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THE STUDY OF MATHEMATICAL HISTORY ON THE EQUATIONS OF NAVIER-STOKES
AND BOLTZMANN AS THE MICROSCOPICALLY-DESCRIPTIVE HYDRODYNAMIC
EQUATIONS

IR S MIBIRTTZET E 7% ( SHIGERU MASUDA )

RESEARCH INSTITUTE OF CLASSICAL FLUID DYNAMICS

ABSTRACT.  The microscopically-description of hydromechanics equations are followed by the descrip-
tion of equations of gas theory by Maxwell, Kirchhoff and Boltzmann. Above all, in 1872, Boltzmann
formulated the Boltzmann equations, cxpressed by the following today's formulation :

Of+v-Vuf=Q(fi9) t>0, xveR'(n23), x=(zny2), v=(nl), (1)
Q(fv g)(t,z‘, 'U) = / / B(‘U - v,,a){g(vi )f(vl) - g{v*)f(v)}dadv*! g(’”!’k) = g(t7 xv”:ﬁ)’ ete. (2)
RS J§2

These cquations arc able to be reduced for the general form of the hydrodynamic cquations, after
the formulations by Maxwell and Kirchhoff, and from which the Euler equations and the Navier-Stokes
equations are reduced as the special case.

After Stokes’ linear equations, the equations of gas theories werc deduced by Maxwell in 1865,
Kirchhoff in 1868 and Boltzmenn in 1872, They contributed to formulate the fluid equations and to fix
the Navier-Stokes equations, when Prandtl stated the today’s formulation in using the nomenclaturc as
the “so-called Navier-Stokes equations” in 1934, in which Prandt! included the three terms of nonlinear
and two linear terms with the ratio of two cocfficients as 3 : 1, which arose Poisson in 1831, Saint-Venant
in 1843, and Stokes in 1845.

Mathematics Subject Classification 2010 : 76-03, 01.

1. Introduction

We have studied the original microscopically descriptive Navier-Stokes ( MDNS ) equations as the
progenitors, Navier, Cauchy, Poisson, Saint-Venant and Stokes, and endeavor to ascertain their aims and
conceptual thoughts in formulations these new equation.  “The two-constant theory” was introduced
first introduced in 1805 by Laplace 2 in regard to capillary action with constants denoted by H and K.

Thereafter, various pairs of constants have been proposed by their progenitors in formulating MDNS
equations or equations describing equilibrium or capillary situations. It is commonly accepted that this
theory describes isotropic, linear elasticity. ® We can find the “two-constant” in the equations of gas
theories by Maxwell, Kirchhoff and Boltzmann, which were fixed into the common linear terms, and
which originally takes its rise in Poisson and Stokes.

The gas theorists studied also the general equations of hydromechanics, which have the same proportion
of coefficients as the equations deduced by Poisson and Stokes with only the linear term and the ratio of
the coefficient of Laplacian to that of gradient of divergence term is 3 : 1. ( cf Table 1. )

Date: 2011/09/04.

}{§) Throughout this paper, in citation of bibliographical sources, we show our own paragraph or sentences of commen-
taries by surrounding between ({) and (#).  ((f)) is used only when not following to next section, ). And by =*, we dctail
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by
original authors. The mark : = means transformation of the statements in brevity by ours. And all the frames surrounding
the statements are inserted for important remark of ours. Of course, when the descriptions are explicitly distinct without
these marks, these are not the descriptions in citation of bibliographical sources.

2(4) Of capillary action, Laplace[9, V.4, Supplement p.2 ] achnowledges Clailaut [6, p.22], and Clailaut cites Maupertuis.

3(4) Darrigol {7, p.121).
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TABLE 1. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-

tions” was fixed.
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no|name/prob [the kinetic equations A JgrdviE [F
L L
Euler X - Lldp - du +u115 +,vdu +,wdu,
1 |(1752-55) y %i g_ BT L du L dv g du g
N[, p.127) “hdy = +ud:c+vdy+wdz dz Tay T dz =0
fluid Z ~ %dz +ué—"i+v +w
‘T
N %%ﬁ 533:! zzr+:;zr+2aw"+2
avier ndy _
2 |asanng | EVNe 52?"5 LH +3%¥ + ¥ +2¢ 23 ”37:75 ' e foe |1
clastic solid Odd=c¢ m+—g+3w+2;°;c+2—b—dy;
whcre I1 is density of the solid, g is acceleratlon of gravity.
d d d: .
5 |Navier rx X+5(3?;r+m+a;r £ dzdz)-—"-r - v @ v
< |as2is] 1—8 =Y +e ;;,+3 +m+2—7+2gﬁ-) dt»—%-u«%m—%-w, e |2 i
fluid d d d
. paz—-Z"f'E +"T+3—7+23T+2 ) w a—- u—ﬁ v—-j—z‘i~w,
auchy 2
(1828)[5] (L+G)§:§+(R+H)5;§HQ*’”ﬁ*‘”a“%z +2Q~'3Lzz+x 5 if
2
4 |system (R+G) 23 + (M +H)ZF +(P+ 1LY +zpﬂi+2nﬂi+y &3, Rtl,p |G
of particl 2 2 G =0
e (Q+G)3;~§+(P+H)——§+(N+I)g—z§+2Q zd$+2pyg-+2=gt , 1
and fluid G=H=1, L=M=N, P=Q=R, L=3R 2
Poisson a2y 2 2 2
2 2 2.d 1d 1d _nd
assnpr || X w“ L¥+ifr 14 +§§ﬁ+§gﬁ)-?§*’ .
5 |clastic solid Y- 4y 4 a2 d—,+§§n+§a——v+§#&§+§§ﬁ)=§§—v§, o |2e? 11
in general 7 - Pu g2 +2 Ly 24 2, 1d2w+ld2w)_ﬂd7w
equations gz e 3dzd: Y idgd: T3dn Tidgl) T o 4?0
7— 14,
p(D“ X)+;E+a(K+k(:?!-+ﬁ %‘; +g(K+h) £ (2 + 2+ =0,
Poisson A2 -Y)+ -2+a(K+k)g—y+d2 g—;;;)+g(x+k)a%(g;+gg+§zg =0,
(1831)[17] (D —~Z)+ +0(K+k) %’*‘f"‘i’d—y %)+%(K+k)j";(%+%+—dj§)=0,
§ |fuid in pX - 5F) = 4 5;'5 L8+ 4, 8|5 3
genera @y _ dw d v« du
equations Pty leg T "'B(W"’”T“I’Ed;’f)’
PZ - $F) = +BUE + 5F +ﬁ)
WHEREpr——a-—"’— p—&—é—, = —a(K + k)
Saint-Venant
7 {(1843)[21]  |His cquations are none in [21], however his tensor is in Table 3 (4). e |5 3
fluid
D d d (d
Stokes Bt -X)+E - (w+m+§r ~sd(+ 29y =0,
sélgzg)[zz] (12)s {p(BE-Y)+ & —p m+w+32)—§%(g;+%§+ﬁé—;)=o, b |2 3
ul D a d d [ d d: d: —_
P("’“Z)‘raz— p(Ly+op+ay)-4E(£+2+4)=0
x:stglfls) G+E- CM;?: +—r+§r(%+%§+%¥) X,
1d (4 d d
9 2] o2 + ag—cMa-,f+—,+E§+35 g gu)=py,  where, Om = g2 |CM|$ 3
iD o+ -culy s Sy vy dd (e g+ )02
& &
Kirchhoff | | #% * 85 — CKA“Jfaa—(%'iJr’é%*%"f = #X L 0u v, 8w g
10/ (1876)[8] 4"+5P- Cx|av+ig (g +5+5)|=w {f‘hdt Cb_ o Ck |4 3
where, Cxg =
P G- CKAZ+33‘(%‘+%§+%'¥ = Kz, e
Rayleigh _1_52___ 2, — pdu
Ul ssa)jz0) || eds = @ TVVu UE UG au g ,
Nup %;2 - "+VV2v——u§-—”~—v:; W
18 {0 [ o —
Boltzmann p'é't""ﬁg—RA“"'ﬁﬁ('S%'*’E%*"&% = pX,
123395){1] (221)p &2 Rlav+iZ($+g+32)=mm R |2 3
I 9 18 /(o & 8
“'+BE—RAw+§5-(a—;+3{;+ﬁ)]= Z
Prandtl — vd (8u, 8u_ Ow + &%
13) 1934)19] S Hutrogy 4 X- +33‘(Fi+5§ z)+”(5';z GE+5E) P 3
N HD FOR INCOMPRESSIBLE, rrxs SNPLIFIED DIV w = 0, ?t—z:g-—GRADerVAW 3




