd200-5-100000-t 200 1970 2500 775 2615 2500 0.00 15.7 1879 24.84 34.9
rnd200-50-100000 200 20030 1569 871 1573 1554 0.96 25.9 1272 18.93 43.8
rnd200-50-100000-h 200 20030 2874 1412 2881 2851 0.80 62.3 2760 3.97 96.9
rnd200-50-100000-t 200 20030 2867 725 2878 2852 0.52 24.5 1872 34.71 30.1

The algorithms were coded in the $C++$ language and ran on a Dell PowerEdge T300 (Xeon X3363
2. $83GHz,$ $6MB$ cache, $24GB$ memory), where the computation was executed on a single core. We used
the primal simplex method in GLPK4.431 as LP solver.

4.2 Experimental results
Table 1 shows the results of the proposed algorithm for the problem instances explained in Section
4.1. It also shows the solutions obtained by the previous algorithm [12] for comparison purposes, where
this algorithm was stopped when it generated the same number of in-trees as the new algorithm. The
first three columns represent instance names, the number of nodes $|V^{-}|$ (without the root node), and the
number of edges $|E|$. Column $UB_{b.k}$. shows the best-known upper bounds of $OPT_{P(T_{a11})}$ computed by the
algorithm in [12], allowing long computation time of up to 170 minutes. The remaining columns include
the experimental results of the proposed algorithm and the previous algorithm [12]. Column $|T|$ shows
the number of in-trees generated by the algorithm LRGENINTREES, and column UB $*$ shows the best
upper bound of $OPT_{P(T_{a11})}$ obtained by LRGENINTREES. The next three columns represent objective
values, denoted “Obj.,”, the gaps in % between $UB_{b.k}$. and Obj., i.e., $($ ($UB_{b.k}$. $-$ Obj.) $/UB_{b.k}.)\cross 100$,
and computation times in seconds.

The results presented in Table 1 show that the proposed algorithm obtains better results than the
previous algorithm. The proposed algorithm attained better objective values than the previous algorithm
even though its computation time was shorter and the number of generated in-trees was the same. The
gaps between upper bounds and objective values are quite small, and the proposed algorithm found exact
optimal solutions for two instances.

5 Conclusions
In this paper, we proposed an algorithm to generate promising candidate in-trees for the node capacitated
in-tree packing problem. This new algorithm generates a set of in-trees employing the subgradient method
and the column generation method for the Lagrangian relaxation of the problem. We incorporated various
ideas to speed up the algorithm, e.g., rules to decrease the number of in-trees used for the subgradient
method, and upper and lower bounding techniques to reduce the number of times some Lagrangian
multipliers are updated. The proposed algorithm obtained solutions whose gaps to the upper bounds are
quite small, and was proved to be more efficient than the previous algorithm.

lGLPK -GNU Project -Ftee Software Foundation (FSF), http: $//www$. gnu. org/software/glpk/, 28 February 2011.

237

References
[1] E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and subgradient

optimization: A computational study. Mathematical Progmmming Study, 12:37-60, 1980.

[2] F. C. Bock. An algorithm to construct a minimum directed spanning tree in a directed network. In
B. Avi-Itzak, editor, Developments in Operations Research, pages 29-44. Gordon and Breach, New
York, 1971.

[3] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky. Network lifetime and power assignment in
ad-hoc wireless networks. In G. D. Battista and U. Zwick, editors, Proceedings of the 11th European
Symposium on Algore thms, volume 2832 of Lecture Notes in Computer Science, pages 114-126.
Springer, 2003.

[4] Y. Chu and T. Liu. On the shortest arborescence of a directed graph. Science Sinica, 14:1396-1400,
1965.

[5] J. Edmonds. Optimum branchings. Joumal of Research of the National Bureau of Standards,
$71B:233-240$, 1967.

[6] M. L. Fisher. The Lagrangian relaxation method for solving integer programming problems. Man-
agement Science, 27:1-18, 1981.

[7] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica Archive, 6:109-122, 1986.

[8] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application-specific protocol
architecture for wireless microsensor networks. IEEE Thansactions on Wireless Communications,
1:660-670, 2002.

[9] M. Held and R. M. Karp. The traveling salesman problem and minimum spanning trees: Part II.
Mathematical Programming, 1:6-25, 1971.

[10] S. Imahori, Y. Miyamoto, H. Hashimoto, Y. Kobayashi, M. Sasaki, and M. Yagiura. The complexity
of the node capacitated in-tree packing problem. Networks, To appear.

[11] M. Sasaki, T. Furuta, F. Ishizaki, and A. Suzuki. Multi-round topology construction in wireless
sensor networks. In Proceedings of the Asia-Pacific Symposium on Queueing Theory and Network
Applications, pages 377-384, 2007.

[12] Y. Tanaka, S. Imahori, and M. Yagiura. An lp-based heuristic algorithm for the node capacitated
in-tree packing problem. Compuer βj Operations Research, 39:637-646, 2012.

238