TABLE 2. Geneology of tensors in fluid dynamics

nojname tensor ]
tiy = (P - EUR Ic)azg - E(ut,J + 'u;,z)
1 Navier [ e “2€d "‘5(;{"*‘ "E(dw+ )
fiuid ——5(%-!-3—:) € “25“'; e(g:+ ) , where €’=p“€(3~+dy+dw)
o) e o

Cauchy |t = Ave,kdij + plviy + v54)
system 80)c

5 |(contains ksﬁ + Ky k(gi 4 y’l) %

5 3
2
both 34 e o .
clasticity 5(% + k—"+Ku £ 5—:1+~5-§g , where v =854 804 8¢
oo | | b e 5) sl a) s one
tyj = —‘p&j +/\vh,k5” +’u(v,‘a +vj"i) l
(7-T)ps
. du . .
spomn | [ A ) as - 8) vy
. : a d d d: - dy o
B E’Z-i——ﬁ ﬂ‘+2ﬁ B(E%*’ZZ’) , where m =p — a_a—‘ )%.O_;%E

n+2p%e (% + d'“) B(g% + %)

tij = ( (Pez + Pyy + Pyy) — Z‘vk k)&y -+ E(‘vi,]’ + vj'i)

. = ("‘P - g’vk k)‘stj + E(vz,] + vj, 1)
Saint- r 9

4 {'Venant w4t ssﬁ ( ) (3-{ + ) 4
fluid 154—“3 m+23 (4 +;—‘1) s where m=-—p-%(% + 31+ %)

(dz dy) T+ 2%

tij = (~p— §1ve, k)85 + plve g +v5,4),

tensor = —1 X

[ d d d d d
s fotes | [p-2(t ) —u(f+ ) (g
u( +i’i p— 2u(d”~6) ~y(%§+%—’5% , where 36—- %—-i—T’”
d dw
““(d¥+ daz ’/"(dz u)p 2“(“”‘6
tij = (=P — £ por,1 )85 + pulvi,g; +v5,0),
M d du a: M v Bu dw d:
o [Maxwell P2 - - 8) - wlhr (B R) -k Moo(ge+ g
3 M e M d dv dw M - d
fluid 8k p§3'7’(a—: + %%g p- s'kp'e“gp(d: 25 T Skpezp Fring
M Sw pel M du a
(B 8) —wkr(Bt8y) pomier(d - g -2%
t?j B (—p - 2k’w 3)5 *f' k('tl;d + 25, 1),
opdu &
7 |Kirchhoff p 2];3—5 ko + 5y :) k(a— +85“
H —
fluid mk(% +8) p- Zkeu k(-a— + 51;-) ,where k=2,
8u 81 E}
k(g +8) -k(E+ge) p-uye
tij = (—p~ §pvy, k)(&, + u(vi,j + vy,0),
— Qu _ 1{Buw By ; Bw - dw ; Ou
g |Boltzmann P 2R{5£ (3, Tyt "5—)} R(ax + 337 R( s+ 3?)
fluid —R(g—:+—— P 27%{3v~§( z+8v+~g—) —n(gg+g%) ,where R = g —p
~R(§E+8) -R(E+3) »- m{ge - (P +e+e)}

2. The succession of the linear equations from Poisson to Stokes

* We discuss the linear fluid equations, Poisson’s tensor of the pressures in fluid reads as follows :

(7-7)ps
d 4
U, U2 Us pla+a '8(3;+%) P-afy - %dtt'*-%;%
Vi i Vo | = | B(R+%) p-olft-Bitiopk gl d) |,
W1 Wz W3 d d d
poofft -Gty p(erdy) s+ %)

4({) In Poisson [17], the title of the chaper 7 is “Calcul des Pressions dans les Fluides en mouvement ; équations
defferentielles de ce mouvement.”
3
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(k+K)a=p, (k-=K)a=pg, p=yt=K, then B+ =2ka, (3)

where xt is the density of the fluid around the point M, and vt is the pressure. We put w as following :
dtl’t B+ 06 dxt

= = = 4

FEPTOE T Tt dt” )

5 then we get the linear equation by Poisson as following :

p(X—‘-f,;’;%)=%;-a+ B(%H + ¥ + 5¥),
(7-9)ps p(Y—%#)- (‘fm+§¥ o+ &), (5)
P(Z - G8) = R+ P58+ T4 + 5.

Stokes comments on Poisson’s (7-9) ps as follows :
On this supposition we shall get the value of % ‘”” from that of R} — K in the equations

of page 140 by putting
du dv _dw 1 dxt

dz _dy dz  3xt dt

We have therefore
dxt _« dxt
o — 3 K-SR

du dv dw 1 dxt
-2 = 6
(-2)ps d:t+dy dz xtdt ©)
Putting now for 8+ 3 its value 2ak, and for o dt 2xt jts value given by equation (6) 6, the
expression for w, page 152, 7 becomes

dyt B+ 0§ dxt dxt a du dv dw
=p—aotl 2T O 2 b o =),
wEPTmeTy xt dt ((K 5k) + ak) xtdt p+3(K+k)(dm+dy+dz)

Observing that a(K + k) = 3, this value of w reduces Poisson’s equation (7-9) ps [=(5)]
to the equation (12)g of this paper. ({22, p.119]).
Namely, by using a(K + k) = 8 in (3), we get the following :

SR 1 D D
R DR LTt b
£=32+§3—(3§ z)’
then (5)( = (7-9)ps ) turns out :

pBE-X)+ZraK+R) (£ +58+ %) + (K +RE(L+2+%) =0,
p(B-Y)+ £ +a(K +k) dz+f‘-: Z—J)+%K+k L(z+g+e) =0,
pBE - 2)+ & ol +R)( S8 + 58 + £5) + (K + 04 (% + % + %) 0,
AR -X)+ - (%;s Cy+Ly)-sd(+g+2)=o,
0

+4y

2
=(12)s {pBr-V+Z-p(fy+Ey+83) -4 (Rrd+i) =0,
(B —Z)+d~ﬂm+—1+m)“§f;(%+%+%ﬁ)=0-

Here, we remark that the succession from (7-9) ps to (12)s means that the Stokes’ equations comes from
Poisson’s linear equations, however, Poisson’s proper equations contain both compressible and incom-
pressible fluid, taking no notice of the Navier’s equations including both linear and non-linear terms until

Rayleigh [20] in 1883. (cf. Table 1.)

5(1}) (7-9) ps means the equation number with chapter of Poisson [17]
6(y)) Poisson[17, p.141]
T(4) of. (4)



3. Drafts of ’On the dynamical theory of Gases’ by Maxwell

3.1. A progenitor of gas theory after Poisson and Stokes.

Even after Poisson, Saint-Venent and Stokes, we can cite the progenitors of microscopically descriptive,
hydromechanical equations, which are specializes in gas theories, in which they describe the hydrodynamic
equations, and they contribute to fix the tensor and equations of NS, so we have to trace them. cf. Table
1, 2.

Maxwell [12] had presented between late 1865 and early 1866, the original equations calculating his
original coefficient, with which his tensor coincides with Poisson and Stokes, and his gas theory prior to
Kirchhoff [8] in 1876 and Boltzmann [1] in 1895. Maxwell says as follows:

if the motion is not very violent we may also neglect g;(pfz — p) and then we have

M du dv dw
2 oo — . s snrsniran v s

Cr=r- 5t Cn -5~ %) Q)

which similar expressions for 7%p and (?p. By transformation of coordinates we can easily obtain the

expressions for £np, 7¢p and (£p. They are of the form
M dv  dw
= e P e e 8
P =~ 5kpB,” (z+ dy) ®

plome P ple | =| Yo ¥, Yo T3 P T
pEaCo  pCamo  pCa 2z 2y Z: . Ty B

Having thus obtained the values of the pressures in different directions we may substitute them in the
equation of motion

P Pk pEoCo {Xx Xy XzJ (PL T3 Tz}

PSE + (08 + £ (0km) + £(0E0) = X,
p5s + F=(pén) + 2 (p?) + & (om¢) = Yp, (9)
P2+ £ (0E0) + £ (otm) + £(p¢?) = Zp.
This becomes as follows :
PP+ P Ly Sy
LT T T @)l =pv, (10)

d: z
dw | d pM | dPw | dw , d*w | 1d{du  dv , dw)]| —
p'(i?”"&g"skp@aW+E§7+FF+§E(BE+E§+EE}*"Z'

i

e
oy
8f&

+ +
& &&

Maxwell states as follows:
This is the equation of motion in the direction of x. The other equations may be
written down by symmetry. The form of the equations is identical
¢ with that deduced by Poisson ® from the theory of elasticity by supposing the strain
to be constantly relaxed at the given rate
o and the ratio of the coefficients of V? to %%%’f agrees with that given by Professor
Stokes, ? which means (10) equals (12)s.
The quantity fs—,f;"é;; is the coefficient of viscosity or of internal friction and is denoted by
@ in the writings of Professor Stokes and in my paper on the Viscosity of Air and other
Gases. [13, pp.261-262].

3.2. Law of Volumes.
In late 1865 or early 1866, Maxwell proposed this paper. It was likely that Boltzmann'® had got his

idea from this paper.

8({) The Equation(8) in [17, p.139], which we cite as (5) (7-9) ps above.
9(4)) Stokes [22]
10(1}) 1844-1906.
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u, v, w are the components of the mean velocity of all the molecules which are at
a given instant in a given element of volume, hence there is no motion of translation.
&, m, ¢ are the components of the relative velocity of one of these molecules with respect
to the mean velocity, the 'velocity of agitation of molecules’.

In the case of a single gas in motion let Q be the total energy of a single molecule then

Q= IM{(u+ & + 0+ + (w OF +BE + 7+ ()]

and

%? = M{uX +vY +w2).

The general equation becomes

L2 (w2 40 w4 (14 )E +1+ ()

L upt? + v+ wptQ) + 2 (up -+ g+ ) + 2 (upEC + oG + i)

1d 1d 2, 2,2 ,14d 2 .2, A2
+ 52;(1+ﬂ)p€(62+n2+cz)+5@(”5)/"7(6 +07 + )+ 5 (L B)C(ER + 1" + CF)
= p(uX +vY +wZ).

Substituting the values of pX, pY and pZ with %, %;1 and %5 and dividing by p of both hand-side, then

10
551t OIE +n" + )
2du  ,dv | ,dw dv  dw dw | du du  dv
+ &?d_z-+n—<i§+cE+ﬂc(21—7:+dy)+cg(dz+dz)+£n(dy+da:)
1 2, 2 (%  dn  d{y
+ FA+B)E +n +C)(E§+dy+dz)‘0‘

If weset R = TT%BT’ then we get the second, linear term of the left hand-side by Maxwell is written by
tensor

du (au + Ou dw | Ou
pE% ptn pEC oz \8z " By = " Bs
pEn pn* ¢ | =~R (B+2) & (B+%
pPEC pCn PG du  du oo dw) Bu
z ' 8z 9 "By ) Bz
which is Maxwell called it *general tensor’.
3.3. Determination of the inequality of pressure in a medium.
Maxwell constructs the tensor with his viscosity coeflicient as follows :
M (2«&-@-@) - M (6v+@ M (gg+sr_)
p{" pfn péc p 9k0§gp dz dy dz 6kp§gp oz 3y Ekp§2p ar dz
per ot g | = —abp(+3) r-ap( -2 -g) -ghe(2+%) | @
n p w u v w Y
“s_kyegp(%? +8) - ,P(’é‘; + %&‘) p= ﬂ%%zp<%§ -% ’2%)

Here, it tells of the equivalent in the structure between (11) and (8). If we set R = ﬁh;%;, then these
equations are completely equal to (221) (=(24)) by Boltzmann. These facts state that Boltzmann had
got his idea of special form of hydromechanics from Maxwell.
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4. ’Lectures on Gas theory’ by Boltzmann
In general, according to Ukai [23], we can state the Boltzmann equations as follows: !

5zf+V'fo=Q(f,g), t>0, x,veR"(n2>3), x=(z,y,2), v=(&n,¢), (12)
QU0 = [ [ Bl o)) - slon)f0)dodv,  g(el) =glt,zl), (13

"= v’gv* + Iv;v*fds vl = P%& + lv ;v*ldv g ESR—1 (14)

v

where,
e f= f(t, z, v) is interpretable as many meanings such as
- density distribution of a molecule
~ number density of & molecule
- probability density of a molecule
at time : £, place : x and velocity : v.
* f(v) means f(t,z,v) as abbreviating ¢ and  in the same time and place with f (v")
® Q(f,g) of the right-hand-side of (12) is the Boltzmann bilinear collision operator.
s v Vyf is the transport operator,
¢ B(z,0) of the right-hand-side in (13) is the non-negative function of collision cross-section.
* Qf,g)(t,z,v) is expressed in brief as Q(f).
o (v, v.) and (v, v}) are the velocities of a molecule before and after collision.
® According to Ukai [24], the transport operators are expressed with two sort of terms like Boltz-
mann’s descriptions : (114)p and (115)p including the collision term V. - (Ff) by exterior force
F as follow : 12

O +v -Vl + Vo - (F)) = Q) (15)
Q= [ [ Bo= 0. ) f010) - flo)S () o (16)

where, v - Vyf + V, - (Ff) are transport operators operating under the exterior force : F(t,z,v) =
(F1, F3, F3). The right-hand side of (15) is expressed in brief as Q(f) meaning Q(f)(¢, , v).

4.1. Reduction of the partial differential equations for f and F.

We show the Figure 6 in the last page of our paper, which defines the model of the collision between
the molecule m; calling the point of it and the molecule m wich we call the point m. The instant when
the molecule m passes vertically throught the disc of my molecule, is defined as collision. We show
Boltzmann's definitions as follow :

We fix our attention on the parallelepiped representing all space points whose coordinates
lie between the limits 13

9 |z, x+dz), [y, y+dy), [z, 2+dz], do=dzdydz

We now construct a second rectangular parallelepiped, which include all points whose
coordinates lie between the limits

(98)3 [55 £ + d€}§ {771 7+ d’?], {Ca C + dCl
We set its volume equal to
dédnd¢ = dw (17

and we call it the parallelepiped dw. The molecules that are in do at the time ¢ and whose
velocity points lie in dw at the same time will again be called the specified molecules, or
the “dn molecules.” Their number is clearly proportional to the product do-dw. Then all
volume elements immediately adjacent to do find themselves subject to similar conditions,

L1¢4) We refer the Lecture Note by S.Ukai: Boltzmann equations: New evolution of theory, Lecture Note of the Winter
School in Kyushu of Non-linear Partial Differential Equations, Kyushu University, 6-7, November, 2009.

12(4) In the Boltzmann’ original equations, they are used with two terms like (114)g, (115)5. We can refer the General
lecture in the autumn meeting of MSJ by S.Ukai [24] : The study of Boltzmann eguations: past and future, MSJ, 23,
September, 2010.

By ¢ )B in the top of the equation or expression means the number cited in Boltzmann[2] in below of our paper.

7
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TABLE 3. The symbols and definitions

82

[no symbol [defined[content of conformation in modeling of collision. cf. Figure 6 in the last page. lef.  [mma|
1 X, Y, Z (18) [The component of accelarating force of a molecule in a coddinate direction.
2] mX,mY,mZ The component of the external force acting on any m-molecule. m|
3 I3/ (98)p |The component of velocity of any m-molecule in a coddinate direction. m
4 f (998 |f = f(z, ¥ 2, & n, G 1) m
5 fi (99)p |f1 = f(x, y, 2, &1, M, 1, t), different only with velocity of f. m|
6 F (100)8 F = F(I, Y 2, E! 7, €, t) my
7 I3 (103)g |[Fy = F(z, y, 2, &1, m, G, t), different only with velocity of F. m1
8 &1, 11, §1 (102) 5 [The component of velocity of any m;-molecule in a coddinate direction. my
9 g p.116 [The moving direction ( or velocity ) of an m-molecule to an mj-molecule. Fig. 6/m
10 gdt p.116 |The moving distancc of an m-molecule to an mi-molecule during dt. Fig. 6lm|
The length of a line originated from m1-molecule, where, b is the smallest possible
distance of the two colliding molecules that could be attained if they moved
1 b (104)5 without interaction in straight lines with the velocities they had before the collision. Fig. 6| |my
In other words, b is the line Py P, where Py and P are the two points at which
m, and m would be found at the moment of their closest approach if there were
no interraction.
12 o The limit of the length of a line. [0, o). Fig. 6] |m1
An angle formed between a line b and a line m1 H, where, ¢ is the angle between
13 € (104) g the two planes through the direction of relative motion, one parallel to Py P along b, Fig. 6{ |ma
and the other to the abscissa axis.
14 ¢, 7, ¢ (108) 5 [The component of velocity of a molecule after the collision. m
15 3 (109) g [The length of a linc after the collision. Fig. 6] [m1
16 e (109) g [An anglc formed between a line b and a line my A after the collision . Fig. 6 |m1
17 do: 978 We set do = dzdydz in which the m-molecules lic, m
parallclepiped and we always call this parallelepiped the parallelepiped do.
18| parallelepiped E??)B) x((:i s::; ﬁ]uw-: dﬁdgldi hm whlcg wllelc?cl(::;' tpt:nm: of l\‘ihlc @-:xdoﬁcdules lie, m
of velocity point ys C is parallelepip e parallelepip .
19 dwy (102g) | We set dw) = dfldml?(l as well as dw, in which vcl(?city point of the mj-molecules lie, m
(21) {and we always call this parallelepiped the parallelepiped dw;.
The m~molccules that are in do at time t and whose velocity points lie in dw
20 dn (99) 5 |at the same time will again be called the specified molecules, or the “dn molecules.” m
dn = f(z, y, 2, § 7, ¢, t)dodw = fdodw
21 dan’ (99, The number of m-molecules that satisfy the conditions (97)g and (98)p at time t + dt. m
B ldn! = f(z, ¥, 2, & 1, €, t+ dt)dodw
The number of m;-molecules that satisfy the conditions (97)p and (98)p at time t.
22 N (10084 = F(z, y, 2, & 7, ¢, t)dodw = Fdodw ™
23 dNy (103) g |dNy = F(=z, y, 2, &1, m, G, t)dodw = Fidodw; m1
24 vy (107) g |The number of all collisions of our dn molecules during dt with m;-molecules. mimy
25 v (106) g |The number of m-points that pass an m)-point at any distance less than ¢ during dt. mimi
26 v3 (105) g [The number of collisions between m-moleculcs and m;-molecules. mimg
The increasc which dn experiences as a result of motion of the molecules during
27 | %1 (19) |time dt, where all m-molecules whose velocity points lic in dw move in the z-direction  [Az(p){m
with velocity &, in the y-direction with velocity 7, and in the z-direction with velocity ¢.
28 Va (20) As a result of the action of external forces, the velocity components of all the molecules As(p)lm
change with time, and hence the velocity points of the molecules in do will move.
. The total increase experienced by dn as a result of collisions of m-molecules
28 " (1118 with mj-molecules. XP Y T
The net increase experienced by dn as a result of collisions of m-molecules
30 Va (112)5 with m;-molecules).(pvs =1 - 13; As(p)fmima
31 Va (113)5 ’;k:; lzfzz:xent experienced by dn as a result of collisions of m or mj-molecules with As(@)|mima
32 0, Ydudo® |LUB)Blo=0(z, ¥, 2, & 1 (G By D4, 4o @ = fdodw, multipling the number fdodw by ¢ ™m|
33| @, ZMQ (117)p :I;: Qéz(, Y % & 0§ t), ;,:M@ = @ Fdodw, multipling the number Fdodw by ® m
1=®(z, ¥, 2 &, My ¢, 1),
34 %1 Yawao®1 |(1UN8| "5 '9: = 91 Fydodun, multipling the number Fidodw by &1 ™
35 Ai(p) (121) g [The effect of explicit dependance of ¢ on t.
36 Aa(p) (122) g [The effect of the motion of the molecules. Vi |m
37 Az(p) (123) g [The effect of external forces. Va2 m
38 Aa(p) (124) g [The effect of collisions of m-molecules with mi-molecules. V3 mimi
39 As(p) (125) g [The effect of collisions of m-molecules with each other. Vi |m
40 Bi(p) (127) g {The total effect in w of explicit dependance of ¢ on ¢.
41 Ba(p) (128) g [The effect in w of the motion of the molecules. Vi m
42 Bs(yp) (129) g [The eflect in w of external forced: Vs |m
43 Bi(p) (134) g [The effect in w of collisions of m-molecules with mj-molecules. Vs mimy
44 Bs () (139) 5 |The effect in w of collisions of m-molecules with each other. Vi Im
4] {Ca(p)}s |(125)p|The effect in w and o as the same as {An(@)}; or {Bn(¥)]3




so that in a parallelepiped twice as large there will be twice as many molecules. We can
therefore set this number equal to

(99)s dn=f(z, y, z, & n, ¢, t)dodw = fdodw

Similarly the number of m;-molecules that satisfy the conditions (97)p and (98)5 at
time ¢ will be ;

(100)p dN = F(z, y, 2, & 7, ¢, t)dodw = Fdodw

The two functions f and F' completely characterize the state of motion, the mixing
ratio, and the velocity distribution at all places in the gas mixture. ~ We shall allow a
very short time dt to elapse, and during this time we keep the size and position of do
and dw completely unchanged. The number of m-molecules that satisfy the conditions
(97)5 and (98)p at time t + dt is, according to Equation (99),

dn' = f(z, y, 2, & 0, ¢, t+ dt)dodw = fdodw
and the total increase experienced by dn during time dt is

7]
(100)g dn' ~dn = B{:do dw dt.
€, 1, ¢ are the rectangular coGdinates of the velocity point. Although this is only an imaginary point,
still it moves like the molecule itself in space. Since X, Y, Z are the components of the accelerating
force,'* we have:
dé dn d¢
s =Y, == 18
dt Todi Y. dt z (18)
4.2, Four different causes bringing up increase of dn.
Boltzmann explains an increase of dn as a result of the following four different causes of Vi, Va, Va
and V4 :
e Vi : increment by transport through do

e V5 - increment by transport of external force
e V3 : increment as a result of collisions of m-molecules with m;-molecules

e Vy : increment by collision of molecules with each other
We extract an outline by the Boltzmann [1] as follows :
‘The number dn experiences an increase as a result of four different causes.

(1) (Vi : increase going out through do ; ) All m-molecules whose velocity points lie in
dw move in the z-direction with velocity &, in the y-direction with velocity 7, and
in the z-direction with velocity (.

Hence through the left of the side of the parallelepiped do facing the negative
abscissa direction there will enter during time dt as many molecules satisfying the
condition (985) as may be found, at the beginning of dt, in a parallelepiped of base
dydz and height £dt,'° viz. & f(z, y, z, &, 0, ¢, t)dydzdwdt molecules. Likewise, for
the number of m—molecules that satisfying (98g) and go out through the opposite
face of do during time d¢, the value:

£ - fle+de, y, 2, & 1, ¢, t)dydzdwdt
By similar arguments for the four other sides of the parallelepiped, one finds that
during time dt,
af af af
~(gZl i ““\do - t
( Oz +n8y +C32) 0 dw d

more molecules satisfying (98) enter do than leave it. This is therefore the increase
V1 which dn experiences as a result of motion of the molecules during time dt.

of of  ,of )
= e = - 4 (== }do dw dt 19
Vi= (65, + g, + (5 )do (19)
%) Da X, Y, Z die Componenten der beschleunigenden Kraft sind, so ist: .- Boltzmann [2, p.103].

15(J,L) § : the z-direction with velocity multiplied by d¢ becomes the length of a edge of which consists a parallelepiped
with a base dydz.
9
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(2) ( Vz : increase by external force ; ) As a result of the action of external forces, the
velocity components of all the molecules change with time, and hence the velocity
points of the molecules in do will move. Some velocity points will leave dw, others
will come in, and since we always include in the number dn only those molecules
whose velocity points lie in dw, dn likewise be changed for this reason.

of

_ _(x9  0f  ,0f
Vz—-—( d§+Yay+Zaz)dodwdt

Boltzmann defines the effects of collisions as follows :

(3) ( V5 : increase as a result of collisions of m-molecules with m;-molecules ; ) Those
of our dn molecules that undergo a collision during the time dt will clearly have in
general different velocity components after the collision.

o ( Decrease : ) Their velocity points will therefore be expected, as it were, from
the parallelepiped by the collision, and thrown into & completely different
parallelepiped. The number dn will thereby be decreased.

o ( Increase : ) On the other hand, the velocity points of m-molecules in
other parallelepipeds will be throne into dw by collisions, and dn will thereby
increase.

o ( Total increase by collision between m-molecules and m;-molecules : } It is
now a question of finding this total increase V3 experienced by dn during time
dt as a result of the collisions taking place between any m-molecules and any
my-molecules.

For this purpose we shall fix our attention on a very small fraction of the total
number vy of collisions undergone by our dn molecules during time dt with m;-
molecules. We construct a third parallelepiped which includes all points whose
coordinates lie between the limits

(102) [&, &1 +d&], [m, m+dm], [G, G+dG]

Its volume is
dw = dé1dmdS

It constitutes the parallelepiped dw;. By analogy with Equation (100) g, the number
of my-molecules in do whose velocity points lie in dw; at time ¢ is :

(103)3 dN] = Fldodwl,

where F; is an abbreviation for F(z, y, z, £, m, 1)

Boltzmann defines a passage of an m-point by an m;-point as follows :

(a) ( How to pass : ) We define a passage of an m-point by an m;-point as that
instant of time when distance between the points has its smallest value ; thus
m would pass through the plane through m; perpendicular to the direction
g, if no interaction took place between the two molecules.

(b) ( vz : the number of passages of an m-point by an mj-point : ) Hence, v
is equal to the number of passages of an m-point by an m;-point that occurs
during time dt, such that the smallest distance between the two molecules is
less than o.

(c) ( A plane E : ) In order to find this number, we draw through each m;-point
a plane E moving with m;, perpendicular to the direction of g, and a line G,
which parallel to this direction.

(d) ( When a passage ends : ) As soon as an m-point crosses E, a passage take
place between it and the m;-point.

(e) (A line m;X : ) We draw through each m;-point a line m; X parallel to the
positive abscissa direction and similarly directed.

(f) ( Half-plane : ) The half-plane bounded by G, which contains the latter line,
cuts E in the line my H, which of course again contains each m;i-point.

10
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(g) (bande: ) Furthermore, we draw from each m;-point in each of the plane
E & line of length b, which forms an angle ¢ with the line m; H.

(h) ( Rectangles of surface area R formed by b and ¢ : ) All points of the plane
E for which b and ¢ lie between the limits

(104) [b, b+dbl, [e, €+ de

form a rectangle of surface area R = bdbde.

In his Figure 6, !5 the intersections of all these lines with a sphere circumscribed
about my are shown. The large circle (shown as an ellipse) lies in the plane E ; the
circular arc GX H lies in the half-plane defined above. In each of planes E, an equal
and identically situated rectangle will be found. We consider for the moment only
those passages of an m-point by an m;-point in which the first point penetrates one
of the rectangles R.

Below, Boltzmann calculates V3 in order of Il — v3 — vy ~» vy — §1 — V3.

At first,

I = Rgdt = bdbde gdt, Z Il =dNIl = Fidodw; gbdbdedt
R dN; (108)p ]

Since these volumes are infinitesimal, and lie infinitely close to the point with
coordinates z, y, z, then by analogy with Equation (99)s the number of m-points
(i.e., m-molecules whose velocity points lie in dw) that are initially in the volumes
> I is equal to :

(105)p v = fdw ) Il = fFydodwduw, gbdbdedt

This is at the same time the number of m-points that pass an m;-point during
time df at a distance between b and b+ db, in such a way that the angle ¢ lie between
¢ and e + de.

By v, we mean the number of m-points that pass an m,-point at any distance
less than o during dt. We find v, by integrating the differential expression v3 over
€ from 0 to 27, and over b from 0 to o.

o 2 o 2%
(106) v2 =/ db/ vade = dodwdwldt/ db deg-b-f-Fy
0 0 [4] 0

The number denoted by v of all collisions of our dn molecules during di with
mi-molecules is therefore found by integrating over the three variable &, 71, G
whose differentials occur in dwq, from —oo to +o00; we indicate this a single integral
sign :

e%] o anr
(107 = / vodwy = do - dw - dt/ dun / db JFigbde
—00 —00 0 0

We shall consider again those collisions between m-molecules and m;-molecules,
whose nuinber was denoted by vz and is given by Equation (105)5.

oo

These are the collisions that occur in unit time in the volume element do in such
& way the following conditions are satisfied :

s The velocity components of the m-molecules and the m;-molecules lie between
the limits (98) and (102)p, respectively, before the interaction begins.

o We denote by b the closest distance of approach that would be attained if the
molecules did not interact but retained the velocities they had before the collision.

The total increment i, experienced by dn as a result of collisions of m-molecules
with mj-molecules is founded by integrating over € from 0 to 2m, over b from 0 to o,

16( 1) We show this Figure 6 in the last page of our paper citing {2, p.107], which is equal to [1, p.117], however, we must
correct the symbol R by H of 1, p.117].
11



and over &, m1, (1 from —o00 to +0o. We shall write the result of this integration
in the form :

o p2r
(1) 4@ = dodwdt// f' F{ gbduw dbde
0 JO

Of course we cannot perform explicitly the integration with respect to b and e
since the variable &', 7/, ¢’ and &), 7}, {{ occurring in f’ and F] are functions
of (£, n, ¢, &, N, ¢l,b and ¢), which cannot be computed until the force law is

e 17
given.

The difference i; — v, expresses the net increase of dn during time dt as a result
of collisions of m-molecules with m;-molecules. It is therefore the total increase V3
experienced by dn as a result of these collisions, and one has

a 27
112)g Vs=i1—~11 = dodwdt // / (f/Fl' - fFl)du)ldde
0 JO

(4) ( V4 : increment by collision of molecules with each other ; ) The increment V4
experienced by dn as a result of collisions of m-molecules with each other is found
from Equation (112)g by a simple permutation. One now uses &, 7;, {1 and
&, n, ¢ for the velocity components of the other m-molecule before and after the
collision, respectively, and one writes f; and f for

fl =f(a:, Y, 2, 511 n, <l1 t) and fllzf(x9 U =z 6;1 7]’1, C{u t)
Then: (113)p Vi = dodwdt [f5° [2™(f'fi — ff1)gbdwdbde.

4.3. Formulation of Boltzmann’s transport equations.
According to Boltzmann[2, pp.110-115], '8 his equations (so-called transport equations) are the following
.19

Since now Vi + Vi + Vi + V; is equal to the increment dn’ — dn of dn during time
dt, and this according to Equation (101)p must be equal to %t[dodwdt, one obtains
on substituting all the appropriate value and deviding by dodwdt the following partial
differential equation for the function f :

o7 , (Of , Of  Of O ,Of ,of
(114) g ot +§81 +n6y +Cazl+3(ax +y8y +Z§£,

"

> ~
= //w/% [(f'Ff -fR)+(f'fi —ffl)]gb dw: db de
JJo 0 i

Va+Vy

Similarly we obtain the equation of F :

OR OR OR  OR . OF L OFR . 0F

(M5)s G +age ¥mgy T05 T X%y By EP
Vi va
oo 2
= // / [(7/F{ = 7F2) + (F'F{ - FF)|gb dun db de
0 0
V3:V4

where,

fzf(z’ Y, 2, 5’ 7, C, t)’ fl :’f(ma Y, 2 &1& m, Cla t)» f{ -‘;f(l', Y, 2, §i1 771» C;v t)7
F=F($7 Y, 2, é! m, Ca t)v Fl =F(:L‘, Y, 2, €1~ m, Cla t)s F{:F(m, Y, 2, E{a 7]/1, Ci, t)

Namely, we can verify (114)p for f :

(22)

17(4) Hicr kann die Integration nach b und e natiirlich nicht mehr sofort aus gefiihrt werden, da die in f’ and Fy
vorkommen den Variabeln &', 7/, ¢/ und £, 7}, (] Function von &, %, ¢, &}, n{, ¢{,b und esind, welchc nur berechnet
werden kénnen, wenn Virkungsgesetz der wihrend cines Zusammenstosses wirksamen Krifte gegeben ist. [2, p.112].

13({}) Boltzmann(1844-1906) had put the date in the foreword to part I as September in 1895, part IT as August in 1898.

19() We mean the equation number in the left-hand side with (-)p the citations from the Boltzmann|2] or [1]. We state
only the symbol [ instead of [ . cf. (107)p.

12
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TABLE 4. Combination of function before and after collision

[no item V3 before] Vy after [[f of Vj before[f of V after[F of V, before]F' of V, after]
1 {function of m;|  f F f F F F'
2 | function of m| Fy Fy fi fi y 31 F|
3] increment [f'F] — fFi] FA-fh] | F'F{ - FFy|
Vit Ve+Va+Vy _ 6f <97 af of
e (§ 2)- ( Yoy 75:)
V1 ‘/2
oo pRw 0 pRT
J[7 [ wei=srogs- dndsacs [ [7 (11 - s g0 dundbae
JJo Jo JJo o J
va Vi

Similarly we obtain (115)p for F.

Vi+Vo+WVa+Vy _ BFl 8F1 8 Qf}‘ _ aF, OF; %
dodiodt = S =% "ay t<F >) (Xd«5+y<9y +2%;)

2 o 27
/ f (f'F} - fFi)gb- dwydbde + / / (F'F| — FF;)gb - duwydbde.
0 o 0 [

(4) Here, we can confirm the identity with the today’s description of the Boltzmann equations (12) and
(13) :

-V Vof = ,G)s F -V F -VF =Q(F,G),
Of+v -Vef+w-Vof =Q(f,9), OF +v -VxF+w-V,F=Q(FQG)
Vi Va V3, V4 \Z Va V3, V4

Qo)) = [ [ Bl = o) {aw)S60) - gto) e, g(ot) = glt,2.00), et
t>0, x,v,zweR"n>3), x=(z,4.2), v=(&n(, w=(XY, 2).
In the case of (15) and (16)
ouf + 3 Ixf+ Vv ()= Q)

Vi Va Va, Vy
- / / B(v = ve, )Y F W F() = £(0:) f(0) }dordv,
R3 J§?

4.4. General form of the hydrodynamic equations.
As the general expressions for fluid mechanics, he states that when we substitute for %t[ its value

from Equation (114)p, it turns into (120)g, (126)s, (140)5, a sum of five terms, each of which has its
own physical meaning, as follows:
(116)5 Lo a0 = pfdods, (12005 § Sy o0 = (15 + 0% )dodw = [ T5_; An(i)]dodw,
(U175 Yuuao® = OFdodwy, Yy, 4o 81 = &1 Fidodwy,
(118)5 o0 =do [ ofde, (126)5 § ¥, a0 =dof (f%E + 9% )do = [}:izl Bu(e)]do
(19)5 Ty o0 = [f ¢fdodw, (14005 § 5,0 =Jf (1% + Y )dodw = T3, Culp)

4.5. Special form of the incompressible, hydrodynamic equations.
ap Bpw) , 8pv)  lpw) _

(171)5 o oy 5

p(ﬁu 5"‘ +’U'g— +'UJ3—) — é—— ‘L%JT -2_. ’

(735 (% +ud +vay+waz) -5%1— -%”:g- eyl
(Q‘ ule + +w“a“> pZ - Al _ 2epsle) _ 2]

13
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Boltzmann says “these equations as well as Equation (171) g, are only special cases of the general equation
(126) and were derived from it by Maxwell and ( following him ) by Kirchhoff.” Boltzmann concludes
that if one collects all these terms, then Equation (126) reduces in this special case to:

(a77)s (p?) , (ptp) . O(rP) d(pCy) _p[X&p Yaso +Z<9<p] -m[B4(<p)+B5(so)]

o T or 5y oz B¢ 3¢

-~
collision terms

Boltzmann states about (177)p :

From this equation Maxwell calculated the viscosity, diffusion, and heat conduction
and Kirchhoff therefore calls it the basic equation of the theory. If one sets ¢ = 1, he
obtains at once the continuity equation (171); for it follows from Equations (134) and
(137) that B4(1) = Bs(1) = 0. Subtraction of the continuity equation, multiplied by ¢,
from (177) gives (using the substitution [158]): [1, p.152].

where, (158): € =& +u, p=m+v, (=¢(+w

o, dp 0%, 0% 3(pEop) 3(0%" ) 3(/)?03) dg  ,Op , ,0p
(178)5 p( +uzt vt +wit) 4 = B o —p[X6£+Y +Z8C]

oz 8y Yoz
= m[Ba(w) + Bs(w)]
[ W
collision terms

If one denotes the six quantities (179)p : pfg, pﬁg, ng, P00, p€0Co, p€omo by Xz, Yy, Zz, Yo =2y, Zz =
X., Xy =Y,, namely, when we use the symmetric tensor, then we get the following :

Pfo pfono P&oCo { X: Xy Xz} [P1 Ts Tz}

plomo P’Io PﬂOCO = Y=Y Y s P Ty (23)

paCo plomo PGS Ze 2y 2. LT B

p(§ +ufe +ofe+ )+ e+ Bl G~
(180)s 4 p ?}+uf’”+ug‘-’+w )+%’i+-5y1+%’!;=p)f,
8z

p —;-?—u +v5—+w5)+%€‘+—§j’-+%=p2
&ese are not NS equations for lack of the pressure term. Moreover (181)p : p = pTg = p_ng =
p{o ,  &mo = &Co = nolo = 0. Here, he assumes that from the supposition of isotropy and homogeneity,

(X « + Yy + Z.), which is the same as the principle by Saint-Venant or Stokes.
He deduces a special case of the hydrodynamic equations as follows:
For the present, we assume as a fact of experience that in gases the normal pressure

is always nearly equal in all directions, and that tangential elastic forces are very small,
so that Equations (181) are approximately true. Substitution of the values given by this
equation into Equation (173) yields:
a
Pl % +uf +v3—+w3-) +8 -
(183)s {p éﬁ“ +uf ot )+ 8 -
ol P +uBe +vee +w-5—)+52 pZ =0
which are the so-called Euler equations in incompressible condition of (171) 5.

g + 2 4 2efomm) | Aeboe) _ px =

(185)p p%tll.;.a”&ox +‘.9ﬁ"7_0.+..§£20_€_2 - pY =0,

pX
pY

p%wt_ + 3(Pa€oxCo) + 3(ﬂgoyﬂo) + 5(550 -pZ =0
We set the values of (23) as follows, which is the same tensor as Stokes :
- du __ 1{%u Sy Sw - o du - dw g
PEo Pfono pEolo P ZR{ (E tE Tt T)} R( : T 537) R(E + ﬁ)

@05 | o e et | =| -R(E+%) p-m{E-H(E+5+3)) -®
pElo plomo  PC3 -R 8': +2) - R(g.g + 37) p— 27@{ fu g(éﬂi +
14



From (220)p, we calculate the components of (185)g as follows:

2 o) e por{ef-R(Begeg)} R(BeR) B |1y
e n '%710_ apn B = §;+gz; p'R{Z%_ ( +B” +6'§1£)l Gu g?fB 1uw> 3;;;
_§£§9_(sz) 2Ae%m) _,__Sﬁo, ~R(ge + 4 R(a-h,y) p— 'R{zg-»-g( +82+%)} 5:

Then, substitution of these values into the equations of motion (185)p yields:
pa“+g2—-?2 Au+§§«( + 3+ 52)] - px =,
@20 {pZ+Z-RlAv+1 (5~+5—+g—) ~p¥ =0, (24)
o + 32 R Aw+gaz("’“ + g +92)]-pz=0

We can interpret that as the special cases, Boltzmann have deduced the NS equations after substituting
the tensor (220)5 to (173)p, for lack of pressure terms. Here, we remark that from Maxwell's viscosity
coefficient : R = 6——"“%—1), we get the tensor (220) g, which equals to (11). The equations (9) equals (185)5
and (10) equals (221) B (=(24)) except for the symbol of viscosity coefficient.

5. Conclusions. Contributions to the NS equations

Basically, the N'S equations were deduced from Newton’s kinetic equation ( the second law of motion
) : F = mr, 2 however Boltzmann’s gas equations were not deduced from it, but he extended the ideas
of gas theory including the problem of gas collision by its progenitors Maxwell and Kirchhoff. In fact,
Boltzmanin had confessed his fear the authority in the preface of the Part TI of his book ( cf. Appendix ).

When we consider the contributions by Boltzmann to the N8 equations, Boltzmann shows the Euler
equations and the NS equation as the special case of his general hydrodynamic equations. He verified the
validity of the Buler equations and the N'S equations, which were recognized in 1934 at latest by Prandtl
[19, p.259], and at the epoch about one hundred years after Navier’s paper [15], read by the referees in
1822 and published in Mémoires de L’Academie des Sience de I'Institute de France in 1827.

Maxwell in 1865, Boltzmann in 1895 and Prandtl]18, 19] in 1904 both used the “well-known hydro-
dynamic equations” and at latest in 1929, used the nomenclature of “Navier-Stokes equations”, using
the two-constant not of Navier, but of Saint-Venant, Stokes, and expanded by Maxwell, Kirchhoff and
Boltzmann. These three persons verified the hydrodynamic equations without the name as Navier-Stokes
equations.

In short, we can state that after formulating by Navier (1827) [15], Cauchy (1828) [5], Poisson (1831)
[17], Saint-Venant (1843) [21] and Stokes (1849) [22], the topics of hydrodynamic history are rebuilt by
Maxwell (1865) [12], Boltzmann (1895) [1] and Prandtl (1927) [19] in the cyclic interval of about 30 years
or so.

As the two constants, Saint-Venant had used ¢ and §, and Stokes x and 4, while Boltzmann used R
and % after tracing Maxwell.

Boltzmann states hydrodynamic equations as well as the Euler equations of (183)s. According to
Boltzmann’s description, we can suppose the fact that the then academic society had not fixed yet the
name of this equations, up to 1895 or 1898.
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